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Abstract

We study wavelet function estimation via the approach of block thresholding and
ideal adaptation with oracle. Oracle inequalities are derived to offer insights into
the balance and tradeoff between block size and threshold level. Based on the oracle
inequalities, an adaptive wavelet method for nonparametric regression is proposed
and the optimality of the procedure is discussed.

We show that the estimator achieves simultaneously three objectives: adaptivity,
spatial adaptivity and high visual quality. Specifically, we show that the estimator
attains the exact optimal rates of convergence over a range of Besov classes and
perturbed Besov classes and the estimator achieves adaptive local minimax rate for
estimating functions at a point. Simulation results and generalizations of the method
are also discussed.
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1 Introduction

Wavelet methods have demonstrated successes in nonparametric function estimation in
terms of spatial adaptivity, computational efficiency and asymptotic optimality. In contrast
to the traditional linear procedures, wavelet methods achieve (near) optimal convergence
rates over large function classes and enjoy excellent mean squared error properties when
used to estimate functions that are spatially inhomogeneous.

Standard wavelet methods achieve adaptivity through term-by-term thresholding of
the empirical wavelet coefficients. There, each individual empirical wavelet coefficient is
compared with a predetermined threshold. A wavelet coefficient is retained if its magnitude
is above the threshold level and is discarded otherwise. A well-known example of the term-
by-term thresholding procedures is the Donoho and Johnstone’s VisuShrink (1994).

VisuShrink is spatially adaptive and easy to implement. The estimator is within a
logarithmic factor of the optimal convergence rate over a wide range of Besov classes.
VisuShrink achieves a degree of tradeoff between variance and bias contributions to the
mean squared error. However, the tradeoff is not optimal. The VisuShrink estimator is
often over-smoothed.

Hall, Kerkyacharian and Picard (1995) studied local block thresholding rules for wavelet
function estimation which threshold the empirical wavelet coeflicients in groups rather
than individually. They showed that the estimator attain the minimax convergence rates
for global estimation over a range of perturbed Besov classes. However, the estimator
does not achieve optimal local adaptivity which the VisuShrink estimator enjoys. Also
the estimator is difficult to be implemented. It uses a “near” unbiased estimator of the
sum of the squares of the true coefficients in a block. It requires the evaluation of the
wavelet functions at all the sample points and involves matrix multiplications which are
computationally costly. Furthermore, simulation study showed that the estimator has little
advantage over the VisuShrink estimators when the signal-to-noise ratio is high (see Hall,
Penev, Kerkyacharian and Picard (1996)).

In the present paper, we study block thresholding via the approach of ideal adaptation
with oracle. We study the performance of estimators by comparing the risk of the estimators
with the risk of an “ideal estimator” in which case an oracle is available. The goal is to
obtain estimators which can essentially mimic the performance of an oracle in the case of
estimating a multivariate normal mean. We derive a risk inequality for block projection
oracle. The block projection oracle inequality offers insights into the balance and tradeoft
between threshold level and block length. We suggest that the oracle inequality serves
as a guide for optimal selection of threshold level for a given block length including the
special case of block length one which is the standard term-by-term thresholding. Similar to
Donoho and Johnstone’s diagonal projection oracle inequality, the block projection oracle
inequality has important implications in wavelet function estimation.

Based on the Oracle Inequality, we propose a block thresholding estimator for non-
parametric function estimation by using the classical James-Stein estimators and study the



asymptotic and empirical performance of the estimator. We show in Section 5 that the esti-
mator enjoys a high degree of adaptivity and spatial adaptivity. Specifically, we prove that
the BlockJS estimator simultaneously attains the exact optimal rate of convergence over a
wide interval of the Besov classes with p > 2 and over a range of perturbed Besov classes
without prior knowledge of the smoothness of the underlying functions. Over the Besov
classes with p < 2, the BlockJS estimator simultaneously achieves the optimal convergence
rate within a logarithmic factor. For estimating functions at a point, the estimator also
attains the local adaptive minimax rate.

The BlockJS estimator is not only quantitatively appealing but visually appealing as
well. The reconstruction jumps where the target function jumps; the reconstruction is
smooth where the target function is smooth. They do not contain spurious fine-scale
structure that are contained in some wavelet estimators. The BlockJS adapts to the subtle
changes of the underlying functions. We also show in Section 4 that the BlockJS has a
similar smoothness property as the VisuShrink: if the underlying function is zero function,
then, with high probability, the BlockJS is also zero function. In other words, the BlockJS
removes pure noise completely.

In the present paper we also suggest that, through the example of the (positive-part)
James-Stein estimator, block thresholding serves as a “bridge” between the traditional
shrinkage estimators in multivariate normal decision theory and the more recent wavelet
function estimation. This connection allows us to develop new classes of (near) optimal
wavelet function estimators, and all of which may be useful in different estimation situa-
tions.

The paper is organized as follows. Section 2 describes the basics of wavelets. Section 3
derives an oracle inequality for block projection estimators. With preparation and motiva-
tions given in Sections 2 and 3, we introduce the ingredients of BlockJS procedure and show
the "noise-free” feature of the estimator in Section 4. Section 5 presents the optimality
results of the procedure. We consider the convergence rates of estimator uniformly over a
wide scale of the Besov classes. Local adaptivity of the estimator is also presented. The
choices of block size and threshold level are discussed in Section 6. A summary of the
simulation results and discussions is presented in Section 7. The proofs are postponed to
Section 9.

2 Wavelets

An orthonormal wavelet basis is generated from dilation and translation of two basic func-
tions, a “father” wavelet ¢ and a “mother” wavelet 1. In the present paper, the functions
¢ and ¢ are assumed to be compactly supported and [ ¢ = 1. We call a wavelet ¢ r-regular
if 4 has r vanishing moments and r continuous derivatives.

Let
bix(t) = 29724(29t — k), bx(t) = 29/%p(27t — k)



And denote the periodized wavelets

B =D bt —1), ¥5()=> éu(t—1), forte]l0,1]

lez lez

For simplicity in exposition, we use the periodized wavelet bases on [0, 1] in the present
paper. The collection {¢% ., k = 1,...,2%; ¢F. j > jo > 0,k = 1,...,2/} constitutes
such an orthonormal basis of L,[0,1]. Note that the basis functions are periodized at the

boundary. The superscript “p” will be suppressed from the notations for convenience.

An orthonormal wavelet basis has an associated exact orthogonal Discrete Wavelet
Transform (DWT) that transforms sampled data into wavelet coefficient domain. A crucial
point is that the transform is not implemented by matrix multiplication, but by a sequence
of finite-length filtering which produce an order O(n) transform. See Daubechies (1992)
and Strang (1992) for further details about the wavelets and the discrete wavelet transform.

