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Abstract

In a recent paper Zheng (1997a) proposed a new specification test of independence
between two random vectors by the kernel method. He showed asymptotic normality under
the hypothesis and local alternatives. The present work investigates the asymptotic distri-
bution of the corresponding test statistic under fixed alternatives. In this case asymptotic

normality of a standardized statistic is still valid but with a different rate of convergence.

Keywords: Test of independence, consistency, fixed alternatives, U-statistics

AMS 1991 Subject Classification: Primary 62G10; Secondary 62G07



1. Introduction

The verification of the independence of two random vectors is an important problem
in statistical inference and numerous statistical procedures are based on this assumption.
Early work on the problem of testing independence dates back to Hoeffding (1948a) or
Blum, Kiefer and Rosenblatt (1961) and is based on the empirical distribution function; for
more recent work we refer to Rosenblatt (1975), Robinson (1991) Rosenblatt and Whalen
(1992) or Ahmad and Li (1997), who applied kernel density estimation to this problem. In a
recent paper Zheng (1997a) described several drawbacks of these tests and proposed a new
procedure for testing the independence of two random variables. He proved asymptotic
normality of the corresponding test statistic under the hypothesis of independency and

under local alternatives.

In the present paper we extend these results and establish the = asymptotic normality
for a standardized version of Zheng’s statistic under fixed alternatives. This provides
further arguments in favor of Zheng’s (1997a) approach because the asymptotic results
of this paper can now also be used to = control the type II error of the test. From a
practical point of view this is particularly important because the acceptance of the null will
usually yield to a data analysis adapted to the independence assumption and is essential
to control the corresponding error of such a procedure. Surprisingly it turns out that
the rates of convergence for Zheng’s (1997a) statistic are different in both cases. While
under the hypotheses of independence the rate is nh™/2 (here n denotes the sample size,
h a bandwidth and m the dimension of the predictor), the rate of convergence under the
alternative can be shown to be n'/? (independently of the bandwidth and the dimension

of the predictor).

2. Zheng’s Test of Independence

Following Zheng (1997a) let Q(y, x) denote the joint distribution function of a random
vector (Y, X) with values in IR*™ and define G(y|z) and F(y) as the conditional distri-
bution (given X = z) and marginal distribution function of ¥ respectively. The difference

of these distribution functions will play an important role in this paper and is denoted by

(2.1) A(ylz) = G(ylz) — F(y).
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The random variables X and Y are independent if and only if the = hypothesis
(2.2) Hy: Aylz)=0 Vaz,y

is valid. The alternative A(y|z) # 0 will be denoted by H;. The test of Zheng (1997a) is

based on an estimator of the integral

W = / E[A% (5] X)p(X)w(y)dy

where p is the marginal density of X and w is a weight function. To be precise let
(Y1, X1),..., (Yn, X,,) denote a sample from the distribution @ and define
(2.3)

D D (5;—)() / [I{Y; < v} — Fa@)I{Y; < 9} — Fa@)]w(y)dy

where I{-} denotes the indicator function, K is a kernel, A a bandwidth and F,, the
empirical distribution function of Y, ...,Y,. Under the hypothesis of independence (2.2)
Zheng (1997a) showed that nh™/2W,, is asymptotically normal (n — co, h — 0, nh™ —

00) with mean 0 and variance

o =2 [ Kwdu [ [ EpCONF@A2) - FOFEPuu()dvdz,

where y Az = (y1 A z1,...,¥¢ A 2¢)T denotes the minimum of the vectors z = (z1,. .., 2¢)T
and y = (y1,-.-,9¢)T. A similar result holds for local alternatives of the form A(y|z) —
n~=1/2h=m/%y(z,y) [see Theorem 3 of Zheng (1997a)]. A proof of these assertions requires

the following basic assumptions.

(A1) The marginal density p of X and its first order derivatives are uniformly bounded.
The conditional distribution function G(y|z) has uniformly bounded first order derivatives

with respect to x.
(A2) The weight function w is integrable and positive (a.e.).

(A3) The kernel K is a nonnegative, bounded, continuous and symmetric function on JR™
such that [ K(u)du =1 and [ K(u)||u||?du < oo (here || - || denotes the Euclidean norm
on R™).



