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Abstract

Let X ~ Poisson (A), and h(X) a given function of X such that Exh(X)) exists for
all A. We show that for each n > 1, Ex(X™h(X)) satisfies an nth order linear differential
equation. The coefficients of this equation are explicit, and remarkably, they do not depend
on the function k. A consequence is that from an expression for Ey(h(X)), one can derive
a closed form expression for Ex(X™h(X)) for all n > 1. In addition, these lead to exact
expressions for the nth moment and the nth central moment of a Poisson random variable
and in particular show that the n moment of a Poisson random variable with mean 1 is
the nth Bell number B,. These also characterize all functions h(X) that are positively
correlated with X.

We also present a general one step recursion formula for Ex(X™h(X)). These results
may also facilitate computation of Ex(X"h(X)) as compared to direct computation from

definition.

1. Introduction

The purpose of this article is to show that if X has a Poisson distribution with mean
A, and h(X) is any function of X, then for all positive integers n, Ex(X"h(X)) admits
an exact formula in terms of f(A) = Ex(R(X)) and its first n derivatives f()(X), 5 =
1,2,...,n. Equivalently, one can assert that for each n > 1, Ez(h(X)) itself satisfies an
nth order linear differential equation, and it is remarkable that the coefficients of this
differential equation do not depend on the function A. This exact formula also leads to
a one-step recursion formula for the moment sequence {Ex(X™h(X))}n>1. Both of these

facilitate closed form computation of Ey(X™h(X)) as compared to direct evaluation from
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definition. Our results, in addition, imply exact expressions for Ex(X™), Ex(X — \)", and
in particular, imply the fact that if X ~ Poisson (1), then the nth moment of X equals
the nth Bell number B,,.

The preceding results also have some interesting covariance implications. For instance,
it follows that if X has zero correlation with A(X) under every A, then h(X) must be a

constant.

2. Notation and Preliminary Useful Facts

Throughout this article Sa2(n,?) will denote the Stirling second number defined as the
number of partitions of a set of n elements into ¢ nonempty disjoint subsets. Also, given any
function h, A;h will denote the difference operator A1A(X) = A(X +1)—h(X) and for k& >
2, Arh will denote the kth order iterated difference operator Agh(X) = A;1(Ag_1h(X)).
As usual, Agh(X) = h(X). With this notation, we first state some lemmas that will be

subsequently used.

Lemma 1. Foralln > 1, X" = é:l Sz(n,i){;]j)(X —k)}.

Proof: This is well known; see, e.g., pp. 125-126 in Bryant (1993).
Lemma 2. S3(n,¢) = Sy(n—1,i— 1) +iSz(n — 1,1).

Proof: This is also well known; see Bryant (1993) again.

Lemma 3. Forall i >0, A(X +i) = Y (})A;h(X)

j=0

Proof: Fix any n > 1; then, the iterated differences Ag,A;,...,A,_; are linear combi-

nations of A(X), h(X +1),...,A(X +n —1), ie,

Aoh(X) B(X)
Al]l:(X) = Anxn - h(X:Jr g ) (2.1)
An_1h(X) WX +n—1)



where the elements of A are a;; = (— 1)""7( 1),1 <4,5 < n. From (2.1),

h(X) Aoh(X)
X1 | Ak 02)
h(X —f—:n ~1) An_lzh(X)

One can directly verify that the elements of A~! are a¥ = ( -1

]_1) and so the lemma follows.

i—1

Lemma 4. Let X ~ Poisson (A). Then, for all ¢ > 1, Ex(h(X) - {[[(X — k)} =
k=0

MNENA(X +1)).

Proof: See Hwang (1982).

Lemma 5. Let X ~ Poisson (). Then for all k > 1, Ex(Agh(X)) = &5 EA(h(X))

Proof: Let p(\,z) denote the Poisson pmf -e_;)‘z. Note that

d z
ap(/\aw) = Xp()‘ax) —p()‘aw) (23)
Therefore,
d ad —)\)\z —A/\x
T Ea(h(X)) = Z Z h(z)
o )\)\z 1 o —A)\a:
= Z h(w) Z h(z)——
°_° —)\)\1: et —)\)\z

= Zh(:z:-l—l) Zh(:c)

_ oA, (2.4)

Now the lemma follows on using the fact Axh = A1Ar_1h and by induction.