For a given square-integrable function f on [0, 1], denote &k = (f, dik), Ok = (f, ¥jk)-
So the function f can be expanded into a wavelet series:

f(x) =" Eirdior(2) + i > Oirtbin(z) (1)
k=1 J=jo k=1

Wavelet transform decomposes a function into different resolution components. In (1), &;.x
are the coefficients at the coarsest level. They represent the gross structure of the function
f. And 0, are the wavelet coefficients. They represent finer and finer structures of the
function f as the resolution level j increases.

A remarkable fact about wavelets is that full wavelet series (those having plenty of
nonzero coefficients) represent really pathological functions, whereas “normal” functions
have sparse wavelet series. In contrast, Fourier series of normal functions are full, whereas
lacunary Fourier series represent pathological functions. (see Meyer (1992) pp. 113).
Wavelet transform can compact the energy of a normal function into very few number
of large wavelet coeflicients.

Wavelet bases are well localized, i.e., local regularity properties of a function are de-
termined by its local wavelet coefficients. In particular, a function is smooth at a point if
and only if its local wavelet coeflicients decay fast enough. The large wavelet coefficients of
a function cluster around the discontinuities and other irregularities of the function. The
wavelet coefficients at high resolution levels are small where the function is smooth.

The data compression and the localization properties of wavelets can be illustrated
by the following example. Consider Donoho and Johnstone’s Bumps function which is
of significant spatial variability. Figure 1(a) plots the sampled Bumps function of length
2048. The data is then transformed into wavelet domain via DWT. We use Daubechies’
Symmelet 8 wavelet in the example. The wavelet coefficients plot (figure 1(b)) shows that
among the 2048 wavelet coefficients there are only a small portion of coefficients that are
large. And the large coeflicients at high resolution level occur only around the spikes.
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The ordered absolute values of the wavelet coefficients decay very fast. The information
about the function is concentrated in a very small number of wavelet coefficients. One
gets very good reconstruction with only 200 largest coefficients (figure 1(c)). That is fewer
than 10% of the total number of coefficients. The relative error is less than 0.08%. As
a comparison, we do the same with the traditional Fourier transform. Top 200 Fourier
coefficients do not offer a reasonable reconstruction (figure 1(d)). It turns out that it takes
more than 2000 largest Fourier coefficients to achieve the same performance as the 200
largest wavelet coefficients. The reason is that the Fourier basis is not localized in space.
The example shows some heuristics, see DeVore, Jawerth and Popov (1992) and Meyer
(1992) for theoretical treatment on the data compression property of the wavelets.

1(a). Bumps 1(b). Wavelet Coefficients
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Based on these data compression and localization heuristics, one can intuitively envision
that all but only a small number of wavelet coefficients of a “normal” function are negligible
and large coefficients at high resolution levels cluster around irregularities of the function.

3 Oracle Inequality

In this section, we consider the problem of estimating a multivariate normal mean. Suppose
we observe

yi = 0; + 0z (2)



i=1,--,n, z 4 N(0,1) with ¢ known. We wish to estimate § = (64,---,0,) based on
the observations y = (y1,- - -,¥n) under the mean squared error:

= % > E(b: - 6:) (3)

When n = 1, or 2, decision theory shows that the maximum likelihood estimator y is an
admissible estimator of . When n > 3, it was shown by Stein(1955) that y is no longer a
“good” estimator of # in the sense that y is uniformly dominated by some other estimators.
Multivariate normal decision theory shows that in order to do well according to the risk
measure (3), some form of shrinkage is necessary (see, e.g. Lehmann (1983)).

3.1 Diagonal Projection Oracle

Donoho and Johnstone (1994) consider a special class of shrinkage estimators, diagonal
projection estimators, in the context of wavelet function estimation. Denote by H a given
subset of indices and consider

A _ Ys lfJEH
92(7{)‘{0 if ¢ M

Such diagonal projection estimator either keeps or omits a coordinate. For each individual
coordinate, the expected loss is

E(0;(H) — 6;)? = oI{i € H} + 62I{i ¢ H}

Ideally, one would estimate 6; by y; when 6? > o? and by 0 otherwise. An Diagonal

Projection (DP) oracle would supply the extra side information Hopreee(6) = {7 : 6? > o?}.
The ideal diagonal projection consists in estimating only those 6; larger than the noise
level. Supplied with such an oracle, one would attain the ideal risk

n

1
Roracie(6,0,1) me
n

=1

The soft threshold estimator

b7 = sgn(yi)(ly:| — o1/2log )+, (4)

introduced by Donoho and Johnstone (1994), can essentially “mimic” the performance of
the DP oracle. The estimator comes (essentially) within a logarithmic factor of the ideal
risk for all 8 € IR™. Specifically, they show the following DP oracle inequality

R(6*,0) < (2logn + 1)[Roracte(0, 0, 1) + 02/n], for all § € R™. (5)

Donoho and Johnstone develop the DP oracle inequality primarily for wavelet function
estimation. They and co-authors show that the wavelet estimator, VisuShrink, achieves
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unusual adaptivity. The estimator attains within a logarithmic factor of the minimax rates
over a wide range of Besov classes (Donoho, Johnstone, Kerkyacharian & Picard, 1995).

sup  R(fuisu, f) < Clogn/n)?/0+29)(1 + o(1))
fEBZ (M)

The DP oracle inequality is a key in showing the adaptivity of the VisuShrink estimator.

3.2 Block Projection Oracle

A DP estimator keeps or kills each coordinate individually without using information about
other coordinates. On the contrary, a block projection (BP) estimator thresholds coordi-
nates in groups, it uses information about neighboring coordinates. Simultaneous decisions
are made to retain or to discard all the coordinates within the same group.

Suppose y; are given as in (2). Let By, By,---,Bny be a partition of the index set
{1,---,n} with each B; of size L (For convenience, we assume that the sample size n is
divisible by the block size L). Let H be a subset of the block indices {1,---, N}. A Block

Projection (BP) estimator associated with H is defined as

A _ ) ¥B; ifjeH
eBJ'(H)_{O it ¢H

where yp; denote the vector (y;)iep,. For each given block the expected loss is
E|05,(H) = 05,1 = Lo*I{j € H} + 105,317 ¢ H) (6)

To minimize the risk (6), we would ideally like to choose H to consist of blocks with signal
> noise, i.e. ||0p,|[; > Lo?. A BP oracle would supply exactly the side information

Ho =Ha(0) = {7 : 105,z > Lo}

With the aid of the BP oracle, one has the ideal block projection “estimator”

bs,(H-) = { 0 ifj¢H, ")
with the ideal risk
Y ) 2 _ 1 u 2 2
Roracte(0,0,L) = I%f —E|l0(H) - 0| = = Z(”ijnz A Lo®)
n nig

where a A b = min(a, b). It is clear that the ideal risk is unattainable in general because it
requires the knowledge of an oracle which is unavailable in most realistic situations. The
ideal “estimator” (7) is not a true estimator in a statistical sense. Our first goal is to
derive a practical estimator which can mimic the performance of the BP oracle. That is,
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we wish to construct an estimator whose risk is close to the risk of the ideal “estimator”.
Among the many traditional shrinkage estimators developed in the normal decision theory,
the James-Stein estimator is perhaps the best-known and will be our primary focus in the
present paper. Generalizations of the method is discussed in Section 8.

