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Abstract

The Wisconsin Epidemiologic Study of Diabetic Retinopathy is a population-based
study to investigate prevalence, incidence, and progression of diabetic retinopathy. To
investigate the natural history of the younger-onset insulin-dependent subpopulation, we
propose and fit a nonhomogeneous discrete-time Markov model. We also account for
treatment intervention and death. Bayesian inference is used to combine the data with
the model. Predictive distributions are discussed as a prognostic tool to assist researchers
in evaluating costs and benefits of treatment protocols. While our analysis focuses on

diabetic retinopathy, we believe this methodology can have wide application.



1 Introduction

A serious complication associated with diabetes is a progressive disorder of the retina
known as diabetic retinopathy. Late stages of this condition are charactex;ized by a
proliferation of abnormal new retinal blood vessels which may bleed into the vitreous
gel of the eye leading to a decrease in vision. This condition is an important cause
of severe vision loss (visual acuity of 5/200 or less) in working-age Americans and
accounts for a large percentage of the new cases of legal blindness each year.

Beginning in 1959, the use of light therapy to burn the retina, thereby causing
regression of these vessels and/or decreasing the leakage, was studied as a treatment
for this condition. In 1976, the results of an extensive randomized controlled clinical
trial revealed that the risk of severe visual loss can be reduced with panretinal photo-
coagulation, a random scatter laser application. Timely application of this treatment
prevented severe vision loss associated with hemorrhaging of the new retinal vessels
approximately 50% of the time!2. However, without proper detection, the condition
may progress to a point where this treatment is less efficacious. Because of this and
the risks associated with the treatment, there is great interest in modeling the natural
progression of diabetic retinopathy to investigate the cost-benefit of treatment under
different screening and treatment programs.

As with many chronic diseases, a subject’s “history” of diabetic retinopathy can
be thought of as a progression through distinct severity states. The Markov process
has been a convenient method to describe this series®~®. Both Garg et al.* and Das-
bach et al.> used a homogeneous discrete-time Markov chain to describe the natural
history from year to year. Often with these discrete-time models, estimation of these
transition probabilities is difficult because the severity states are observed at several
separated and unequally spaced time points. For example, the Wisconsin Epidemio-
logic Study of Diabetic Retinopathy (WESDR) data’, used in Dasbach et al.’, now
includes three observations per surviving participant with inter-observation periods
of four and six years.

In this paper, we analyze the updated WESDR data set by proposing a flexible
method to obtain estimates of annual transition probabilities when the observed data

are at multiyear and unequal intervals. Unlike the other discrete-time Markov models,



we incorporate covariate information, thereby allowing estimation of a nonhomoge-
neous Markov process. In addition, we include descriptions of treatment interven-
tion and death in our model to explain these occurrences during the study. This is
an extension of the Craig and Newton paper® in which the model lumped together
important screening level states thereby making treatment program comparisons im-

possible.

1.1 The Data

The WESDR. is a population-based observational cohort study conducted in southern
Wisconsin. The data were collected at three time points, four and six calendar years
apart. For the remainder of the paper, we label these time points year 1 (baseline),
year 5, and year 11. The natural history of diabetic retinopathy may vary for different
types of diabetes. For this paper, we focus on the younger-onset insulin-dependent
subpopulation.

For each subject at year 1, 5, and 11, a trained grader, masked to any information
regarding the subject, rated the presence and severity of several characteristic lesions
associated with diabetic retinopathy in seven standard 30° stereoscopic color fundus
photographs using the modified Airlie House Classification scheme®. An algorithm?®
was used to determine retinopathy levels (RL) ranging from 10 (no disease) to 85 (end-
stage proliferative retinopathy). Presence of panretinal photocoagulation scars and
best corrected visual acuities (VA) in each eye were determined using standardized
protocols.

The severity states for this analysis aggregate some of the retinopathy levels and
also account for photocoagulation treatment status and visual acuity. These states,
shown in Table 1, are mutually exclusive. All states, except state 5, are based on one
visual acuity level, better or worse than 20/200 (legal blindness). State 5 is defined
to represent sequelae of retinopathy resulting in either severe visual impairment or
severe anatomic changes in the retina which can lead to severe visual impairment.