3. A Linear Differential Equation for Eh(X)

For a general function hA(X), we will now present a linear differential equation satis-

fied by Ex(h(X)) in the following sense: fix any integer n > 1, and a function h(X).
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Denote Ex(h(X)) by f(A). Then f(\) satisfies an nth order linear differential equa-
tion co n(A)f(A) + c1,n(M)f'(A) +--- + cn,n()\)f(n)(/\) = Ex(X™h(X)). The coeflicients
€0,n,C1,ny - - -y Cn,n are explicit and they do not depend on the function h. In other words,
if X ~ Poisson (A), then, one has the rather remarkable fact that one can write an explicit

expression for E(X™h(X)) for all n > 1 by only knowing an expression for E(h(X))!

Theorem 1. Let X ~ Poisson (A) and let h(X) be such that f(A) = Ex(h(X)) exists for
all A. Then, for all n > 1, Ex(X™h(X)) also exists, and furthermore,

Ex(X"R(X)) = Ex(X™)Ex(R(X)) + Z cy,n(/\) Y f(>\) (3.1)
where . '
¢im(N) = ZSg(n,i)(;) AL (3.2)
Proof:

BA(X"h(X)) = BA(h(X)- ) Sz(n,i){l:[(X —k)})  (By Lemma 1)

= Z Sa(n,i)Ex(h(X) - {ﬁ(X —k)})
i=1 k=0

= zj; Sa(n, DN Ex(R(X + 1)) (By Lemma 4) (3.3)
— 252@, DX EN(A(X +1)) (. S2(n,0) =0)
= Z Sa(n, z)sz; (;) Ex(A;R(X))  (By Lemma 3)
— ZO ]2% Sa(n, z)( ))\ZWEA(h(X)) (By Lemma 5)
— ; 2; Sy(n, z)( )A’WEA(h(X)) (3.4)
= Zsz n, )N Ex\(h(X)) + ZZsz(n z)( ) d;]. Ex(h(X)). (3.5)

J=1i=j
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From (3.4), on using k(X ) = 1, one gets
Ex(X™) =) Si(n,i)A". (3.6)
i=0

Now substituting (3.6) into (3.5), for a general h,

EA(X"R(X)) = Ex(X™)Ex(h(X)) + Z CJ,n()‘) f(/\)

Y
as claimed.

This derivation of (3.1) itself implies that if E5(h(X)) exists for all A, then E»(X™h(X))

also exists for all A and n > 1. This proves Theorem 1.

From (3.6), one immediately gets the following fact as a corollary.

Corollary 1. Let X ~ Poisson (1). Then E(X™) = B,, = the nth Bell number = Total

number of partitions of a set of n elements into disjoint nonempty subsets.

4. A General Moment Recursion Formula

The expansion in (3.3) will be now used to obtain an interesting one step recursion

relation for E(X™h(X)).

Theorem 2. Let X ~ Poisson (\) and let A(X) be such that Ey(h(X)) exists for all A.
Then, for all n > 1,

EX(XTR(X)) = MEAX"TR(X)) + 5 i S EAXT T R(X))} (3.6)

Proof: From (3.3),
E\(X"h(X))
=" Sa(n, )N EA(A(X + 1))

=1

= z": Sa(n —1,i — DN EA(MX +14)) + zn:z'sz(n — LOXNEAR(X +1)) (By Lemma 2)

=1 =1

= AnZSz (n—1,)\ EA(h(X—l—z—l-l))-l—)\ZSg(n— 1,)(\F BA(h(X +1)



n—1 n—1

=2)  S(n~LONEA(A(X +i+ 1)+ XY Sa(n — L)X ) Ex(A(X +1))

: (. S2(n—1,0)= S2(n—1,n) = 0)z=
= Anz Sa(n — 1, DN EA(R(X +i+1)) + Anz Sa(n = 1,i) 5% (A 'Ex(h(X +1)))
- )\nz Sa(n — 1,8\ dd)\EA(h(X +1))
= A nz So(n — 1L, DN EAR(X +i+1)) + A d T EA(X™T Th(X))

