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1 Abstract

In this paper empirical Bayes methods are applied to construct selection rules
for the selection of all good exponential distributions. We modify the selection
rule introduced and studied by Gupta and Liang [10] who proved that the regret
risk converges to zero with rate 0(n=>/ %),0 < A < 2. The aim of this paper is to
study the asymptotic behavior of the conditional regret risk R,,. It is shown that
n'R, tends in distribution to a linear combination of independent y%— distributed
random variables. As an application we give a large sample approximation for
the probability that the conditional regret risk exceeds the Bayes risk by a given
e > 0. rI_‘his probability characterizes the information contained in the historical
data.

Short Title: Asymptotic distribution of Conditional Regret Risk

AMS 1991 Subject Classification: 62F07, 62C12

Key Words: Good exponential populations, Conditional regret risk

*This research was supported in part byUS Army Research Office, Grant
DAAHO04-95-1-0165 Purdue University.
"This research was done while this author was Visiting Professor at the Dept.

of Statistics, Purdue University.



2 Introduction

The family of exponential distributions has fundamental meaning in reliability
theory, survival analysis and general in the area of life time distributions. For an
overview and more details we refer to Johnson, Kotz and Balakrishnan [12] and
Balakrishnan and Basu [1]. We consider k independent exponential populations
T1,. .-,k With expectations 6y, ... , ) which are unknown. But a control value
6o is given. Each population ; is called good if §; > 6, and bad otherwise. We
study the problem of finding all good populations. This is a typical subset selec-
tion problem, see Gupta and Panchapakesan [4]. We use the Bayes approach and
assume that the 6; are realizations of the random variables ©; with distributions
G;. Then for a given loss function the best selection rule, being the Bayes selec-
tion rule, depends on the distributions G;. We allow that the distributions G; are
not known. But we suppose that historical data are available and can be included
in the decision rule. This is the empirical Bayes approach due to Robbins (17].
Empirical Bayes methods have been applied in different areas of statistics. Deely
[2] constructed empirical Bayes subset selection procedures. In a series of papers
Gupta and Liang [5], [6], [10] and Gupta and Liang and Rau [7], [8] have studied
different selection procedures using the empirical Bayes approach.

Assume Y = (Y3, ..., Y3) are the actual data from the populations 7y, ..., m
which are used to make a decision. If L is a given loss function then the risk of
the selection rule d is R(d) = EL(d(Y), ©) where © = (©1,...,04). The optimal
selec‘mon rule d2 is easily seen to depend on the unknown Joint distribution G =
H G; of ©. The central idea of the empirical Bayes approach is the construction
Z)_fla good decision rule d;, on the basis of historical dats, X, being independent
of (Y,0). The quality of d* is characterized the overal] Bayes risk R(d*) =
EL(d;(X,,Y),©) and the nonnegative regret risk R(d;) —R(d2). The aim of the
above mentioned papers dealing with empirical Bayes methods was to construct

suitable decision rules d* and to evaluate the regret risk. The main goal was to



prove the convergence to zero of R(dy) — R(d%) at a certain rate. Gupta and
Liang [10] constructed for the problem of selecting good exponential populations
a selection rule dy, and proved R(d};) — R(d%) = O(n™/?) where the value of the
parameter 0 < A < 2 depends on additional assumptions.

Denote by Ex_  and E(yg), the expectation with respect to X, and (Y, 9),
respectively. By the independence of X, and (Y, ©) the risk R(d*) of the em-
pirical Bayes selection rule d* is a random variable which may be written in the

form
R(d;) = Ey.e)L(d}(X,,Y),0) (1)
The difference

R = R(@)-R() @
= B (L(&(X, Y), 0) - (%, 1))

is called the conditional regret Tisk, so that the regret risk is the expectation of

the conditional regret risk with respect of the previous data

R(d;) -R(dg) = B(L(d}(X,,Y),0) - L(d%,Y))
= By, [Bye)(L(d(X,,Y),0) - L(de,Y))]
— Eyx R,