The current analysis considers only information for the right eye.



Table 1. Severity States of Diabetic Retinopathy

State Description
1. No retinopathy present VA better than 20/200 and RL < 15
2. Nonproliferative retinopathy VA better than 20/200 and 15 < RL < 37

3. Mild nonproliferative retinopathy VA better than 20/200 and 38 < RL < 59

4. Active proliferative retinopathy VA better than 20/200 and 60 < RL < 84
with no signs of treatment intervention

T. Treatment intervention VA better than 20/200 and 60 < RL < 84
with signs of treatment intervention

5. Severe visual impairment VA worse or equal to 20/200 or RL = 85

Complete information is not available on all subjects. Only subjects whose sever-
ity can be classified for at least one of the two observation times after baseline are
included in our analysis. Table 2.1 and 2.2 summarize the data consisting of 970 sub-
jects. In addition, several covariates were collected at each survey year including the
subject’s gender, age, duration of diabetes at baseline, and glycosylated hemoglobin
level. Several of these will be incorporated into our analysis.

Our primary concern in the modeling of the natural history is from the standpoint
of screening to identify a subject at the optimal stage for treatment with panretinal
photocoagulation. As a result, this disease classification and subsequent analysis
ignores several additional concerns outside this scope. First, we ignore macular edema
(swelling of the retina in an area most critical for acute vision) which can occur in the
presence of nonproliferative and proliferative stages of the disease prior to panretinal
photocoagulation consideration and can also lead to severe vision loss. Also, subjects
who have reached the severe visual impairment state can receive other treatments or
in some cases regress naturally back to the active proliferative state. These subjects,
however, would be under an ophthalmologist’s care after the first occurrence of this
state and thus for our purposes, their vision status will be considered to remain in
this final state once it is entered.

The paper is organized as follows: Section 2 develops our stochastic model and

Section 3 outlines our inference method. In Section 4, we discuss the results of



our Bayesian analysis and present some of the prognostic tools associated with thig
model. A discussion follows. In Appendix A we discuss the details of the posterior

calculations.

2 The Markov Model

We propose that each subject’s severity state from year to year is a Markov chain. By
observing the state at three unevenly separated times, estimation of the year to year
transition probabilities is numerically difficult. Although a subsampled Markov chain
is still a Markov chain, the model parameters are often more naturally formulated on
a yearly basis because this allows for a better understanding of the disease progression
and possible treatment interventions at an interval commonly used for periodic physi-
cian visits. The decoupling of the observation intervals and the analytic intervals is

a major feature of the proposed analysis process.

2.1 The Natural History

The natural history of the disease (i.e., the course of the disease without treatment)
is described by transitions among the five severity states, labeled 1, 2, 3, 4, and 5 in
Table 1. Assuming diabetic retinopathy is a semi-progressive disease, with regression
possible between the first three states, the transition matrix from one year to the next
is,

011 012 013 014 015

021 022 O3 024 025

031 032 O3 O3 O35 |,

0 0 0 B4 045
0 0 0 0 1

where 0;; represents the probability of moving from state ¢ to state j during one year.

Unlike the earlier models of this disease, these transition probabilities may vary
across time and subject. Using the proportional-odds model for each row in the tran-
sition matrix!?, we allow the subject’s duration of diabetes, d, to affect the chance
of progression. For example, the first row of transition probabilities, {6,;}, are deter-

mined from the following relationship:

logit(P(S<s))=7ns+ad s=1,2,3,4 ,



where S is the subject’s severity state, d is the subject’s duration of diabetes at year’s
end, m < 12 < 3 < 14 are cut parameters, and o is a nonstationarity parameter.
Similarly, for the other rows of the transition matrix, we restrict 75 < g < 7 < 718
and 779 < Mo < M1 < M2- The transition probabilities can also be viewed as areas
under standard logistic curves as shown in Figure 1. If « is negative, all the cut points

z slide to the left for positive duration, thereby increasing the chance of progression.

