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Abstract

It has been known for some time that many standard procedures of iid statistical
theory perform very poorly under long range dependence of the observations. Moreover,
empirical evidence suggests that detection of such long range dependence is itself rather
difficult. Most of the available results have concentrated on classical methods and finding
alternatives using frequentist criteria.

In this article, we first present a set of results to formally show that distinguishing
between different values of the long memory parameter is a hard problem; the Bayes
factor and its asymptotic distribution are studied; next, point and interval estimation
of the mean, estimation of the variance, and testing of hypotheses on the mean are
addressed in a Bayesian framework. The Brown identities and the Brown-Gajek lower
bounds on Bayes risk are used to derive the asymptotic efficiency of simply computable
estimates, some of which do not need specification of the long memory parameter. Sev-
eral surprising phenomena are established; for instance, the credible interval centered
at X behaves randomly even if its length is adjusted for long memory and even when
n — 00. So point and interval estimation behave differently.

The article also gives a number of results on how long memory can fundamentally
affect the general quality of Bayesian inference. Particularly amazing is the fantastic
sample size requirement for accurate inference. A number of examples and other com-
putation illustrate the finite sample case and the theorems. The results pertain to a
stationary ARIMA(0,d,0) Gaussian process.

*Research supported by a National Security Agency Grant.



1 Introduction

In statistical analysis, it is frequently assumed that the sample observations are independent,
or that the correlation between the observations decays sufficiently rapidly. The first cor-
responds to the iid theory and the second to common time series models, such as ARMA
and Markov processes. In the last fifteen years or so, scientists across a wide variety of dis-
ciplines have discovered that in many practical problems, data appear to indicate that the
correlation decays much more slowly than these common models entertain, and if undetected,
can completely invalidate practically all inferences. And paradoxically, it seems hard to de-
tect it. Processes that exhibit such slowly decaying correlation are now commonly known
as long memory processes, and the phenomenon is known as long range dependence. Sub-
stantial classical literature on various aspects of inference under long memory has grown in
the last decade. See the lucid review article, Beran(1992), and the later publication Beran
(1994), and the further references in these two sources. Also see Dahlhaus(1995) , Geweke and
Porter-Hudak(1983), Koul(1992), Robinson(1994), and Yajima(1985, 1991), among others.

The corresponding Bayesian studies are lacking, in a broad theoretical sense. The general
goal of this article is to present a collection of results on Bayesian decision theory under long
range dependence. As in the classical case, a good amount of the results are asymptotic;
but a fair amount, especially the examples, deal with the finite sample case. The principal
ingredients of our methods and results are the Brown identity and the Brown-Gajek lower
bounds for Bayes risk, techniques of Bayesian asymptotics, classic decision theory, and the
existing classical literature on long range dependence. There is some use of other tools, but

not substantial.

The results in this paper pertain to a stationary Gaussian ARIMA(0,d,0) process; it is one
of the most common long memory processes. See Beran (1994). When d € (0, %), the process
exhibits long range dependence; d = 0 corresponds to white noise (independence). For this
process, the spectral density equals

2

b0 d) = 2 (2sin %)—M, X e (=) (1.1)



and the autocovariance function equals

v(k) = /”M&@a“a
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_ N o?T'(1 — 2d)
‘(_)ru+k—dﬁa—k_@’
k=0,%£1,---,+£(n—1); (1.2)

see Adenstedt( 1974) :

The topics addressed in this article fall in the following main categories: detection of long
memory, the ill effect of long memory on the general quality of inference, point estimation of
the stationary mean p, interval estimation of u, Bayesian testing about u, and point estimation
of the common variance o2. For the results on p, the variance o2 is taken to be known, and

set equal to 1. For the results on variance, both u and o? are assumed to be unknown.

In section 2, we address theoretically the problem of distinguishing between different values
of d. This is believed to be notoriously difficult; see the discussions in Beran(1992). We
consider the Bayes factor B, for testing Hyo: d=do vs H; : d = d; and by using certain
martingale inequalities and by deriving the asymptotic distribution of B,, we show that it is

indeed hard to detect long memory or to distinguish between different values of d.