When we study the asymptotic behavior of Ry and ask for the asymptotic
distribution, the situation is comparable with the asymptotic theory of parameter
estimation where different types of estimators are compared by the limit distri-
bution of \/ﬁ(gn — 6o) in general and not by a direct evaluation of the variance
of 5n. So, in this paper we study distributions instead of expectations. A new
selection rule d,, for the problem of selecting a good exponential distribution is in-
troduced by a modification of the Gupta and Liang rule [10]. We show that nR,,

converges in distributions to a linear combination of independent x?—distributed



random variables each with one degree of freedom. The coeflicients in the linear
combination are explicitly calculated. The main idea for the new selection rule is
to use the fact that the construction of the optimal selection rule dg needs only
the value of the unique zero n,, of some function m; which depends on G; and
is consequently unknown. The main part of this paper Is the construction of a
suitable estimator 7),, for 7,, and the proof of a limit theorem for V(T — 150)-
The problem of estimating the zero of an unknown function is studied in part 3-
of the paper in a general setting and is then applied to the selection problem. We
transform the estimation of the zero of the function m; into the problem to find
the point at which the integrated function has a local maximum. To this end we

apply general ideas and techniques from the theory of empirical processes.

3 Formulation of the selection problem

Consider &k independent exponential populations 7, ... , 7, which we assume to
have the density functions g(y6;) = I[O’m)(yi)eii exp{—¥}, i = 1,... k. Here
I, is the indicator function of the set A. Set ¢ = (6;,...,6,) € QO = (0, 00)*.
Given a standard value 6y > 0 we call a population 7; good if 8; > 65. Our aim
is to select all good populations. Therefore the decision space is D = {0,1}F =
{(a1,... ,ax) : a;{0,1}} and m; is selected if and only if a; = 1. Similar as in
Gupta and Liang [6], [10] we use the loss function |

k

L(O,a) =) £(6;,a;) (3)

=1

where
£(6:, a:) = a;0;(60 — 0:) 10,0 (0:) + (1 — a;)0;(8; — 00)1(65,00) (6:)- (4)

If 6; > 6y so that the population =; is good and we make a false decision,
i.e. a; = 0, then the penalty increases with the distance of 0; from 6. For a bad

population 7; and a false decision we get the loss 6; (6o — ;) which is an Increasing

4



function on (0, 36o) and decreasing for (360, 60) . The behavior on (0,360) is an
unpleasant side effect of the loss function I (;, a;) which was mainly motivated by
the fact that it allows the construction of an unbiased estimator for an unknown
function which provides the optimal decision rule dg, see (18). If the r.v. ©,
take values in (O, %90) only with small probabilities then the behavior of 0:,1)
has small influence on fhe risk. Hence the use of the loss function 1(6;,a;) is
reasonable if the populations are not too bad.

By a selection rule d = (ay,... ,a;) we shall mean a measurable mapping of
the sample space J = (0, 00)* into the decision space D. As we will apply the
Bayes and the empirical Bayes approach to the selection problem we assume that
the 0; are realizations of independent random variables ©;. The ©; are assumed
to take values in (0,00) and have distribution G;. The distribution G of the
random vector @ = (©1,...,0y) is then the product of the G;.

The random variables O1,. .., O are not observable, but we can observe Y =
(Y1,...,Y) where the Y,... | Y} are independent and the conditional density of
Y: given ©; = 0; is 9(u:6:) = Ijo,00) ()7 exp{— %}

If we have one measurement Y; from each population 7; then the risk of the

selection rule d is given by
R(d) = EL(d(Y),0) (5)
In terms of densities the risk can be written in the form

R(d) = / ( / L(8, d(y))g(u16)dy)dG (8)

k
where g(y|6) = ][] g(v:l0:) and dy = dy,, ... dy;. Using the loss function L(8, a)

i=1
(3) we get
k

R(d) = Y E(O;, (V) (6)

i=1
where

Qi(yi) ZEai()/l7"- 7}/1;—1)yi))/i+1a"' 7Yk)



The formula (6) shows that due to the special structure of the loss function we
may restrict ourselves to randomized decisions ¢; which depend on the data, of =,

only. We assume

/ (912 dGz(Ql) <00, 1= 1, ,k} (7)