As a consequence of these results a consistent asymptotic level « test for the hypothesis

of independence is obtained by rejecting Hy whenever

(2.4) |Wa| > nh™/26 uy_,,
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where 6° is an appropriate estimator of the asymptotic variance and u;_, denotes the

(1 — @) quantile of the standard normal distribution.

The following result extends Zheng’s (1997a) findings and determines the asymptotic
distribution of his statistic in the case of = fixed alternatives. Throughout this paper
N (1, 02) denotes a normal distribution with mean g, variance o2 and —2 denotes conver-

gence in distribution.

Theorem 2.1. If the assumptions (A1) — (A3) are satisfied, h — 0, nh™ — oo, then
under the alternative hypothesis Hy : A(y|z) # 0,

(2.5) VW, — B) 2 N(0, %)

where the asymptotic bias and variance are given by

@8 B[ [x (“J" ;“) A(yle) Alylz2)p(w1)p(w2)dzrdazw(y)dy
= [ [ 2*Gle0p@dzidy + o)

B / A2(y|X)p(X)dy] + o(1)

(27) X*=4E [//{G(y A z|X) — G(y| X)G (2| X)} v(z| X)o(y| X)w(y)w(z)dydz
w4 Var | [ A@XGIXL0)Y
and v(y|X) denotes the centered version of the random variable A(y| X)p(X) i.e.

(2.8) v(y|X) = Ayl X)p(X) — E[A(y|X)p(X)].



A standard calculation shows that the remainder in (2.6) is in general not of order o(1/+/n)
and as a consequence the measure of dependency W can in general not be used to center
the statistic W,, under the alternative. However, if K is a kernel of order r [see e.g.
Gasser, Miiller, Mammitzsch (1985)], the marginal distribution function G(y|z) and the
marginal density p(z) are r times continuously differentiable with bounded derivatives and
h = o(n~1/?"), then a straightforward calculation shows that one can replace B, by W in

(2.5), i.e.

(W, — W) 25 N(0,X2).

It should also be noted that the rates of convergence are different in Theorem 2.1 and
Theorem 1 of Zheng (1997a). While under the null hypothesis of independency (and under
local alternatives of order n—2/2h—™/4) the variance of W, is of order n~2h™, the variance

under fixed alternatives is of order n~!.

Therefore the asymptotic behaviour of W, is
similar as that of the statistics considered by Hoeffding (1948a) and Blum, Kiefer and
Rosenblatt (1961) with a slightly different rate under the null hypothesis. As pointed out
by Zheng (1997a) a test based on W,, has several advantages compared to the commonly
used tests. Theorem 2.1 now provides a further argument in favor of the statistic W,,.
The asymptotic results for fixed alternatives can be used in order to estimate the type II
error of the test (2.4). From a practical point of view this is particularly important,
because the acceptance of the null will yield to a subsequent data analysis adapted to the

independence assumption. Consequently it is desirable to control the corresponding error

of such a procedure.

The limiting distribution of W,, (under the hypothesis and alternative) can be derived
under much weaker assumptions as commonly used in the literature [see e.g. Robinson
(1991)]). However, if the density p of the marginal distribution of X has compact support,
say C, and is positive on C, then an alternative test statistic may become appropriate, for

which the asymptotics in Theorem 2.1 is more transparent. To be precise, let

(2.9) p(z) = Lm | ; 1K (a’ —hXj>

nh



denote the usual density estimate of p and define

* __ 1 1 Xz — Xj
Vo = D .Z.ﬁm)K( P )
(2.10) #3Dj

J Ut <) - B Y < 0} - Fl)lw()dy

Theorem 2.2. If the assumption (A1)-(A3) are satisfied, n — oo, h ~ n=1/(Mm+4) C =
supp (p) is compact, p is positive on C, twice continuously differentiable with a uniformly
bounded second derivative on C' and the kernel K satisfies a Lipschitz condition, then we

have the following asymptotic properties for the statistic W)} defined in = (2.10).