Section 3 gives a number of general results on how long memory fundamentally affects the
quality of Bayesian inference. Long memory makes everything more difficult. In particular, it
is shown that it always causes an increase in Bayes risk for estimation of y for every prior and
for every given sample size n; that astounding sample sizes are required to achieve the same
accuracy that one could get with a small sample under independence; that in small samples
where it is basically impossible to detect long memory it produces a seriously misleading Bayes
estimate; in testing problems it causes an order of magnitude deflation in the Bayes factor in
favor of the null and so can easily lead to erroneous conclusions. In the process, we give an
interesting result on the variance of the BLUE, which we needed, but should be of independent

interest in the general area.

Section 4 uses the Brown identity to derive the pairwise asymptotic relative efficiency of

four estimates of u:

f1 = sample mean = X,,



fi2 = posterior mean under assumption of independence of x4, ..., Ty,
g3 = BLUE,

ity = postertor mean under correct model. (1.3)

Included here are the results that the BLUE is fully efficient, and the estimate fi; which
completely ignores the dependence has an asymptotic efficiency > .98 for every d in (0, 1)

The latter result is not immediately obvious and actually is a bit of a surprise.

Bayesian interval estimation of y is considered in Section 5. Three simple intervals are
studied; an interval centered ét X, with length unadjusted for long memory, an interval
centered at X, with length adjusted for long memory, and an interval centered at the BLUE
(with length adjusted, again). The posterior probability of the first interval is shown to
converge in probability to zero (as expected), that of the third to the nominal specified level,
and quite interestingly, the posterior probability of the second interval is shown to converge
in law to a random variable! The density function of the limiting distribution is worked out
explicitly, and it is seen that it acts essentially like a point mass at the nominal level : a

reassuring property.

Point estimation of the variance o2 is considered in Section 6. The natural invariant loss
L(a,0) = (a — 6)?/6? is used, where § = o?. By using the Brown-Gajek lower bounds on

Bayes risk ( Brown and Gajek (1990)), it is proved that the everyday estimate s? has zero
2
classical literature. The Brown-Gajek bounds also show that the UMVUE of 02, however, has

asymptotic efficiency for all d in (0, 7), not just large d. This is a contrast to the corresponding

asymptotic efficiency 1, a positive result.

The main results are therefore the following :

i. We show theoretically that detection of long memory is difficult; in particular, the
asymptotic distribution of the Bayes factor (which is the likelihood ratio statistic as

well) is derived;

ii. We give some results on how long memory fundamentally affects Bayesian inference.
Long memory always causes an increase in the Bayes risk for every prior and for every

sample size n. The Bayes risk obtainable with just 50 observations under independence



requires roughly 7.75 billion observations when d = 0.4 (amusingly, it does not matter

what prior for p is being used);

iii. We show that asymptotically, various simply computable estimates have very high effi-

ciency, and the BLUE is fully efficient, for estimating y;

iv. We show that a variety of phenomena can occur for interval estimation of y. Certain

natural intervals can behave randomly even as n — oo;

v. We show that the variance estimation problem gives a slightly different set of phenomena:
s? is very bad but the UMVUE is still fully efficient;

vi. We give a fairly good amount of computation and examples to highlight the practically

important case of small to moderate n.

We thought it was necessary to formally present proofs of these natural questions. At
least three of our results (Theorem 1, 3 and Lemma 3) are equally applicable to frequentist
inference. We were also pleased to find these applications of the Brown identity and the
Brown-Gajek lower bound which have previously been used principally for admissibility and
minimaxity results. There are conditions on the prior densities necessary for the results; they
are generally mild and stated in the sections. The very important problem of estimating d will
be addressed separately where we will give a new estimate of d stemming from the calculations

here.