0

Then the Bayes risk R(d) = EL(d(Y), Q) is finite and the following holds

k oo o0 vi

Rd) = ) /0 /0 q:(%:) (60 — 0;)e™ % dGi(6;)dy; + v,
=1
k

= Z/Ooo i (y)ma(ys)dy; + ; | (8)

=1

where

Y = / 91(91 - QO)I(GO,W)(QZ)dG’L(e’L)
0

m(y:) = / (6o — Gi)e"%dGi(ei).
0
Using the relation (8) we see that inf; R(d) is attained by the selection rule

d& = (d%,...,d?), where

1 if my(y;) <0
d? (y:) = . 9)
0 otherwise

As in Gupta and Liang [10] one obtains by integration by parts

m;(y:) = Oot1 (v:) — Vao (i) (10)

where
Valy) = /O e % dG;(6;)

o0 o0 1 _ii
_ / g€ %dts dGi(8:) = Eljg ) (Y; — ) (11)
0 Yi i

o) = [ e tdcye,
Boo(v:) / e 5 dG,(8,)
E(Y: = y:)ljo,00) (Y — 1) (12)
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We see from (9) that the Bayes selection rule d? is trivial, i.e. takes on the value
0 or 1 for every y;, unless m; has a zero on (0, ). To give necessary and sufficient
conditions for the existence of a zero we need some auxiliary results. For any not

necessarily finite measure u on the Borel sets of (0, 0) we set

ru(y) = /( i )exp{—%}ﬂ(df?)

and assume that x,(y) < oo for every y > 0. Then by Holder’s inequality for
I<ax<l

fu(ogn + (1 — a)y) < [ru(yn)]” [ (y2)]) ™

. K . . .
Consequently, Inx, is convex and ~. 1s nondecreasing. Moreover, if 4 is
N
nondegenerate, i.e. p is not concentrated at one point, then Ink, is strictly

convex and ;Qf strictly increasing. Put for any a > 0
mu(y) = —ak, — k.

As k,(y) > 0 and —Eﬁ Is strictly increasing we see that m,, has at most one zero

on (0,00). The derivative m;, of m, can be written as

where the measure i is defined by 7i(df) = su(df). Consequently, m;, has again
at most one zero on (0, co) and the same statement holds also for every derivative
of m,, of higher order. As x,(y) > 0 and E:’f is strictly increasing a zero of my

exists on (0, 00) if and only if

! !
lim = (y) <! < lim “u(9) : (13)
yl0 K, (y) a  yloo /gﬂ(y)
The limit on the left hand side is
! L(do
lim <, (y) _ _f(o,oo) g1(df) (14)

vl k,(y) #((0, 00))



provided that both denominator and the numerator are finite. The calculation
of the limit on the right hand side of (13) requires more effort. We set for any

finite measure p

by == 1inf{t : p((t,00)) = 0},

where we have used the convention inf () = co. If by < oo then the measure p is

concentrated on (0, b,].

Lemma 1 For any measure p on the Borel sets of (0, 00) with 0 < p((0, c0)) <
0o, it holds

lim ) =—— (15)
where i =0 for b, = co.

Proof. First, we introduce the abbreviation

(1) . 1 1 1
Hply) = /(O’b)gexp{—y(g*g)}ﬂ(de)
B0 = [ Gel-u( - Dus)
KW = [ en(-a(G - @)

K&y = /[b - eXP{—y(é—%)}u(dH)

Fix 0 < b < b, and notice that for 0 < 9 < b

1 1 1 1 Y b

Z —yl= — 2 < = - hd

1 1 1 2 b

- —y(z--)) < = 0

g oPluG -k < ¢ for 5 <6

Consequently, by the Theorem of Lebesgue

lim ;) =0, lim K{(y) =o. (16)
Yy—oo Y—00



For every b < b, it holds K,E2) (y) > 0, so that

{_ ﬂ;(wJ ~ limsup W)+ A2 ()