Suppose y; are observed as in (2). James and Stein (1961) propose a particularly simple
shrinkage estimator A

' =(1—(n—2)0%/S)y (8)

where S? = Y y? is the L, energy. James and Stein (1961) show that the estimate dominates

the maximum likelihood estimator y when n > 3. It is easy to see that the estimator (8)

is further dominated by X
0 = (1= (n - 20/ y (9)

Efron and Morris (1973) showed that the (positive part) James-Stein estimator (9) does
more than just demonstrate the inadequacy of the maximum likelihood estimator y . It is a
member of a class of good shrinkage rules, all of which may be useful in different estimation
problems. The class of estimators

6 = (1—-co?/S*)+y
can be regarded as truncated empirical Bayes rules. See Efron and Morris (1973).
Under the context of BP estimators, we consider a class of blockwise James-Stein esti-
mators. Within each block B; a James-Stein shrinkage rule is applied:

A ALco?
0Bj(L') /\) = (1 - 7)+yBj7 (10)
J

where S} = ||yg,||3. When the block size L and the threshold A are properly chosen, the
blockwise James-Stein rule can mimic the performance of a BP oracle. We first consider a
special choice of block length and threshold level.

Theorem 1 (BP Oracle Inequality) Assume that y; and éBJ.(L,)\) are given as in (2)
and (10) respectively. Suppose that the block size L = logn and the threshold \ = 4.50524.
Then

N
RO L),6) < %(E(HGBAP A NLo?) + 20%). (11)
j=1
Written in “Oracular” form, we have
2
R(B(),L),0) < 4.50524 Roracte (0,0, L) + 2% (12)

Therefore, with the given block size and threshold level, the estimator comes essentially
within a constant factor of 4.50524 of the ideal risk.

Remark: The threshold A = 4.50524 is the solution of the equation A —log A—3 = 0. This
particular threshold is chosen so that the corresponding wavelet estimator is (near) optimal
in function estimation problems. We focus on this estimator for the moment. Details on
the choice of block size and threshold level are contained in Section 6.



4 Wavelet Shrinkage via the BP Oracle Inequality

Now let us turn attention to the function estimation problem and imagine that the mean
vector p is the wavelet coefficients of some function. According to the data compression
and localization properties of wavelets, it is reasonable to think that most of the wavelet
coefficients are small and negligible. On the other hand, it is also reasonable to believe
that not all the coefficients are small. Large coefficients cluster around irregularities of
the function. That is, we are aiming to estimate a high dimensional sparse normal mean
vector. The objective is to estimate large coordinates accurately and to estimate the small
coordinates by zero.

A natural approach is to estimate each coordinate individually by thresholding or shrink-
age methods. VisuShrink is a good example of the term-by-term shrinkage methods. Our
approach is to estimate the means in groups by putting the empirical wavelet coeflicients
into blocks and make simultaneous shrinkage decisions about all coefficients within a block.
We estimate the true wavelet coefficients at each resolution level via a blockwise James-
Stein rule. The optimality results in Section 5 show that it is more efficient than estimating
coeflicients individually. With these motivations in mind, we are now ready to formally
describe the BlockJS procedure.

Suppose we observe a noisy sampled function f :

yz:f(tz)"I'ezza Z:17277n (13)

with ¢, = i/n, n = 27 and 2; i.i.d. N(0,1). The noise level ¢ is assumed to be known.
We are interested in recovering the unknown function f. The precision of an estimator is
measured both globally and locally. The global quality of recovery is given by the expected
integrated squared error:

R(f,f) = EIlf - fI3- (14)
And local quality of recovery is measured by the expected loss at the point:

R(f(to), f(t0)) = E(f(to) — f(to))". (15)

Suppose we observe the data Y = {3;} as in (13). Let @ = W - n=1/2Y be the discrete
wavelet transform of n=1/2Y. Write

O & 1 n . 0 0 T
0= (éjoh e 75]'0210)0_7'017 et 793'02107 tee 70-7—1,17 Tt 70J~1,2J—1)

Here £,k are the gross structure terms at the lowest resolution level, and the coefficients
Oix (j=1,---,J—1,k=1,---,27) are fine structure wavelet terms. One may write

éjk = H;k + n_l/ZEij (16)

where the mean 67, is approximately the true wavelet coefficients of f, and z;;’s are the
transform of the z;’s and so are i.i.d. N(0,1).



At each resolution level j, the empirical wavelet coefficients 5jk are grouped into nonover-
lapping blocks of length. Denote (5b) the set of indices of the coefficients in the b-th block
at level 7, i.e.

(70) = {0, k) : (b—1)L +1 < k < bL}

Let Sgipy = 2o é?k denote the L, energy of the noisy signal in block (jb). We then apply
the James-Stein shrinkage rule to each block (5b). For jk € (5b),

Bir = (1= ALe®/S{i3))+ O (17)

The estimate of the function f is given by

2790 J-1 29

Fa(t) = 2_: Eiokiok (£) + D 3 Oixthin(t) (18)

J=jo k=1

If one is interested in estimating f at the sample points, then the fast Inverse Discrete

Wavelet Transform (IDWT) is employed. And {f(¢;) : ¢ = 1,---,n} is estimated by

F={f@):i=1,---,n} with
J?:W—l_nl/z(:)

Based on the BP oracle inequality we derived in Section 3.2, we choose the block size
L = logn and the threshold A = A\, = 4.50524. With these particular choice of block size
and threshold level in (17), we call the estimator in (18) BlockJS and denote the estimator

in (18) by f*.
Remark: Here we use the same block length L at all resolution levels. In general the block

length can be allowed to increase with the resolution level. All the results remain valid if
we set the block length at level j to be L; = log 2.

The BlockJS procedure is simple and easy to implement. The computational cost is of
the order O(n). The BlockJS reconstruction is appealing both quantitatively and qualita-
tively. In particular, the BlockJS, with high probability, removes pure noise completely.

Theorem 2 If the target function is the zero function f =0, then with probability tending
to 1 the BlockJS estimator is also the zero function, i.e., there exist universal constants P,
such that

P(ff=0lf=0)>P,—1, as n—> oo (19)

We use Donoho and Johnstone’s test function Bumps as an example. Figures 2(a)-2(d)
show the BlockJS procedure in action. The sample size is 2048 and the signal-to-noise ratio
is 3. Again we use Daubechies’ Symmelet 8 wavelet. We can see from figure 2(d) that the
BlockJS estimator captures both the smooth and the jump features of the function well.
For better comparison, the true function, Bumps, is superimposed on the estimator as a
dotted line. See Section 7 for more simulation results.
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5 Optimality Of The BlockJS Procedure

5.1 Global Properties

In this section, we investigate the adaptivity of the BlockJS procedure across the Besov
classes and the perturbed Besov classes. The reason for studying adaptivity over Besov
spaces is that they are very rich function spaces. They contain many traditional smoothness
spaces such as Holder and Sobolev Spaces. Besov spaces also include function classes of
significant spatial inhomogeneity such as the Bump Algebra and the Bounded Variation
Classes.