(a) If the hypothesis of independence is valid, then

(2.11) nh™ 2w 25 N(0, 72)

where the asymptotic variance is given by

(2.12) 2= / K*(u)du / / (F(y A 2) — F(y)F(2)}2w(y)w(z)dydz.
(b) Under the alternative A(y|z) # 0 we have

(213) V(W = Bf) = N(0, %)

where the asymptotic variance and bias are given by

1) Bi= [ [ 1 (T55) A Alealples)dndenn o)y
— 5| [ Ax)uwa] +o)
and
w2 =18 | [ [ {6 A3 - GOIRGE} ACK) AW u()u()dyds

(2.15)  +4 Var [/Az(y|X)w(y):dyJ.



The proof of Theorem 2.2 follows by the same arguments as given by Zheng (1997a)
for part (a) and given in the proof of Theorem 2.1 for part (b) in the following section,

observing that by results of Collomb and Hérdle (1986) for every n > 0
sup |(x) — p(x)| = Op(n=*/+m)*m),
xeC

This allows us to replace the estimator p(X;) in the statistic (2.10) by the random variable
p(X;) and to work with a weighted version of W,.

3. Proof of Theorem 2.1

For the sake of transparency, we restrict ourselves to the case of a one-dimensional

predictor, i.e. m = 1; the general case follows exactly the same lines. Recall the definition
of A(ylz) in (2.1), define &;(y) = I{Y; < y} — G(y|Xy),

(31) Tn(y) = Fa(y) = F(4) = 3D~ 3" (ex + AlylXn);
k=1

then we obtain the following decomposition for the statistic W, in (2.3)

(32) Wn - Wnl + Wha + Wn3 + 2Wn4 - 2Wn5 - 2Wn6
where
1 1 (Xi— X,
(3.3 W=y 3 K (25%) [awewuoa
1 1 (Xi—X;
B0 W=ty 3K (F52) [ avxiawxuea
1 1 (Xi—X; .
(3.5) Whs = 2D ig;j K (—h——> /Fn(y)w(y)dy
1 1. (X~ X;
06 W=y 3K (F52) [awauixyuod



(3.7) Wis = —1—1 > %K (%) /sz-(y)l“n(y)w(y)dy

n(n -~ )z';éspj
1 1 (Xi—X; | .
@9 ey 3 2K (F) [ A6 eu

(From Zheng (1997a) we have

(3.9) W1 = Oy (n%/ﬁ) . Was = o, (n_lﬁ) . Wos = op (%\/ﬁ)

as n — 0o, and it remains to consider the terms W,o, Wyn4, Wpe which turn out to
be of order O(%) In order to show this assertion we first note that a straightforward

calculation gives

(3.10) E[Wn4] = 0;

(3.11) EWoe] = 28| [ A0x0p(060)u()dy] +o(2)
and

61 EWal= 5| [ 1 (F50) apxanituwa]

— 5| [ M x0pCr)uay] + o).

The calculation of the corresponding variances and covariances is actually more compli-

cated. We have from (3.7) and (3.12)

EW= o O O 7 //[( ) (B

i#j ¢#3Dy’

Ayl X:) Ayl X;) A (2| Xa ) A2 Xr) ]w(y Jw(z)dydz

1= e+ % [ [ ol (K520 e (2520)

1
A(y|X1)A(y| X2)A(z| X1)A(z| X3) | w(y)w(z) dydz—l—o(n)

— (1= HEWa)? + 28 (| A xopuma] + o)
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which gives

(3.13) Var (Wya) = - Var ( / Az(y|X1)p(X1>w(y)dy) +o(2)
Similarly,
o o 5 (5

Ayl X;)A (2| X5 ) f(Xs, Xor, X, Xj')] w(y)w(z)dydz
where the conditional expectation
F(Xi, X, Xor, Xjo) := Elei(y)ew (2)| Xs, X, X, Xyu] = Elei(y)ear (y)| Xi, Xir]
vanishes whenever i # 7’ and is given by
(3.15) f(Xi, X5, X3, Xjr) = Gy A 2|1 X;) — Gyl Xa)G (2| Xs) = H(y, 2| X;)

otherwise (here the last equality defines H(y, z|X;)). Observing (3.10) this implies for the

variance of W4

Var (W) = = [ [ o8 [ K (X520) & (22 22) aixa)a el (v, x0)
1

(3.16) x w(y)w(z)dydz + o(=)