0 < limsup

y—oo ku(y) y—oo Kél)(y) + K£2) (y)
(2)
= limsup Jb(z)(y)
yooo Kp(y)
_I_K(Q)
< limsup £ (l;) ) < 1
ymeo KyP(y) b
Taking b 7 b, we get
/
lim sup [* n#(y)] < 1
y—oo ru(Y) by

which completes the proof if b, = oo as £,(y) £0.If b, < co we get from (16)

! iK(z)
lim inf [— ’{“(y)} > lim inf%(y) 2> 1
) 2 Ry 2

which completes the proof in the case by <oco. m

The previous Lemma is now applied to get conditions under which the Bayes

selection procedures are nontrivial. Let the measure 4 be defined by
u(B) = /B 64G(0).
The assumption (7) implies that yx is a finite measure. Furthermore,
b, = bg.

By the definition of 4,; and ;, in (11) and (12), respectively

5y _ Ya
u(y) Yig
This yields
/
lim % v) - L

and by Lemma 1

As the Bayes selection rule d? is nontrivial if and only if the function m; has a

zero on (0, 00) we get from (13) the following statement.
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Proposition 2 If the distribution G; is nondegenerate and has finite second mo-

ment then the Bayes selection rule d? is nontrivial if and only if
EO; < 0y < bGi- (17)

Now we discuss the cases in which condition (17) is not fulfilled. If 6, <

E®; < bg, then the decreasing function 6, :Z; — 1 is less or equal to zero. Hence
Yir (v:)
mi(¥s) = Y (1:) (-5 — 1) < 0
() = Falw) G0~ 1)

and d7(y;) = 1. Conversely, if EQ; < bg, < 6, then by Lemma (1)

G Vi (y:) ~1) > lm (0 Vi (y:) ~1)

wiz(yz') Y00 0¢i2(3/i)
= G120
so that
ma(y:) = wﬂ(yi)(eo% 10

and d?(yi) = 0. This is also intuitively clear as for bg;, < 6y the random variable
©; is bounded above by 6.

We illustrate the condition (17) by an example.

Let

&%

Bi a;—1 _—f.s
’Yai,ﬂi('s) =I[0,00)(3)1—\(a_)8 : 16 A

a; > 1,0; > 0, be the density of a gamma distribution. We assume that é has
the density v,, g, or equivalent that ©; has the density #Ve.5.(L). Then
1 _wu Ofi,Biai

i 4 :E— ei = -—
) =B ™ = v e

Similarly,

_¥ o
. ) = E 9; = \1’
7/)11(?/) € | (yz +Bi)ai

10



and

B
i

e T

Consequently, —% = yl;rogi and
i o !

Yi + B! (yi +6; - 1)

m;(y:) = (

so that the zero no; of m; is 7,y = 6p(ay — 1) — B, Otherwise, EQ, = aﬁ—_l This
means that the zero 7, is positive if the expectation EQ; is smaller than the
critical value 0y and this is the statement of Proposition 2 if we take into account
that bg, = oco.

To apply the selection rule d? from (9) we need the zero Nio of mi(y;) =
B0y — ip. But ¢,q,1,, as well as Mo depend on the unknown prior distribution
G;. Otherwise, the unknown function m; = 00v;1 — ¥y, is the expectation of a

function of the observable data Y;. Indeed, we get from (11) and (12)
mi(y:) = BA(Y; — y) (18)

where A(t) = (6o — t)fjo.00)(t). The relation (18) connects the unknown function
m; with the observable data Y; and is the key of the empirical Bayes methods

in our model. Assume we have data from the past which can be taken into the

decision. More precisely, we assume that for ; — 1,...,k the random variables
X1, ..., Xin are 1.i.d. with common density given by
1 _u
filys) = 0.6 %dGy(8;), (19)
~Jo Ui

which is the density of the actual observation Y;. The relations (11) and (12)
show that