Testing adaptivity over the Besov classes is now becoming a standard procedure for
wavelet methods. The BlockJS enjoys excellent adaptivity across a wide range of Besov
classes. Before we state the results, we must first define the Besov spaces.

Let AQf(t) = f(t) and AJF (1) = ARf(t +h) — ARf(t), 7 =1,2,---. The L,[0, 1]

modulus of smoothness is defined as

wr(f; h) = || ALf |l zefo,1—rhy-

Given a > 0, 0 < p < 00 and 0 < ¢ < 00, choose r > «. Then the Besov seminorm of
index (a, p,q) is defined as

|f|Bg,q = (/[h_"wr(f; h)]q‘il_h)l/q
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with usual change to a supremum when q¢ = co. The Besov Space norm is

I fllBg, = I7ll» + |/5g,

And the Besov space By, is the set of functions f : [0,1] — IR satisfying I fllBg, < 0o. See
DeVore and Popov (1988).

For a given rregular mother wavelet ¢ with r > «, define the sequence seminorm of
the wavelet coefficients of a function f by

O, = (30 (25 (5 )7y
Jj=jo k

where s = a + 1/2 — 1/p. The wavelet basis provides smoothness characterization of the
Besov spaces. It is an important fact that the Besov function norm || f||g, is equivalent
to the sequence norm of the wavelet coefficients of f. See Meyer (1992).

||f||Bg,q = ”fjok”p + |0|5,°;,q‘

We will always use the equivalent sequence norm in our calculations with || f| s, .

We now investigate the adaptivity of the BlockJS procedure over Besov classes. The
BlockJS utilizes information about neighboring wavelet coefficients. The block length in-
creases slowly as the sample size increases. As a result, the amount of information available
from the data to estimate the energy of the function within a block, and making a decision
about keeping or omitting all the coefficients in the block, would be more than in the case
of the term-by-term threshold rule. The BlockJS increases the estimation accuracy of the
wavelet coeflicients and so it allows convergence rates to be improved. In this section, we
show that this is in fact true.

Denote the minimax risk over a function class F by

R(F,n) = inf sup E||f, — f|I2.
fn F

The minimax risk over Besov classes has been studied by Donoho and Johnstone (1997).
They showed that the minimax risk over a Besov class BS (M) is of the order n™" with
r=2a/(l + 2a), ie.

R(B;,(M),n) < n a0

g

. . . . ot .
And the minimax linear rate of convergence is n™" as n — oo with

__a+({/p--1/p)
a+1/2+(1/p- —1/p)’

Therefore the traditional linear methods such as kernel, spline and orthogonal series esti-
mates are suboptimal for estimation over the Besov Bodies with p < 2.

We show in the following theorem that the simple block thresholding rule attain the
exact optimal convergence rate over a wide range of the Besov scales.

where p_ = maz(p, 2). (20)
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Theorem 3 Suppose the wavelet o is r-regular. Then the BlockJS estimator satisfies

sup  E||fz — fII> < Cn~ ™5 (1 4 o(1)) (21)
feBg (M)

for all M € (0,00),a € (0,7),q € [1,00] and p € [2,00].

Thus, the BlockJS estimator, without knowing the a priori degree or amount of smooth-
ness of the underlying function, attains the true optimal convergence rate that one could
achieve by knowing the regularity.

sup E||fy - fI* < R(Bg,(M),n),  forp>2
fEBg (M)

Theorem 4 Assume that the wavelet 1 is r-regular. Then the BlockJS estimator is simul-
taneously within a logarithmic factor from being minimaz for p < 2:

sup  E||f7— f|? < Cn 755 (logn) 5= (1 + o(1)) (22)
fEBZ (M)

for all M € (0,00), € (0,7),g € [1,00] and p € [1,2).

Therefore, the BlockJS achieves advantages over the traditional methods even at the level
of rates.

Hall, Kerkyacharian and Picard (1995) and Cai (1996) study adaptivity of wavelet
procedures over perturbed instead of standard Besov classes. We finally note that the
BlockJS estimator also achieves optimal performance over a wide range of perturbed Besov
classes. We state the results in the following theorem. The readers are referred to Cai
(1996) and Hall, Kerkyacharian and Picard (1995) for the definition of perturbed Besov

classes considered in the theorem.

Theorem 5 Suppose the wavelet i is r-reqular. The BlockJS estimator is simultaneously
rate-optimal over an interval of perturbed Besov classes F = F(ou, e, v, My, My, M3, D, v).

sup E||fx — f|? < O™ (1 4 o(1)) (23)
fer

for all 0 < a < r and for allv > N.

5.2 Asymptotic Equivalence And Approximation

Brown and Low (1996) obtain an important result on the asymptotic equivalence between
the nonparametric regression and the white noise model. Specifically, they show that,
under conditions, observing the noisy sampled data as in (13) is asymptotically equivalent
to observing the stochastic process Y (t), ¢ € [0,1] where the process Y is characterized by

dY (t) = f(t)dt + n~Y2edW (t) (24)

13



with W a standard Wiener process. The two experiments cannot be distinguished asymp-
totically by any statistical tests. Furthermore, for any procedure in one experiment, we
can construct an equivalent procedure in another experiment. Because the wavelet bases
we use are orthogonal bases, observing the white-noise-with-drift process (24) is in turn
equivalent to observing an infinite sequence of wavelet coefficients of f contaminated with
i.i.d. Gaussian noise of noise level n=%/2¢,

We shall prove Theorem 3 and 4 by using a method of sequence spaces introduced by
Donoho and Johnstone (1997). A key step is to use the equivalence idea and to approximate
the problem of estimating f from the noisy observations in (13) by the problem of estimating
the wavelet coefficient sequence of f contaminated with i.i.d. Gaussian noise.

The approximation arguments are given in Donoho and Johnstone (1997). They show
a strong equivalence result on the white noise model and the nonparametric regression over
the Besov classes By (M). When the wavelet ¢ is r-regular with r > o and p,¢ > 1, then a
simultaneously near-optimal estimator in the sequence estimation problem can be employed
to the empirical wavelet coefficients in the function estimation problem in (13), and will be
a simultaneously near-optimal estimator in the function estimation problem. For further
details about the equivalence and approximation arguments, the readers are referred to
Donoho and Johnstone (1997 and 1995) and Brown and Low (1996). For approximation
results, see also Chambolle, DeVore, Lee and Lucier (1996).

Under the correspondence between the estimation problem in function spaces and the
estimation problem in sequence spaces, it suffices to solve the sequence estimation problem.