2 Detection of Long Memory

2.1 Difficulty of Detection

There is ample empirical evidence that detecting long memory and distinguishing between
different values of d with commonly available sample sizes are very difficult. See Beran(1992)

and the discussions. Consider the problem of testing
Hy:d=d, V8 Hi :d=4d, (2.1)

where 0 < dy < d; < -;—



The use of Bayes factors for testing is common in the Bayesian literature; see Berger(1986,
1996), Kass and Raftery(1995) and Kass and Wasserman(1995). For this case, the Bayes
factor is just the likelihood ratio statistic. A large Bayes factor provides evidence in favor of
Hy. The Jeffreys scale is often used to interpret the Bayes factor B,, (see Jeffreys (1961), Kass
and Raftery (1995)):

B, Strength of Evidence
1-3 not worth more than a bare mention
3-20 positive

20-150 strong

> 150 very strong

We assume y = EX; = 0,02 = 1; then

folX) | B maerosrx
e — 3
f1(£n) |§30|1/26
where f; is the density of X, under H;, ¢ = 0,1, 3(d) = (Vk,1)ki=1,..1n, Vki = Y(k—1) as defined
in (1.2), and %; = X(d:), ¢ =0, 1.

B, (2.2)

2.1.1 Martingale Bounds

Proposition 1. B, is a submartingale under Hj.

Proof: %ﬂ% is a martingale under Hy (see Billingsley (1995)), and the reciprocal function

is a convex function on R*. So B,, = %ﬂ% is a submartingale under H.

Corollary 1. Let a > 0. Then
< (ZT%] |27 - I

PHO (Bn > a)

a

Proof: By the maximal inequality (see Karlin and Taylor(1975), pp280)
1
PHO (maxlSkSan > a) < ZI,—EHO (Bn)
1
= Py,(Bn>a)< EEHO(BTL) (2.3)

By direct calculation,

Ey,(B,) = (|1Z7180] |21 — 27 %) 71/2 2.4
1

Substituting (2.4) into (2.3), the corollary follows.
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Let us see an application. According to the Jeffreys scale, a strong indication of the null
hypothesis will need a Bayes factor of 20 to 150. From the corollary, if n = 100, dy = 0
(independent data), and d; = 0.1, then

0.175365
0.070146
0.035073
0.023382

P(B, > 20)
P(B, > 50)
P(B, > 100)
P(B, > 150)

IN IN A

IN

In most applications, one is rather pleased to have 100 observations; the theoretical bounds
above show the difficulty of detecting long range dependence with such sample sizes. Table 1
further illustrates the topic by listing £(B,) under Hp.

Table 1. E(B,)
n

do | dy 20 50 100 200

0 |0.01 |1.00277 | 1.00747 | 1.01541 | 1.03153

0 |0.10 |1.27459 | 1.86453 | 3.5073 | 12.384
0.10 | 0.30 | 2.79031 | 11.3125 | 112.645 | 10857.7
0.2510.30 | 1.10394 | 1.23691 | 1.483 | 2.11677
0.40 | 0.49 | 3.12733 | 4.48716 | 7.8114 | 22.8132
0.40 | 0.499 | 10.1968 | 15.6311 | 30.19 | 108.011
0.49 | 0.499 | 2.34005 | 2.36652 | 2.395 | 2.43893

2.1.2 Asymptotic Distribution of B,

Next, we will discuss the asymptotic distribution of B,; note that this is also of interest in

the classical sense, as B, is also the likelihood ratio statistic. Now,

log(By) =

where

=X, (5 -

1 1
— 5 log|S7" So| + S X, (57

ot

)X

1 _ 1
"5109[21120[“' §Q,

T

- 20_1)2(—71




It is easily seen that () can be written as
Q= X hix} (2.7)

where {)\;} are the eigenvalues of ¥7'X — I and, {X?} are iid central chisquares with 1 degree

of freedom.
And so,

EQ = X\ (2.8)
Var@Q = 2%%_ )2 (2.9)

The exact density of () is an infinite series of Whittaker’s functions (Provost (1988)). Any
calculation or computing with it is impossible. The following theorem tells us the asymptotic

distribution of ) and hence of log(B,).

Theorem 1. Under H,,

Q-EQ _ Q- S\
VVarQ oy

To prove this theorem, we need the following preparatory lemmas.