) BN
Min(y) = n 2(90 Y = Xio) Iy 00) (Xie)
=1
1 n
= - Z Xy —y) (20)
" =1

11



is an unbiased and consistent estimator for the unknown function mi(y) =

00t:1(y) — ¥ip(y). Using this fact Gupta and Liang [10] introduced an empir-

ical Bayes selection procedure d,, by setting

don(y:) = L if mu(y) <0
0 otherwise
Our approach is slightly different. We have already seen that under the con-
dition (17) the function m;(y) has a unique zero, say M0, and it holds m;(y) > 0
for 0 <y < my and my(y) < 0 for y > 7,y. Using the historical data X =
(Xi1, ..., Xin) from population 7; we construct a consistent estimator 7),,(X,) for

Mo and introduce the modified Gupta-Liang rule by

0 if 0<y< Nin
G (X i Yi) = ! (21)
1 otherwise

Set d5(X,) = (d5(Xy0), -y din(Xin) for X, = (Xy, o X,).

Gupta and Liang (1999) studied the rate of convergence to zero of ER,, and
proved that under some assumptions ER,, = O( 1). But it seems to be extremely
hard to get the constant lim,_,., nER, which is necessary to characterize the
efficiency of the Gupta-Liang rule. In this paper we establish the limit distribution
of nR,, to characterize the efficiency of the selection rule dz,.

Applying (8) we get a representation for the conditional regret risk of the

selection rule cf

R, z / X wmi(wddy~ | B umi(udd,

Using (9) and (21) we arrive at

Ro = | mi(yi)dyi—/ m(y;)dy;
Nin Nio
= Mi(nio)—M’i(If]in) (22)
where
Yi
M) = [ mi(s)ds (23)
0

12



4 Estimation of the zero of an unknown func-
tion

To prepare the main results we study the problem of estimating the zero of an
unknown function m. Despite the fact that the unknown function m is continuous
we have to deal with estimators for m which are not continuous functions. To
overcome this difficulty we smooth the functions by integrating and construct
estimators of the maximum point of the integrated function. Moreover, this
approach allows us to apply the well-developed theory of M-estimators.

The function h appearing in (18) belongs to the class H of functions h:

R; — R; which may be written in the form

h(z) = 3 il (@) + g(2) (24)

with some r € {0, 1,...}, some real numbers ¢i, nonnegative z; and a Lipschitz
continuous function g which vanishes on (=00, 0]. If r = 0 then the corresponding
sum is supposed to be zero. Lipschitz continuity means the existence of a constant

L such that |g(y) — g(z)| < Ly — 2| for every z,y € Ry. Put ¢ = "7 _ || then
[(z)] < ¢+ Liz] (25)

We use the notation a A b = min{a, b} and set H(z,t) =0 for t < 0 and put for
t>0

H(z,t) = /0 bz s)ds (26)
= /OME h(z — s)ds

where the last equality follows from h(t) = 0 for t < 0. Using the notation
Yo = Yoy |l + %—L we see that for ¢ > ()

[H(2,8)] < 74(z + 27) (27)

13



If X is a non-negative random variable with EX? < co then
EH(X,t) <7, [(BEX%)? + Ex?]
so that
M(t) =EH(X,t). (28)
is a bounded function
M(t) < v, [(BX)Y? + EX?] (29)

If h is a pure jump function Iz, ) then the corresponding function M is closely
related to the cumulative distribution function F(t) = P(X < t) of X. In this

case

t
M(t) = / (1 - F(zo— s))ds
0
This shows that the function M has a derivative at ¢ from the right given by
D¥M(t) = 1 - F(zo — t — 0) whereas the derivative from the left is given by
D™M(t) =1— F(zo —t). If F' is continuous then D* M (t) = D~ M(t) so that M
is differentiable with derivative
M'(t) = Eh(X —t)
= m(t). (30)

If A € H has no jump part then an application of the theorem of Lebesgue shows
that (30) is valid, too. This means that for every h € H and every r.v. with finite
second moment and continuous c.d.f. F' the statement (30) holds. The continuity

of F' implies the continuity of m(t). Hence

t t t
M(¢) =/ m(s)ds =/ Eh(X — s))ds = E/ h(X — s))ds (31)
0 0 0
Now we assume that there is some 1y > 0 such that

m(t) = M'(t) > 0 for t <7, and m(t) = M'(t) < 0 for ¢ > To- (32)