5.3 Estimation in Sequence Space by BlockJS
Suppose we observe sequence data:
yir = O +n Y2z, 720, k=1,2,---,% (25)

where z;j are i.i.d. N(0,1). The mean vector 8 is the object that we wish to estimate. The

accuracy of estimation is measured by the expected squared error R(é, 0)=FE Zj,k(é —0)%
We assume that § is known to be in some Besov Body ©; (M) = {6 : ||0||ss . < M}, where

161163, = D_(2°(3_ 18,8 [) /%)% /¢
3=0 k

The minimax risk of estimating § over the Besov Body is defined as

R(o,0;,(M)) = inf sup E|f - 6|[3
’ b o3, (M)

The minimax rate of estimation over Besov Body has been derived by Donoho and John-
stone (1997). First let us make the usual calibration s = a 4+ 1/2 — 1/p. Donoho and
Johnstone show that the minimax rate of convergence for estimating § over the Besov
body ©3 (M) is n=22/(0+22) a5 n — co.
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We now apply a BlockJS-type procedure to this sequence estimation problem. Let
J = [log, n]. Divide each resolution level jo < j < J into nonoverlapping blocks of length
L =[logn]. Again denote (jb) the b-th block at level j. Now estimate 8 by 6* with

) Yik for 7 < jo
=14 (1- /\*L62/S(2jb))+ Yik for jk € (jb), jo<j<J (26)
0 for j > J ‘

This estimator enjoys a high degree of adaptivity. Specifically, we have

Theorem 6 Let p > 2. Then

sup E||§* — 0|2 < Cn~ 5= (1 + 0(1)), as n — oo (27)
0 (M)

That is, the estimator attains the exact minimax rate over all the Besov Bodies ©; (M)
with p > 2. For p < 2, we have the following result.

Theorem 7 Let p < 2 and ap > 1. Then

sup E||6* — 0|2 < Cn~ 3= (log n)P(ﬁM(l +0(1)), as n— oo (28)

The results of Theorem 3 and 4 follow from these two theorems and the equivalence
and the approximation arguments we mention in Section 5.2.

5.4 Local Adaptation

A distinguished property of many wavelet procedures is their high degree of spatial adap-
tivity. For functions of spatial inhomogeneity, the local smoothness of the functions varies
significantly from point to point. Global risk measures such as (14) cannot wholly reflect
the local adaptivity of the estimators. It is more appropriate to use local risk measure (15)
for spatial adaptivity.

In this section, we study the optimality of the BlockJS procedure for estimating functions
at a point. It is well known that for global estimation, it is possible to achieves complete
adaptation for free in terms of convergence rate across a range of function classes. That
is, one can do as well when the degree of smoothness is unknown as one could do if the
degree of smoothness is known. But for estimation at a point, one must pay a price for not
knowing the smoothness of the underlying function. Brown and Low (1996) and Lepski
(1990) showed that local adaptation cannot be achieved for free.

Denote the minimax risk for estimating functions at a point ¢y over a function class F
by

R(F,m,to) = inf sup B(fa(to) — £(to))
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Consider the local Holder class A%(M, o, 6) defined as follows. If a < 1,
A%(M,t0,8) = {f: |[F() = f(to)| < M|t —to|*, for t € (to — 6, to+6)}
If @ > 1, then
A (M, t0,6) = {f : 1f1D@) = FD ()] < M|t — 2] for ¢ € (0 — 6, to + 6)}

where |a] is the largest integer less than « and o/ = a — |«].

The optimal rate of convergence for estimating f(to) over function class A*(M,1o,8)
with o known is n=2¢/(1+2%) Brown and Low (1996) and Lepski (1990) showed that one
has to pay a price for adaptation of at least a logarithmic factor even when « is known
to be one of two values. They showed that the best one can do is (logn/n)" when the
smoothness parameter ¢ is unknown. We call (logn/n)" the local adaptive minimax rate

over the Holder class A*(M, o, 6).

The BlockJS achieves optimal local adaptation with the minimal cost:

Theorem 8 Suppose the wavelets {¢,} are r-regular with r > «. Let to € (0,1) be fized.
Then the BlockJS estimator f satisfies

sup  E(f(to) — F(t0)? < C - (BT (1 4 o(1)) (29)

FEAX(M 20,6) n

Remark: The choice of block length L ~ logn is important for achieving the optimal local
adaptivity. The result does not hold if L = (logn)*®, § > 0. The estimator proposed by

Hall, Kerkyacharian and Picard (1995) uses block length L = (logn)'*® and thus does not
achieve optimal local adaptivity.

6 Choices of Block Size and Threshold Level

In the function estimation problem (13), We have three objectives in mind: adaptivity,
spatial adaptivity, and visual quality of the estimator. The first objective, adaptivity, re-
quires to minimize the global risk measure (14) adaptively over some unknown smoothness
class. The second objective, spatial adaptivity, needs the estimator be well localized so
irregularities at one point will not affect the estimator at locations away from the point.
The third is to have a “noise-free” reconstruction.

We have shown in the previous sections that with block size L = logn and A = 4.50524,
the BlockJS estimator achieves the three objectives simultaneously. In particular, Theorems
2, 3 and 8 hold. Naturally, one would ask from where the block size and the threshold come?
To answer the question, we first look at the risk of block thresholding estimators of the
form (10). The following oracle inequality provides a generalization of (12).
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Theorem 9 Assume that y; and éBj(L,A) are given as in (2) and (10) respectively. Then
R(6(X, L),0) < MRoracte(8, 0, L) + 402 - P(x2 > AL). (30)

For the purpose of selecting block size and threshold level we regard the RHS of the oracle
inequality (30) as the true risk instead of an upper bound. The second term on the RHS of
(30) is important. It determines the balance between the block length L and the threshold
level A. For a chosen block size L, we select the corresponding threshold based on the
minimax quantity

AI6]2 A Lo?) + 402 - P(x2 > AL)
(1013 A Lo®) + Lo?/n

(31)

AL = arg minsup
Ag
Based on this criterion, the threshold A decreases as the block size L increases.We consider

here three special cases of block size.

Proposition 1 Let the threshold Ar be defined as in (31), then
(). with block size L = logn,

Ap ~ 4.50524, as n — oo; (32)

AL ~/2logn, as n — oo : (33)

(ii3). with L = (logn)'*®, § > 0,

(ii). with L =1,

AL ~1 as n— oo. (34)

Our choice of threshold Ay, = 4.50524 used in the BlockJS estimator is based on (32). The
choice of block size L = logn is aiming for achieving a high degree of both global and
local adaptivity. The proof of Proposition 1 uses Lemma 2 on chi-square tail probabilities
in Section 9. We now consider other choices of block sizes discussed in Proposition 1 and
summarize the results in the following theorems.