A
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Figure 1: Relationship of transition probabilities with model parameters for the first

and fourth row of the transition matrix. z; = n; + ad.

Other covariates, such as the glycosylated hemoglobin level, can be included in
this proportional-odds model. We chose to use only duration because it is the only
covariate known for every year in the study. The glycosylated hemoglobin level is
known only at the observed years and thus additional modeling would be needed to

include this or similar covariates.

2.2 Treatment Intervention and Death

Because WESDR is an observational study, treatment intervention and death occur
for some subjects. As a result, the data do not directly represent the natural history
of the condition. Rather than remove subjects from the analysis, or somehow adjust

the outcome®, we explicitly model the possibility of these occurrences. This allows us



to utilize as much subject information as possible in estimating the natural history.

2.2.1 Treatment Intervention

Limited information is available on subjects receiving photocoagulation treatment.
For example, we do not know the year of treatment intervention, this being interval
censored. Given the cost, the complications of the procedure, the period of the study,
and the fact that state 4 was identified to be the state at which treatment is most likely
to be effectivel’?, it is reasonable to suppose that photocoagulation is given only to
those subjects in the active proliferative state. To disentangle treatment intervention
from the natural history, we introduce a parameter i equal to the proportion of
state 4 subjects who receive treatment. Once subjects receive treatment, they are
considered to be in a new state T'. Of these treated subjects, a fraction v will respond
to treatment. In ophthalmologist’s terms, this means progression of retinopathy is
stopped or there is a regression of the abnormal vessels without the development of
severe vision impairment. For the fraction of cases that do not respond, we assume
progression is equal in distribution to that of untreated cases.

A subject’s transition matrix can be expanded to include this new state 7. Since a
treated eye will either respond successfully to treatment or not, there are two matrices
defining the subject’s progression. The only difference between these matrices is the
fifth row, the transitions from the treated state. The first matrix is for a subject in
whom the retinopathy responds favorably to treatment, and thus, once treated, will

not progress to the vision impairment state:

611 012 b1z (1-t)01s s 015 611 B2 613 (1-9)01s Vb1 b1
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w.p- Y wp. 1—7

2.2.2 Death

Decreased survival in persons with proliferative retinopathy is associated with the

presence of other life-threatening diseases, such as kidney and cardiac disease. This is



especially true when the subject reaches the vision impairment state!!. We incorpo-
rate this fact into a hazard function for a diabetic individual. The estimated hazard
function is based on the age/gender specific mortality rates for the general Wiscon-
sin population (1992), the duration of diabetes, and whether or not the subject has
reached the absorbing state.

Mortality rates for the general Wisconsin population are available at five year
intervals. We assume the hazard function for the general population is constant
within each five year interval. We incorporate the duration of diabetes as a covariate
affecting the hazard. Other data have shown excess mortality to be low initially and
then increasing in persons with younger-onset diabetes. For a subject in this study,
it is assumed there is a constant addition to the general hazard until 15 years after
diagnosis, after which time, the general hazard increases at a linear rate. Lastly, we
include a constant addition-to the hazard if the subject is currently in state 5. To

summarize, for subject n at year ¢, the hazard is,

A, ) t<tq
)\n,t = /\( , ) + P + :321511,:—1 g <t<ty+15 , (2)
A, )+ Bt —tg—14)+ Bols, ., t>ta+15
where t; is the year subject n was diagnosed with diabetes, A( , ) is the general
age/gender population hazard, and Is,,_, = 1 if the subject has previously reached
the severe vision impairment state.