14



This condition together with (31) show that the function M(t) has a unique
‘maximum at 7y. Sometimes we need a quadratic behavior of M at My, 1.€. we

suppose that there is some ¢ > 0 and some sufficiently small aq such that
c
M{(no) — M(t) 2 5(t —mo)*  for [t — o] < ap. (33)

We assume that Xy, Xs,..., X, are independent copies of X. To estimate My We

define for t > 0

M (t) = % zn: H(X:, 1) (34)

-~

and notice that in view of (31) M, (¢) is an unbiased estimator for M (t). Further-
more, the stochastic process M, is pathwise continuous and every path is constant
for all sufficiently large ¢ which follows from (26) and h(z) = 0 for z < 0. Conse-
quently M, (t) attains its maximum on [0, 00), say at 7),,. The next theorem gives
the asymptotic distribution of #,,. In Theorem 3 and in the ensuing statements
we denote the distribution of the r.v. ¥ by £(Y) and the weak convergence by

=.

Theorem 3 Assume X1,Xs,..., X, are non-negative, zzd random variables,
the common c.d.f. is continuous and EX; < co. Suppose h € H and the condition
(82) is fulfilled. If M, is defined by (34), 7, € argmaz M,, and M from (81) is
twice continuously differentiable in a neighborhood of ny and ¢ = —M"(n,) > 0

then
9

. G
L(Vn(itn ~m)) = N(0, =)
where 0® = V(h(X1 — 19)) is the variance of h(X; — n,).
Using Taylor expansion of M at 7, one obtains the following statement.

Corollary 4 Under the assumptions of Theorem 1 it holds

0_2

L(n(M(no) — M(7,)) = L(5:x3)

where x? has a x?— distribution with one degree of freedom.

15



5 Application to the selection problem

We assume to have available i.i.d historical data, Xi1, ooy Xin, with common density
(19) for every population 7;. Set h(t) = (80 — t)J[0,00)(t). Then by (10), m;(y;) =
Eh(X1: — 1) = 00%;1(3%:) — ¥0(y;) and under the assumption (17) the function

m;(y:) has a unique zero, say 7,. Set

t) =/0 m;(s)ds (35)

Then

In accordance with (34) for ¢ > 0 we introduce the estimator Min(t) for M, (t) by
. 1 <
Min(t) = ~ ZH(X,-J-, )
:—z/ X = o)

= = Z - Xy - 5 (Xis A ))(Xis A1),

Suppose #);,, € argmax M;,, and define the empirical Bayes selection rule by

PRSI U LN 0
. 1 ify >,

d:; = (dfm--,dzn)-

Then by (22) and (35) the conditional regret risk of dy is

k

Ry = Z(Mi(ﬂio) - Ml(’f]zn)) (37)

i=1
The next theorem is the main result of this paper. It gives the asymptotic dis-

tribution of R,, and is a direct consequence of Corollary 4.
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Theorem 5 Assume the G; are nondegenerate, have finite second moment and
the assumption (17) is fulfilled fori = 1,... k. If the empirical Bayes selection
rule is defined by (36) then for the distribution of the conditional regret risk (37),
the following result holds

k
E(an) = n—oo E(Z ’9in'2)
i=1

where the x3,...,X; are i.i.d. with common y*— distribution with one degree of

freedom and k; = %(—mé(mo))_lv((eo — (Y - 771'0))[[0,00)(Yi1 = i)

When we apply the empirical Bayes selection rule (36) we have the risk R(d*)
introduced in (1). In order to characterize the information contained in the data

from the past we may consider the probability
P(R(dy) > R(d2) +¢)).

Proposition 6 Under the assumptions of Theorem 5 it holds

lim P(R(dZ) > R(d%) + 7-i-)) =1- H()

n—oo

where H(t) is the c.d.f. of Zle KiX2.