Theorem 10 With L = 1 and A = /2logn in (17), denote ﬁgl) the estimator given by
(18). Then Theorems 2 and 8, but not Theorem 3, hold for f. Under the conditions of
Theorem 8, f\1) satisfies

sup  E||fr — I < Cno 3 (log n) B3 (1 4 o(1)) (35)
feBZ (M)

Therefore, the estimator fT(Ll) has noise-free feature and optimal local adaptivity, but not
optimal global adaptivity. The extra logarithmic factor in (35) is unavoidable because this
is a term-by-term thresholding estimator. The shrinkage function 7{%(z) = (1 — A\/2?) 4z
is bounded between the hard threshold n%(z) = z - I(|z] > A) and the soft threshold
n3(z) = sgn(z)(|z| — A)+. The estimator enjoys essentially the same properties as the
VisuShrink estimator. This estimator has also been studied by Gao (1997).
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Theorem 11 With block size L = (log n)'*® § > 0 and a constant threshold X > 1 in
(17), denote 2 the estimator given by (18). Then Theorems 2 and 3, but not Theorem
8, hold for f(B. Under the conditions of Theorem 8, f{?) satisfies

logn, 2

)73 - (log n) T¥5a (1 + o(1)) (36)

sup E(fP(to) - f(0))* < C - (
fers(m)

In words, the estimator f,(f) achieves global adaptivity, but not optimal local adaptivity.
The extra logarithmic factor in (36) is due to the fact that the estimator is not well localized.
The block size L = (logn)'*® is too large. Intuitively it is also clear that the block size
should be relatively small in order to achieve a high degree of spatial adaptivity.

~ In comparison, it is clear that the choice of block size L = logn and threshold A =
4.50524 is superior than L = 1 and A = 4/2logn, or L = (logn)'* and X ~ 1.

7 Simulation Results

A simulation study is conducted to investigate the empirical performance of the BlockJS es-
timator. We compare the BlockJS with Donoho and Johnstone’s VisuShrink and SureShrink
as well as Coifman and Donoho’s Translation-Invariant (TI) De-Noising method. SureShrink
selects threshold at each resolution level by minimizing Stein’s unbiased estimate of risk
at each resolution level. In the simulation, we use the hybrid method proposed in Donoho
and Johnstone (1995). The TT De-Noising method was introduced by Coifman and Donoho
(1995). The reconstruction was obtained by averaging over estimators based on all the shifts
of the original data. This method has various advantages over the universal thresholding
methods. For further details on SureShrink and TI De-Noising the readers are referred to
Donoho and Johnstone (1995) and Coifman and Donoho (1995).

We implement the BlockJS estimator in the statistical software package S+Wavelets.
The complexity of the algorithm is of the order O(n). We compare the numerical per-
formance of the methods using eight test functions representing different level of spatial
variability. The BlockJS, the VisuShrink , the SureShrink, and the T1 De-Noising are ap-
plied to noisy versions of the test functions. Sample sizes from n = 512 to n = 8192 and
signal-to-noise ratios (SNR) from 3 to 7 are considered. And several different wavelets are
used.

The BlockJS uniformly outperforms the VisuShrink in all examples. Among the eight
test functions, five of them, Doppler, Bumps, Blocks, Spikes and Blip, BlockJS has better
precisions with sample size n than the VisuShrink with sample size 2 - n for all n from 512
to 819 (see Table 1). The BlockJS also yields better results than the TI De-Noising in
most cases, especially when the underlying function is of significant spatial variability. The
BlockJS is comparable to SureShrink numerically. See Table 1 and Figure 10.
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The BlockJS estimator is visually appealing. The reconstruction is smooth where the
underlying function is smooth. They do not contain spurious fine-scale structure that are
often contained in the SureShrink estimator (see Figures 4 and 5).

Different combinations of wavelets and signal-to-noise ratios yield basically the same
results. For the reasons of space, we report in Table 1 only the numerical results for
SNR = T using Daubechies compactly supported wavelet Symmlet 8. Table 1 reports
the average squared error over 20 replications with sample sizes ranging from n = 512 to
n = 8192. Figures 4 - 7 compare the visual quality of the four different estimation methods.
All the figures were produced with the sample size 2048, the wavelet Symmlet 8 and the
SNR 3. ‘

It would have been very interesting to compare the mean squared error performance of
BlockJS with that of Hall, Kerkyacharian and Picard’s block thresholding estimator. But as
we pointed out earlier, the block thresholding estimator proposed by Hall, Kerkyacharian
and Picard is difficult to be implemented. It requires the evaluation of the wavelet functions
at all the sample points and involves matrix multiplications which are computationally
costly. Also simulation results in Hall, Penev, Kerkyacharian, and Picard (1996) show
that even the translation-averaged version of their estimator has little advantage over the
VisuShrink when the signal to noise ratio is high. Since our simulation shows that BlockJS
uniformly outperforms the VisuShrink in all examples, we expect the BlockJS estimator
performs favorably over HKP’s estimator in terms of the mean squared error, at least in
the case of high signal-to-noise-ratio.

8 Discussion

The BlockJS estimator can be modified by averaging over different block centers. This
technique has also been used in Hall, Penev, Kerkyacharian and Picard (1996). Specifically,
for each given 0 < ¢ < L — 1, partition the indices at each resolution level j into blocks

(0) ={(,k): b—1)L+i+1<k<bL+1}.

In the original BlockJS estimator, we take : = 0. Defining ﬁ(j) to be the version of f;,f for a

given ¢ and set
L-1

L= fOIL

1=0
The estimator f,’:* often has better numerical advantage.
James-Stein estimator has been used in wavelet function estimation by Donoho and
Johnstone (1995). The estimator, WaveJS, is constructed by applying the James-Stein
estimator resolution-level-wise, so it is not local and does not have the spatial adaptivity

enjoyed by the BlockJS estimator introduced in the present paper. Indeed, the main purpose
of Donoho and Johnstone’s introduction of the WaveJS procedure is to show that linear
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estimator does not perform well even it is an adaptive and nearly-ideal linear estimator(See

Donoho and Johnstone (1995)).

In the present paper, we focus on the James-Stein estimators. The block thresholding
method can be used with other type of shrinkage estimators in normal decision theory, for
example, estimators of the forms § = (1 — A\o?/(As + 52))1y or § = (1 — ¢(5%)/5?)y
In this sense, block thresholding serves as a “bridge” between traditional normal de(:131on
theory and the recent adaptive wavelet estimation. This bridge enables us to utilize the
rich results developed in the decision theory for wavelet function estimation.

On the other hand, block thresholding methods can also be used in other statistical
function estimation problems such as density estimation and linear inverse problems. We
will address these applications elsewhere.