By labeling the death state, D, and adding it to our transition matrix as an ab-
sorbing state, the transition matrix M (n,t) for subject n from year ¢ —1 to year ¢ can
be written as a sum of two matrices. The first matrix represents the natural progres-
sion of retinopathy combined with treatment intervention. The second represents the
death process described above. If p, ; is the probability that subject n dies between
year t — 1 and year ¢, M(n,t) is,

§11 G612 i3 s ST b5 O 00 0O0O0TO0O1
091 a2 23 O34 dor das O 000O0O0O0T1
031 032 033 034 O3 I35 O 00000O0O0T1
(1 - pn,g) 0 0 0 044 Oar 645 O + Dn,t 00 0O0O0CO01 , (3)
0 0 0 0 Jdrr 6rs O 000O0O0CCOC 1
0 o0 o0 O 0 1 0 000 0O0O01
0 0 0 0O 0 0 1 0 00O0O0OO0OTI1

where the J;; depend on the subject’s response to treatment (equation 1).



3 Inference

We are interested in the joint posterior of the model parameters that define the
natural history. Calculation of this distribution by analytic or numeric integration is
very difficult due to the additional model parameters, which describe the occurrences

of treatment intervention and death, and the numerous unobserved severity states.

3.1 Unobserved States

Even subjects with complete information have unobserved severity states (the years
at which no survey is done). The distribution of these depends on the full set of
model parameters, P = {n1, ..., 3, a, B1, B2, ¥, v}, the covariate information, and the
three observed states. While in some cases, due to our semi-progressive model, the
unobserved states are determined by the observed states, often they can take on a
multitude of values. For example, if the observed states at baseline and year 5 were
2 and 4 respectively, the following sequences of missing states are possible at years 2,
3, and 4:

1,1,1) (1,1,2) (1,1,3) (1,L,4 (1,2,1) (1,22 (1,2,3) (1,24
(1,3,1) (1,3,2) (1,3,3) (1,34 (2,1,1) (21,2 (2,1,3) (2,1,4)
2,2,1) (2,2,2) (223 (2,24 (23,1 (23,2 (23,3 (23,4
G,L1D (31,2 (1,3 (3,L,4 (3,21 (322 (323 (324
(3,3,1) (3,3,2) (3,33 (33,4 (1,44 (2,44 (3,44 (44,4

When determining these series, besides restricting a nontreated subject from en-
tering the treated state, we also force all treated subjects to enter the treated state
the year they receive treatment. Without this condition, a treated subject could
jump from severity state 1, 2, or 3 to the severe vision impairment state in one year.
We would not be able to completely untangle the natural history from treatment

intervention since 6; 5 would depend on both treated and untreated subjects.

3.2 The Prior

The prior distribution represents our information about the set of model parameters
before analyzing the data. For simplicity, we assume prior independence of all model
parameters, except those n’s that must be ordered to determine a row of transition

probabilities.
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First, consider the natural history transition matrix. This is determined by
71,72, ..-,713 and the nonstationarity parameter . Within a row, the joint prior
has these parameters equal to the order statistics from a standard logistic distribu-
tion, thereby producing a uniform distribution over transition matrices wh'en a=0.
For the parameter «, since we do not assume to know whether duration increases or
decreases the chance of progression, we use a normal prior centered at zero. Because
o is multiplied by the number of years the subject has had diabetes, it does not have
to be far from zero to have a large effect on the transition probabilities. We set the
variance to be .0625.

We use a uniform(0,1) prior for both the treatment intervention parameter ¢ and
response parameter . Lastly, we assume that a subject with diabetes has a lower life
expectancy than a similar non-diabetic subject. Thus we restrict £ to be positive. In
addition, since we assume a subject having reached the severe vision impairment state
is more likely to die, we restrict J2 to be positive. We use gamma, priors centered at

.005 with a large variance of .25 and centered at 1 with a variance of 1 respectively.