6 Proofs

The proof of Theorem 3 is divided into different steps. In the beginning we prove
the consistency of 7,,. The next step is to establish the v/n-consistency which
is followed by the proof of the asymptotic normality of 4. Due to the lack of
smoothness of h we cannot apply the standard Taylor expansion. Instead we
apply ideas from empirical process theory for which we refer to van der Vaart

and Wellner [20].
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Lemma 7 Assume h € H and EX? < co. If the condition (32) is fulfilled then
for #,, € argmaz M, holds

~

Mn —P Mo

where —pis the symbol for stochastic convergence.
Proof. We use the notation “Mn - M” = SUPyy oo | M (t) — M(t)|. It holds

U, — Mol > e} C { sup Mn(t) > Mn(no)}

[t—no|>e

C { sup M(t)-i—’

[t—ng|>e

g{'

Due to the assumption (32) the function M is strictly increasing for 0 < ¢ < Mo

o] 2 00 it ]|

M, — M“ > %[M(no) ~ sup M(t)]}

[t—ng|>e

and strictly decreasing for n, < ¢ < co. Hence M (no) — SUPy;_p > M(t) > 0.

Therefore it remains to show that
-] e
The inequality (27) implies that for every € > 0 there is some 7. such that
]E/Too |h(X: — s)|ds < ¢

By inequality (25) for 0 < s <t

t
1 n
E sup |—Z/h(xi—7)d7| < b(c+ LE| Xy )
=1

{s—t|l<s T .
Choose 0 =ty < ... < ty = T. such that [t — thq| < gle+ L]E|X1|]‘1 =: §. Then

E sup |Mn(t)~ M(t)] < E max | Mo (te) — M(t)|

+2I k,tkI_Ii?t(gtk | My, (tr) — M, )]

12 / Ih(X: — 5)|ds
T:

IA

E max |M,(t;) — M (t)| + 4e

0<k<N
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To complete the proof we have only to note that E| M, (&) — M (te)] =n—eo 0 by
the law of large numbers. m
To continue the proof of Theorem 3 we need a special case of a fluctuation

inequality established in Ibragimov and Has’minskii [11].

Lemma 8 Assume [a,b] is a finite interval and V(t),a <t <bisa continuous
stochastic process. If B|V(s)]> < a and B[V (t) — V(s)|* < aft — sf? for every

a < s,t < b then there is a universal constant p such that

B sup [V(t) - V(s)| < pVas (38)

|s—t|<6

Wefixhe H,0<a<n,<band study the stochastic process

Valt) = % Z:j [h(X: — t) — BA(X; — 1)] (39)

Using the inequality (25) we see that
E[Va(s)|* < E(c + L] X|)?
Assume now in addition that A is Lipschitz continuous. Then
BVa(t) = Va(s)® < Lt — s
Setting o = max(E(c + L|X;|)?, L?) we arrive at
E sup [Vo(t) — Vo(s)| < pViad (40)

ls—t/<6

and

Esup [Va(t)] < EVa(no)|+E sup |Vu(t) — Vi(s)]

a<t<b |s—t{<b—a

< c(a,b,h) (41)

where c(a,b,h) = /a + p\/a(b - a). Now we suppose that A = Tizy,00)(z) is 2

pure jump function. Then

Vn(t) = \/E(F(CEO + t) - Fn(xo + t)) (42)



where Fi(s) = 377 J(—oo,s(Xi) and F(s) = P(X) < s) are the empirical
and the cumulative distribution function,. respectively. Dvoretzky, Kiefer and

Wolfowitz [3] proved that there is a universal constant K such that
P(Vn||F, = F|| > z) < K exp {-22}
Hence