9 Proofs
Proof of Theorem 9. Let z; = y; + 0z, ¢ =1,---,L , and let
. ALo?
b= (1= ) o (57)

where 52 = ||z||? and A > 1 is a constant. Denote R(ji, pt,0) = E,|| — g3, and p* = p/o.
Since R(ji, p,0) = o?R(u*, u*,1). It suffices to consider only the case ¢ = 1 and to show

BIIG — 013 < [l4l A XL +4P(x3 > AL). (38)

The (positive part) James-Stein estimator is weakly differentiable, Stein’s formula for un-
biased estimate of risk yields

Blli — ul}} = B [Sure(e, u, A, L)] (39)

where

NI? —2AL(L —2)

Sure(z,u, A\, L) =L + I(S? > ML) +(S* —2L) - I(S* < A\L) (40)

52
is Stein’s unbiased risk estimate. Simple algebra yields
Sure(z,p, A\, L) <max{\L—L+4, L} (41)
And it follows from (41) trivially
Bl — ul} € AL+ 4P(G, > AL) (12)

for A > 1 and L > 4. The inequality (42) can be verified directly for the cases of L =1, 2
and 3 using the specific noncentral chi-square distributions. For the sake of brevity we omit
the proof. It remains to be shown

Eljp — plfz < llull* + 4P(xL > AL) (43)
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It follows from (39) and (40) that

A2L% —20L% 4+ 4)L
2

= ||ul*+ E — 824 2L| I(S* > \L). (44)

Let p. = ||pl|?/2, then E||i — p||3 is a function of ., A and L. S? = ¥ z? has a noncentral
x2-distribution with density

00 k _N*

ZN*

Frtor(y) (45)

where f,,(y) = mym/ 2-1¢-9/2 is the density of a central y2-distribution. Write

G(p, \, L) = E

[A2L2 — 20L? +4)L

= - 574 QL} I(S? > \L).

It is easy to see that G(0,,L) < 4P(x% > AL). So it suffices to show that G(u., A, L) is
decreasing in p.. Denote Y, a central x? variable with degrees of freedom m and use (45)
as the density of 5%, we have

o ket ANL2 — 202 +4)L
G(}L*,/\,L) = Z ,u* x E [ Virar — Yrior + 2L] ](YL+2k > /\L)
o0 k "",Unﬁ
_ /‘*
= Z X
Since,
8G (e, )\, L) '; s
(le Z ks [9k+1 — 9&),

it is thus sufficient to show gg11 —gr <0 for all £ > 0. Some algebra yields that for L > 2

2)L 2AL(AL — L + 2k + 2)
_9)P(Yisar > AL) —
Tyop Do > M) = o ok =9

Gk+1 — Gk = ( P(YL+2k_2 > /\L) (46)

It is easy to see that gx+1 — gx < 0 when A < L+ 2k. For the case of A > L + 2k, we appeal
to the following lemma on two chi-square tail probabilities.

Lemma 1 T 5
P 2T) S (L+ ==)POG2T) if T>n. (47)
n —

Applying (47) to (46), it yields gx+1 — gx < 0 when XA > L + 2k. Therefore, when L > 2,
G(ptx, A, L) is decreasing in u.. Hence

G(psy A, L) < G(0,), L) <4P(x3 > A\L),
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and
Ellp = pll = lpll* + G(us, A, L) < |pll* +4P(x} > AL).

The cases of L =1 and L = 2 can be verified directly, we omit the proof here. g

Proof of Theorem 1 : Theorem 1 follows from Theorem 9 and the following lemma on
the bounds of the tail probability of a central chi-square distribution.

Lemma 2 The tail probability of x% has the following lower and upper bounds.

g,\—l LEA "7 < P32 > AL) <

With L =logn and A, = 4.50524, Lemma 2 yields

AL e E (48)

1 1
2 < I\l <
P(xp > AL) < 5770 < o

Theorem 1 now follows from Theorem 9. &

The following elementary inequalities between two different £, norms are needed in the
proofs of Theorems 6 and 7.

Lemma 3 Letz € IR™, and 0 < p; < p; < 0o. Then the following inequalities hold:

1 _1
2]z, < llzllp, < mP™ 2 |2], (49)

Proof of Theorem 6 : Let y and 6* be given as in (25) and (26) respectively. Then,

J-1 o)
EN0" 0|3 = > D B0 —0%)*+ > D E(05 —0ix)" + D D 05 = S1+ Sa+ S

Ji<jo k i=jo k j=J k

Denote by C a generic constant that may vary from place to place. Since § € 05 (M), so
298(S°2 | 10;1P)Y/? < M. Tt follows from Lemma 3 that p > 2 implies

27 )
Z |0jk12 S M22—]2a

k=1

It is clear that both S; and S; are “small”.

Sy = 20p7le? = o(n72/ (1H2)) (50)
co 29 =)

Ss = 33607, <D0 M2 < On = o(n 2/ (142)) - (51)
i=J k=1 i=J
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Now let us consider the term S;. Denote by ﬂ(zjb) = Y ke(ib) sz-k the sum of squared coeffi-
cients within the block (7b). From the BP oracle inequality (1) we can bound the term S,
by the following.

J-1 J-1
S2= 3 D B85 — )" S M ) Z(ﬁ(zjb) A Ln7te?) + 2n71e? (52)
j=jo k Jj=jo b
Let J]_ = [1—_:_2&- ]-0g2 n] SO, 2J1 ~ nl/(1+2a). Then
Ji1-1 Ji-1
M S (Bhy ALn TR < 30 S A LnTre? < O (042 (53)
j=jo b j=jo b
J-1
/\ Z Z ﬂ(]b) A Ln ) S /\* Z ZIB(]b) S Cn—Za/(l+2a) (54)
‘7 Jl j—"‘—J] b

Combining (53) and (54) together with (50) and (51), we prove the theorem.
E||6* — 6]3 < On*/0%2(1 4 o(1))

Proof of Theorem 7: Same as in the proof of Theorem 6, we first separate the risk into
three components.

J-1 00
E||0*—0||§: ZEE(G;k_eﬂk)z_i—ZZE —GJk ZZG?,C_—_:51+S2+S3
i<jo k i=jo k i=J k

Since 8 € @;‘,q(M) and p < 2, Lemma 3 yields Zi{__l |0;1)? < M?279%¢, The first term
S is “small” and the assumption ap > 1 implies that S is of higher order:

S, = zjon—162:0(n—2a/(1+2a)) (55)
oo 27 00

53 — Z Za?k S Z M22—_72s < Cn—?a—1+2/p — O(n—Za/(1+2a)) (56)
j=J k=1 i=J

Now we consider the term S,. First we state the following lemma without proof.