3.3 Computing the Posterior

There are eighteen model parameters, the response to treatment is unknown for ap-
proximately 200 subjects, and more than 6000 unobserved severity states are created
by year to year modeling. We use Markov chain Monte Carlo!'?!? to examine the
joint posterior of the model parameters. We run a Markov chain over the full set of

model parameters, P and unobserved variables, U.
U, PY), U2 P, (U, PP, e

Each step or “cycle” of the chain is the result of smaller steps, each being a Metropolis-
Hastings update which modifies a component of the larger state. One step modifies
the unobserved severity states. Another modifies the unknown treatment responses.
The remaining steps update the model parameters. Appendix A details these steps.
By its construction, this Markov chain is irreducible with the equilibrium distribution

equal to the posterior

m(U,P|{data}, {covariates}) x 7 (U, {data}|P, {covariates})r(P) C(4)
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where the first factor on the right comes from the Markov model and is a product of
transition probabilities (equation 3) based on the series of severity states. The second
factor on the right is the prior. )

A chain of 5,000 cycles was run on an IBM RISC/6000 computer, taking approxi-
mately 48 CPU hours. Estimates of the marginal posterior summaries were based on
subsampling every other cycle after an initial burn in of 1000; these dimensions were
chosen by informal assessment of time-series plots under various starting positions.
Marginal posterior densities are approximated using normal kernel densities applied

to the simulated parameter values.

4 Results

Because we incorporate specific covariate information into the natural history transi-
tion matrix, there are only a few model parameters that are meaningful marginally.
We will discuss these and then present several posterior distributions that are func-
tions of the parameters. Lastly, we will discuss posterior predictive distributions that

are useful for assessing the fit of the model and making prognostic inferences.

4.1 Marginal Posterior Distributions

Two interesting parameters to examine marginally are v and c. While the exact value
of « is difficult to interpret, its sign tells us whether duration of diabetes increases
or decreases the chance of retinopathy progression. The left panel of Figure 2 shows
the prior and resultant marginal posterior of «. The posterior mean and median
are negative, implying that duration of diabetes increases the chance of progression.
There is not, however, very strong evidence that this parameter is negative as the
posterior probability of o being negative is approximately 90%.

The parameter « is the fraction of subjects responding to treatment. Controlled
clinical trials have shown this to be around 50%. The right panel of Figure 2 shows the
marginal prior and posterior for this parameter. The data provide little information
about this parameter, except that it is likely to be below 50%. The probability of
success in the WESDR observational study is between 2.1% and 55.0% with 95%
posterior probability.

The interpretation of the remaining model parameters is dependent on specific

12
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Figure 2: Two parameters of interest. The left panel shows the marginal prior
(dashed) and posterior distribution (solid) for a. The parameter o adjusts the tran-
sition matrix based on the number of years the subject has had diabetes. The right -
panel shows the prior and posterior distribution for -, the probability of successful

treatment.

covariate information. Two subject-specific functions of the model parameters that
are of interest are the probability that a subject is in a certain severity state after
t years, and the remaining years before vision impairment or death. To calculate
the remaining expected number of years before vision impairment or death, we need
to know the probability that the subject dies or enters state 5 after ¢ years. These
probabilities can be obtained directly from the t, to year ¢, 4+ ¢ transition matrix
M(n,to +t)M(n,to+t—1)--- M(n,t, + 1), where ¢, is the current year.

For example, suppose we have a 30 year old male subject who is in state 2 and was
diagnosed with insulin dependent diabetes 8.3 years earlier. Ignoring the possibility
of treatment, there is 95% posterior probability that the subject’s expected number
of years before vision impairment or death is between 25.6 and 29.5 years (Figure
3, left panel). This is about 19.2 years less than the remaining life expectancy of a
similar person without diabetes.

A subject may be more interested in the probability of vision impairment in the
following year if not treated. This probability can be found directly from the transition
matrix M (n,t, + 1). The right panel of Figure 3 shows the posterior distribution of

13



this probability for a 35 year old male diagnosed with insulin dependent diabetes
12.0 years earlier who is currently in the active proliferative state. The probability is
between 2.6% and 6.0% with 95% posterior probability.

24 26 28 30 0.01 0.03 005 007

Figure 3: Posterior distribution for the expected number years before vision impair-
ment or death without treatment intervention (left panel) and the posterior proba-

bility that a subject in the active proliferative state would enter the vision loss state.