_ %E[ [ [16wn=1x) - cuixicempapxac)

PP (Xa)wly)w()dydz | + o)

where the first equality follows from (3.14) by summing only over those pairs (4, 7,4, j')
for which ¢ = 4'. For the term W,s we obtain from (3.8) and (3.1) W6 = W(l) + W(z)

where

w_ _ 1 Tp (X=X ex (y)w
(3.17) wit = T Z;hK< )/A y|Xi)ew(y)w(y)dy
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2
(3.18) W =

e Z; x (B22) [ aepoanis.

This gives for the L2-norm of the first term
Xy — X;
h

BV = e o S S [ [ [ (2
AGIKIA Ao (5)er(2) (g My

i#j i'#£3Dj'
=2 e (B2 swix] B[ (2570 acixs)

)

S|

X Elex(y)ex(2)|w(y)w(z)dydz + of
= %//E[A(y|X1)p(X1)]E[A(z|X2)p(X2)]E[H(y’Z|X3)]

x w(y)w(z)dydz + o(%)

where H (y, z| X3) is defined in (3.15). An analogous argument shows E[W,&?Wég)] =o()

and
B = % [ [ EIAGIX )P BIAGIXa)p (X BIAGIX)A (1 Xs)
x w(y)w(z)dydz + of )
which yields in combination with (3.11)

Var Wos) = - [ [ BIAGIXR(XDIEIA GIXa)p(Xa) BUE (v, 2| X)) () dydz

{/ A(y|Xl)E[A(lez)P(Xz)]w(y)dy}2

The remaining covariances can be treated by similar arguments and give

(3.20) Cov (Wh2, Wna) = 0(%)

1
1 —-F
(3.19) + -

+o(2)

(3.21) Co (Wnz, Wne) = //EA (Y1 X1) A2 X1)A(2] X3)p(X1)p(X3)]

x w(y)u(z)dydz + o )
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Cov (Wins, Wing) — / / E A X1) A2 Xs) H(y, 21 X1)p(X1)p(Xs)]
(3.22)

x w(y)w(z)dydz + o(%).

A combination of (3.21), (3.13), (3.16), (3.19)—(3.20) and straightforward (but tedious)

algebra now yield
Var (W,,) = —/\2 +o(l)

where A\? is defined in (2.7).

Finally, the asymptotic normality of

VW, — E[W,]) = V/n(Wpe — EWy2]) + 2¢/nWaa — 2¢/nWpe + o(1)

can be easily obtained by using the common arguments from the theory of U-statistics

[see Hoeffding (1948b), Hall (1984) and Zheng (1997a,b)]. For the sake of simplicity we

only consider the statistic W,,4; the assertion in the general case then follows by applying

the Cramér-Wold device and similar arguments to the terms Wy, W2 — E[W,2]. Define
= (X;,Y;); ¢ =3D1,...,n, and a symmetric kernel by

Un(Zi, Z;) = 2hK (X hX )/[si(y)Aj(y) + Ai(y)e; (y)]w(y)dy,

then the statistic W,4 can be rewritten as
Wia = [ Z Un(Zi, Z;)
nd — 9 2)
1<gj

Note that Wy4 is a U-statistic with a kernel U, depending on the sample size n as con-
sidered by Hall (1984). Moreover, E[U,(Z;,Z;)] = 0 and it can also be shown that
E[U2(Z;, Z;)] = o(n). From Lemma 3.1 in Zheng (1997b) we have

N 1

(3.23) Wt = Wns = 0p( =)

where Wn4 denotes the projection of the U-statistic W4, i.e.

A 2
= — n(Ziy Zj)|Zi].
Wi =2 3" BlUAZ, 7))



The asymptotic normality now follows from Ljapunoff’s central limit theorem for triangular

arrays of independent random variables,i.e.
ViWna 25 N(0, ¢2)

where c? can be obtained from (3.16). The asymptotic normality of W, is now obvious
by (3.23) and the discussion at the beginning of this paragraph completes the proof of
Theorem 2.1. .
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