Esup |V,.(¢t)| =/ P(sup [V,(t)| > z)dz S/ K exp {—22%} dz
t 0 t 0

As the set of all h € H for which sup, Esup,<;;, [Va(t)| < oo holds is a linear
subset we see that for every A € H and every finite interval [a,b] we find some

c(a,b, h) such that

sup B sup |Vo(t)] < c(a,b, h) (43)

n a<t<b

Now we study the process M, in a neighborhood of 7,. We have for every § > 0

and t > 7,
E  sup /n|(My(t) — Ma(n,)) — (M(t) — M(n,))|

No<t<ne+6

= su ; — EBh(X; — s))ds
170<t<£])0+6 \/_Z/ ( ))ds|

no+6

< E sup | Vn(s)dsl 5/ E sup |V,(t)|ds
No<t<ne+6 Jq, Mo No<t<ng+6

< c(a,b,h)s

A similar inequality holds for Mo — 6 <t < ny. Consequently

E sup [(Ma(t) — Ma(no)) — (M(2) — M(ng))| < S22 g

|t—no|<5 T n

Now we are ready to apply Theorem 3.2.5 in van der Vaart and Wellner [20]

Lemma 9 Assume the assumptions of Lemma 7 are fulfilled then T, 8 \/N—consistent.

i.e. the sequence \/n(f), — n,) is stochastically bounded,
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Proof. The estimator 7, is consistent by Lemma 7. Set $n(6) = c(a,b,h)é
and 7, = \/n to apply Theorem 3.2.5 in van der Vaart and Wellner [20]. m

The \/n—consistency of 7),, allows us to introduce the local parameters £. Set

n

W) = S (B Xy + %) — H(X:ny).

Then £, = /n(7), —1)o) is & maximum point of W,, and due to the \v/n-consistency
of 7,, the new sequence én is stochastically bounded. We approximate W, (§) by
a stochastic term linear in ¢ and a nonstochastic term which is nonlinear in £.

Introduce

n

Wal€) = D ((X: = 1) — BA(X: ~ o)) ~= — B(H(Xoymy + ) — H(X.m0))).
Nz NG

We show that for any fixed real numbers 1, Co

sup [Wo(€) = Wa(€)] —p 0 asn — oo (44)

c1<€<ce

Indeed, for £ > 0 by (39)

- No+€/vn
W) = Wa()] = |vm / [Va(s) = Va(ny)] ds

< & sup  [Vi(s) — Va(ng)
IS—TIO|S%

Using a similar representation for £ < 0 we get

SUp [Wa(€) = Wa(©)[ < (€] sup  [Vi(s) — Vi(np)] (45)

c1<¢<er ls=m0l< 4 |

To prove (44) we note that the set of all & € H for which (44) holds, is a linear
set. Therefore we have only to consider the special cases in which & is Lipschitz
continuous or a pure jump function. If k fulfils a Lipschitz condition then (44)
follows from (45) and (40). If A is a pure jump function then by (42) Va(t) =
VI(F(zo +t) — Fu(zo + t)). Let B be the Brownian bridge. The distribution
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of the stochastic processes V;, converge to the process —B(F(zo+ -)) which is
continuous as F(t) = P(X; <) is continuous by assumption. Consequently the -

sequence V,, is asymptotically equicontinuous, i.e.

lim lim P( sup [V,(t) — Va(s)| >€) =0

§—=0n—0o0 |s—t|<é

This statement and (45) yield (44). Now we evaluate the processes W, (¢), ¢; <
£ < co. Recall that M(s) = EH (X, s) is differentiable and has a local maximum
at no. This gives M'(ny) = Eh(X; —ng) = 0. Then the twice differentiability of
M at ng provides

Wa(6) = €= S R0~ m0) + M (1) +o(1)

Let Z be a random variable having a normal distribution N(0, ¢?), where o2 =
V(h(X; — n)). Introduce the process W by W(¢) = £€Z + M”(no)%z- and notice
that W has a unique maximum at & = —[M"(ng)]"1Z. The central limit theorem
and (44) show that the distributions of the processes W,(£) ¢; < € < ¢, converge
weakly to the distribution of W. Now we apply the Argmax continuous mapping
Theorem 3.2.2 in van der Vaart and Wellner [20] to see that the distributions of
the maximum points £, = v/n(7, — no) of Wy, converge to the distribution £(€)
of the maximum point é of W. This completes the proof of Theorem 3.

Theorem 5 is a direct consequence of Corollary 4 as the X;; have the density
fi and consequently, the c.d.f. is continuous . The assumption (17) provides (32).

Proposition 6 follows directly from Theorem 5.
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