We can extend this to compute the probability that a subject starting in state ¢ will
be in state j after ¢ years. If we do this for each subject in a cohort, we can compute
the expected number of subjects in each state after ¢ years. For example, starting
with an identical cohort (same initial covariates and severity states as WESDR), we
calculated the expected number of subjects in each severity state 4 and 6 years later,
the observed years of WESDR. The posterior mean and standard deviation for each

of these expected counts are shown in Table 2.1 and 2.2.

4.2 Predictive Distributions

Posterior predictive distributions describe other data that may reasonably be expected
to have been observed, and can be used to assess the fit of the model. Again starting
with an identical cohort, for each saved cycle from the Markov chain, we generate,
for each subject, a new sample path up to year 5 and a sample path from year 5 to

year 11. Combining the information for year 5 and 11, we obtain an expected count

14



S.D. (Mean)
S.D. (Pred)

Future State

For each cell in table:
Observed Expected

Table 2.1 First to Fifth Year Transitions.
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and predictive standard deviation for each cell in Table 2.1 and 2.2. The mean of
each cell will be the same as that of the posterior distribution of expected counts.
The standard deviation, however, will be larger due to the increased uncertainty in
the generated paths.

Both the posterior predictive distribution and the posterior distribution incorpo-
rate the current treatment intervention process as the simulated decision process. In
practice, the treatment process is much more involved and that is reflected in our
tables. While is appears from these tables that this process explains the occurrences
adequately, the poorest fit cells involve the treatment process. This will be discussed

in more detail in the following section.

5 Discussion

Our primary objective is to describe a method to estimate the natural history of
a chronic disease when the observed states are at multiple separated time points
and the desired model is on a less coarse scale. While we feel we have adequately
described the natural history, we realize that this model may be overly simplified.
Cross-validation using the left eye and other model fitting techniques are currently
being pursued. Unlike many other estimation techniques, our method can easily
accommodate changes in the discrete-time Markov model. For example, one could
incorporate the proportional-hazards model (extreme value distribution) or any other
distribution to determine the transition probabilities. To disentangle treatment from
the natural history, in the current model we assume that unsuccessfully treated sub-
jects progress as if they were never treated. If a researcher were uncomfortable with
this assumption, the progression could be modeled differently. Inference would still
be possible but the number of model parameters may increase. Different models for
the hazard and treatment intervention as well as the inclusion of additional covariates
can also be investigated. _

Our method has allowed us to estimate the natural history from an observational
study with treatment intervention and death by incorporating simple analytic de-
scriptions of the processes. This allows us to include all the subjects in the analysis.
Since the treatment process and death were built around the natural history model,

they can easily be stripped away leaving the natural history. This is important in the
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comparison of treatment and screening protocols.

The main prognostic tool of this analysis is the predictive distribution. If a re-
searcher wants to investigate different screening or treatment protocols, each modeled
program could be combined with the natural history model to generate a posterior
predictive distribution (for a specific cohort) of expected counts. For each realization
from this distribution, a summary statistic, such as a cost-effectiveness ratio, can be
calculated to obtain a summary distribution of each program. With the increasing
demand for efficient health care, these summary distributions can play an important
role in program comparisons. Not only can we get an estimate for each program, but
we are also able to assess the variability of summary statistics. Lastly, since we sam-
ple from the posterior distribution of parameter values, our estimates are no longer
conditional on particular parameter values.

Due to the coarseness of sampling times, the description of treatment intervention
is very limited. But apparently it does an adequate job of explaining the current
data. Why is our inferred treatment success probability less than that observed
in clinical trials? The WESDR study was initiated in 1979, three years after the
publication of the controlled clinical trial which showed the efficacy of treatment.
Some subjects in WESDR may have been treated in suboptimal stages of retinopathy
because the disease was not detected in a timely fashion or in some cases because the
physician was unaware of the dependence on severity state for response to panretinal
photocoagulation. It may be that the probability of a successful response is increasing
over the duration of WESDR, however we have chosen to model treatment success
as a constant. We also describe the natural history of diabetic retinopathy from a -
screening standpoint for panretinal photocoagulation. An important aspect of the
disease that we did not consider is macular edema, another cause of visual loss. It is
likely that some of the subjects in this study were affected by this condition, reducing
the apparent success of treatment with respect to visual impairment.