Lemma4 Let 0 <p<land S={z e R: 3F 2P <B, 2;>0,i=1,---,k}. Then
for A >0,

supz (z; NA)< B- Al7P,

T€S j=3

Again denote ﬂ?jb) = Yke(jb) O3 Applying the BP oracle inequality (1), we have

ZZE  —0i)% < A\ ZZﬂ(]b)/\Ln‘ e?) +2n7 '€ (57)

J=jo i=jo
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Let J; be an integer satisfying 272 x n!/(1+2%)(log n)~(2-P)/p(1+20)  Then

A Z E Blmy N Ln~'e?) < Z Z/\ Ln~te? < On~2/ (42 (Jog p)~(2-p)/p(142a)  (5g)

J=jo J=jo
Note that Eb(ﬂ?jb))pﬂ < 33(02,)P/2 < M273*. Applying Lemma 4, we have

J-1
Ay Z (B A Ln™'€%) < Cn=2e/ (429 (Jog )= (2=p)/p(1422) (59)

J=J2
We finish the proof by putting (55)—(59) together.
BJl§" — 0] < Cn~2/0+29) log n)-C-PIpI3)(1 4 o(1))
Proof of Theorem 8 : For simplicity, we give the proof for Holder classes A*(M) instead

of local Holder classes A%(M,to,6). First note that for Holder classes A*(M) there exists
a constant C' > 0 such that for all f € A*(M),

10] = [(f, bsp)| < C2790/2H), (60)
The proof of the theorem makes use of the following elementary inequality.
Lemma 5 Let X; be random variables, 1 =1,---,n. Then
B3 X7 < (S (BRI Y (61)
=1

Apply the inequality (61), we have

230

> ik — Eiok) ok (to) + i Z ik — Os1 %k(to)J

k=1 7=70 k=1

E(fx(to) — f(t0))? = E

2790 J—1 24 oo 2

J=jo k=1 i=J k=1
= (Q1+ Q2+ Q3)?

Since we are using wavelets of compact support, so there are at most N basis functions i
at each resolution level j that are nonvanishing at o, where N is the length of the support
of the wavelets ¢ and . Denote K(to, j) = {k: ¥;r(to) # 0}. Then [K(to, 7)| < N. It is
easy to see that both @); and @3 are small:

230 .

Ql = Z(E(fjok - fjok)2)1/2|¢jok(to)| = O(n_l) (62)
k=1
oo 27

Q= o Wsellsnlto)l € 3 Niyllw2 202790724 < On=e (63)
j=J k=1 j=J
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We now consider the second term @),. Apply Lemma 3 and Theorem 12, and use (60), we
have

J-1 J-1
QZ < Z Z 2j/2||¢“oo(E(0jk — (ij)2)1/2 <C Z 2.7'/2[(2~J'(1+2a) A Ln—162) + Ln_262]1/2

J=jo k€K (%o, j) J=Jo

< Cllogn/n)*/H9)(1 + o(1)) (64)
Combining (62), (63) and (64), we have

E(fx(to) = f(0))* < C(logn/n)*/0+22)(1 4 o(1)) u
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10 Appendix

The formulae of the test functions. (The test functions are normalized so that all of
the functions have the same s.d.(f) = 100.) Doppler, HeaviSine, Bumps and Blocks are
from Donoho and Johnstone (1994). Blip and Wave are from Marron, Adak, Johnstone,
Neumann and Patil (1995).

1. Doppler.
f(z) = 34.5856 - \/z(1 — z)sin(2.17/(z + .05))
2. HeaviSine.

f(z) =3.3662 - [4sindrz — sgn(z — .3) — sgn(.72 — z)]

3. Bumps.
f(z) = 15.0769 - Z hiK((z —z;)/w;)) K(z)=(1+ |x|)"4.
(z;) =(1, .13, .15, .23, .25, .40, .44, .65, .76, .18, .81)
(h)) = (4, 5 3, 4, 5, 42, 21, 43, 31, 51, 42)
(w;) =(.005, .005, .006, .01, .01, .03, .01, .01, .005, .008, .005)
4. Blocks.
f(z) = 4.7606 - Zth(m —z;) K(z)= (14 sgn(z))/2.
(z;) =(1, .13, .15, .23, .25, .40, .44, .65, .76, .78, .81)
(hy) =(4, -5 3, —4, 5, —42, 21, 43, —3.1, 51, —4.2)
5. Spikes.

f(z) = 15.6676 - [6‘500(“”-0-23)2+2e-zooo(w—o-33>2+4e—8°°°<m-°-“>2

+4 6—8000(3;—0.47)2 +3 6—16000(:1:—0.69)2 + 6—32000(:1:—0.83)2]
6. Blip.
F(z) = 50.9859-[(0.32-+0.624-0.3e 100DV [ o1(2)4(—0.2840.62+0.3e 100V [ o 11()]

7. Corner.

f(z) = 62.3865-[102(1—4z%) I o, 5(x)+3(0.125—2)z* I 5 g()+59.4432(z—1)3 I 5.11(x)]

8. Wave.
f(z) = 63.2301 - .5+ .2 cos(4nz) + .1 cos(247z)]
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Figure 1: Test Functions
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Table 1: Mean Squared Error From 20 Replications (SNR=T)

n [ BlockJS | VisuShrink | SureShrink | TI De-Noising
Doppler

512 0.756 1.838 0.984 1.438
1024 0.424 1.188 0.564 0.886
2048 0.236 0.781 0.352 0.541
4096 0.121 0.424 0.182 0.292
8192 0.060 0.259 0.105 0.169
HeaviSine

512 0.370 0.395 0.361 0.323
1024 0.217 0.290 0.236 0.223
2048 0.129 0.204 0.138 0.154
4096 0.099 0.117 0.080 0.091
8192 0.059 0.078 0.051 0.062
Bumps

512 1.758 5.835 1.187 4.034
1024 0.929 3.610 0.977 2.342
2048 0.528 2.211 0.547 1.354
4096 0.391 1.160 0.343 0.712
8192 0.210 0.707 0.210 0.418
Blocks

512 1.562 3.569 1.335 2.746
1024 0.949 2.290 0.836 1.847
2048 0.584 1.615 0.648 1.253
4096 0.501 0.883 0.367 0.696
8192 0.290 0.620 0.268 0.461
Spikes

512 0.274 0.502 0.256 0.268
1024 0.149 0.339 0.114 0.155
2048 0.106 0.265 0.086 0.110
4096 0.068 0.191 0.060 0.075
8192 0.053 0.151 0.046 0.055
Blip

512 0.258 0.455 0.364 0.369
1024 0.150 0.335 0.235 0.253
2048 0.090 0.229 0.132 0.161
4096 0.069 0.139 0.095 0.096
8192 0.038 0.085 0.053 0.061
Corner

512 0.170 0.208 0.187 0.152
1024 0.077 0.114 0.086 0.086
2048 0.040 0.072 0.045 0.054
4096 0.036 0.036 0.036 0.035
8192 0.018 0.018 0.018 0.018
Wave

512 0.395 1.402 0.277 0.339
1024 0.178 0.782 0.155 0.203
2048 0.098 0.461 0.092 0.117
4096 0.060 0.060 0.060 0.028
8192 0.044 0.044 0.037 0.014
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BlockdS vs. VisuShrink
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Figure 2: Comparison of MSEs (SNR=7). The average squared errors of VisuShrink,
SureShrink, and TI De-Noising as the percentages of the corresponding average squared
errors of BlockJS. For each test function, the bars are order from left to right by the sample
sizes from 512 to 8192.
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Figure 4: Comparison of Reconstructions (I)
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Figure 5: Comparison of Reconstructions (II)
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Figure 6: Comparison of Reconstructions (III)
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Figure 7: Comparison of Reconstructions (IV)
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