— Z Sy(n—1 z)x E,\(h(X +i))  (By (3.3)

= A nZ So(n — L,ONEA(AM(X +i+1)) + A d EA(X" Th(X))

— Z Sa(n — 1L,i)A{Ex(MX +i+1)) — Ex(M(X +1))} (By Lemma 5)
= )\iEA(X’"‘ Th(X)) + A n\; Sa(n — 1, )N Ex(A(X +1))

=1
= A{ E,\(X" TR(X)) + Ex(X™'A(X))}.  (By (3.3) again)
This proves Theorem 2.
5. Some Applications

We close this article with three specific applications of the results given in the previous

sections.

Theorem 3. Let X ~ Poisson (A) and A(X) is such that f(A) = Ex(h(X)) exists for all
A. Then,

(a) Covy,(X,R(X)) > 0 at a specified A if and only if A(X) has an increasing expectation
locally at Ao, i.e., f'(Xo) > 0;

(b) There is no nontrivial function & such that Covy(X,2(X)) = 0 for all A.
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Proof: (a) By Theorem 1, Ex(Xh(X)) = Ex(X)Ex(h(X))+c1,1(A)f'(A), where ¢ 1(X) =
AS2(1,1) = A. Thus,

Cova(X, k(X)) = Af'(A) > 0 (5.1)

if and only if f'(X) > 0.

(b) From (5.1), Cova(X,h(X)) =0 VA

< f'(A) =0 VA
& f(A) = constant

& h(X) = constant,

by the completeness of the Poisson family (see Lehmann and Casella (1998)). This

proves Theorem 3.

The next result is on a formula for the central moments of a Poisson distribution.

Theorem 4. Let X ~ Poisson (A). Then,

(a) For any n > 1,
Ex(X = 2" =) arn)t,
k=0

where
akn-—Z( 1)()5’2n—zk—z). (5.2)

in the above, S2(0,0) = 1;
(b) For any n > 1, the leading coefficient a, , = 0;

(c) Forn >3, an—1n is also 0.

Proof:

(a) By Theorem 1 and Binomial expansion,



n k
Ex(X - N)"=) ) (-1 * (Z) Sa(k,§)AmFF

k=0 =0

= Z:; ki;:i(—l)n—’c <Z> Sa(k, )AmFF

n n—i

_ZZ( 1)k ’<k+ )S’z(k+2 HAnF (write k for k — 1)

=0 k=0

= Z Z(—l)k_i Z N ) Sa(n —k +14,i)A\F (write k for n — k)
n— i

5o ()
)

(
=33
(
—ZZ( 1y (’Z Sp(n—ik—i)AF  (write i for k — )

So(n—k+14 z))\k
=0 k=1

—ZZ( 1)k k" Sa(n — k +14,5)A*
k=0 =0

:Zak’n)\k,

k=0 =0
k=0

as claimed.

(b) From (5.2), the coefficient of A" is

ann=2( 1 (7 )saln—im —i)
_ ;(—1)1' (’Z’)

= 0.

(c¢) Again, from (5.2), the coefficient of A"~ is
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n—1
Ap—1,n = Z(——l)i <TZ) Se(n—i,n—1—1)
i=0

-2 ((7)

(" Se(m,m —1) = (?), see pp. 18 in Tomescu (1985))

-5 ()3
= 0' ifn > 2,2_0

as claimed

It turns out that for the Poisson distribution, the third central moment is also A. This

is stated below.
Corollary 2. If X ~ Poisson ()),

Ex(X = )A)?=E\(X =22 =) Ex(X-XM)*=X+3)%

Proof: Follows from (5.2)

References
Bryant, V. (1993). Aspects of Combinatorics, Cambridge University Press, New York.

Hwang, J. T. (1982). Improving upon standard estimators in discrete exponential families

with applications to Poisson and the negative binomial case, Ann. Stat., 10, 857-867.

Lehmann, E. L. and Casella, G. (1998). Theory of Point Estimation, Second Edition
(Preprint).

Tomescu, I. (1985). Problems in Combinatorics and Graph Theory, John Wiley, New York.