The Bayesian inference approach described here to model a nonhomogeneous
discrete-time Markov chain appears to be a useful analytic tool. The results agree in
large part with generally accepted views of the natural history of diabetic retinopathy,
and the posterior predictive distributions derived here are useful for model building.
While our analysis was limited to younger-onset insulin dependent diabetes, we be-

lieve this method can have wide application.
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Appendix

Metropolis-Hastings Steps

We run a Markov chain over the ‘set of model parameters and unobserved variables
with the equilibrium distribution equal to the posterior distribution 7 of this set
(equation 4). One complete step in the Markov chain is produced by a sequence of
smaller Metropolis-Hastings (MH) steps which modify different aspects of this set.
Each MH algorithm is defined by a proposal distribution, having density q(s,s’),
which indicates the probability density of sampling the new state s’ given the current
state s. The MH ratio,

m(s)q(s', s)

T (s )

is calculated and with probability min(r,1) the Markov chain moves to s', otherwise
it stays put. The following sections describe the proposal distribution for each of the
MH steps and the form of the MH ratio.

Proposing new health states

This is done on a subject-by-subject basis. For each subject, a new series of states is
proposed differing by only one state. This results in a simple and computer efficient

algorithm. We cycle through each subject ten times.

1. One of the subject’s unobserved years, t, is chosen randomly using a discrete

uniform.

2. A potential state, 5/, is chosen using a discrete uniform of the states between i,
the state at year t— 1 and k, the state at year ¢t +1. Adjustments to the discrete

uniform are due to:

e State i and/or k is less than or equal to 3 (regression possible).
e A non-treated subject cannot move to the treated state.
e A treated subject must enter the treated (T) state.

o For those subjects with unknown treatment information, treatment or no

treatment is possible.
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o A successfully treated subject cannot enter state 5.
3. Reject or accept the proposed state based on the MH ratio.

Because the unobserved year and potential state are chosen using discrete uni-
forms, the proposal density is symmetric, g(s,s’) = g¢(s',s). The remainder of the

MH ratio greatly simplifies, because a single severity state is changed. For example,

= 6,65 /8505 5,5 <5,k <5

where 6;?]- represents the probability of moving from state 4 to state j during year ¢
when ignoring death (equation 3). The death process only enters this ratio when the

current or potential state is death or the vision impairment state.

Changing the Subjects’ Response to Treatment

For each treated subject, response is unknown unless the subject enters the vision
impairment state. We update each subject’s response using a deterministic flip. For
each subject with unknown response and a series that does not enter state 5, the
response opposite to the current response is proposed. The proposed state is accepted
with probability

11 6%; | proposed response

r=1]3 .
i—5 O0f; | current response

Changing the Probability of Treatment and Successful Response

Because 1 and v must be between 0 and 1, a beta proposal distribution centered at

the current value is used. For these updates (in this example ),

a(s, s) T(a+V)D(a)p' et ) \1 =9/

r(i2y) v )
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where V' controls the variance. We set V=500 for % and V = 300 for v to main-
tain acceptance rates around 70%. The remainder of the MH ratio is a product of

transition probabilities from the Markov model and the marginal prior.

Changing (; and 3, in the Hazard Function

Because each [ is assumed positive, we use a gamma proposal distribution with mean

being the current value. Thus,

2V -1 ’

a20) _ (8)"7 i)
q(s,s)  \p

where V controls the variance and is set at 75 and 50, for 8; and (35 respectively. Since

either parameter only changes the hazard, the remainder of the ratio is a product of

the ppt’s and (1 — pnt)’s (equation 2) and the marginal gamma, prior.

Changing the 7’s in the transition matrix

We update each 7 individually using a folded normal centered at the current value.
We must fold because of the cutpoint order restrictions. The folded normal is a sym-
metric proposal distribution so the MH ratio is simply the ratio of the likelihood and
prior. The likelihood reduces down to only those transitions for which the probabil-
ity depends on the cutpoint parameter being updated and the death process can be

ignored.
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