£, N(0,1) (2.10)

Lemma 1. || <1, for all i, 1=1,2,...,n.
Proof: Let
g(A) = 2h(A, d1) — R(A, do), (2.11)

where h(},d) is the spectral density of the process itself; see (1.1).
We claim that g(}) is a spectral density. Here is a short proof,

(i)

_ 1 N o A\ _2d,
g(A) = 27r[2(25m2) (23m§) ]
1 A

A
— 2 Yy —2d1 _ e 2(d1—d0)
_27r( sz) [2 (2sm2) ]

> 0 (because 0 < 2(dy —dp) <1)

Obviously,

(ii) g(A) = g(=2),
(iii) S g(A)dA < oo.



So g(X) is a spectral density (see ppl122, Brockwell and Davis (1991)).

Hence,

9% — %o = (( / ME=D g (\)dA) kit 2.m

-7

is a covariance matrix and is positive definite.

Consequently,

2y’ 1y — y'Yoy >0 Vy#0,

= 2’z — 2’57?88z > 0
,2—1/2202—1/2_
z'z

Now let ¢; be the eigenvalues of £7'%o. From (2.12),

<2 V z#0. (2.12)

0<¢& <2, for all 1, v=1,...,n,

= N L1, for dll i, i=1,...,n.

Lemma 2.

1 1o
(1) Jim tr(S e —I) = o /_ [(2sin3

n—oo n,
1

2 lim ltr YN —1)?= — " 23ini 2(d1—do) _ 1]24),
! x 2

n—co 7, 27 J—

)2(d1—d0) - 1]d/\’

This lemma can be derived from Theorem 5.1 in Dahlhaus(1989). From this lemma, one

has that X% A; ~ n and X7, )\? ~ n.

Proof of Theorem 1: From the representation (2.7), the moment generating function of

\/% is (for t € (—3,3))

M(t 22 *2 1— —=2
®= HJ T

tE" oy 1 201

— )12 (2.13)

= logM(t) log(l — ——=) (2.14)
\/22?_ /\2 /257 A?
By a Taylor expansion,
log(1 — ——22__
27 A2
2t 2);t)?

oxn A2 2(281 M)



where

o (2)\it)k
1 < S s L2
|Rz| - k:3l k(QZ?‘:l/\?)kﬂ'
k
< ¥R 124 (Lemma 1)

= (28, MM
|2t/ (257, A2)*/2
1 —[2¢]/ (X AV

( Sum of a geometric progression )

Hence,

|E?=1Ri| < z]zT'L=1|RiI>
n|2t[*/ (287, A2)%/
1 —|2t| /(287 A?)Y/2

— 0, as n— oo (Lemma 2).

IA

From (2.14), therefore,

logh(t) = ——mmthi gy | 2N _(Ad)
VERor 2T \fmr oz 202BLA)
2 1
2 2 i £
t2
— 5, as n — oo.

The theorem follows.

We still have a bit of work to do for the asymptotic distribution of logB,.

Corollary 2. Under H,,
log(Bu) =m 2, nig 1)
v ?

where
n [T A A
— Z Yy 2(d0—d1) Yoy 2(d1—d0) _
m yp /_r{ og[(2sm2) |+ (23m2) 1}dA,
v = 47; /_tr[(zsmg)wl_d()) — 1

Proof: From (2.5),
1, %] 1

10

+ R;]

(2.16)

(2.17)

(2.18)

(2.19)



By (5.38) in Beran(1994)

1 T
lim L10g 2] = [ log[(25in—g)2(d°_d1)]d)\. (2.20)
T J—r

n—0o0 7 ]20|
Then, by (2.20), Theorem 1 and Lemma 2, the corollary follows.

One can therefore use the lognormal(m,v) density

1 (lo, :—m!2
fB.(z) = e EE (2.21)
2Tvx

to approximate tail probabilities for the Bayes factor B,,. As discussed before, we believe that
using the exact density of B,, would not even be possible. Table 2 lists these approximations for
P(B, > a) using (2.21). For instance, if n = 100, dp = 0, and d; = 0.1, P(B, > 20) ~ 0.018,

very small.

Table 2. Approximations to P(B, > a)

do - 0, dl = 01
n

a 20 50 100 200 650

3 0.0245915 0.168308 0.364775 0.589975 | 0.903923
6 0.000341438 0.031099 0.162323 0.411175 | 0.853945
10 | 4.29842x10°° 0.0056852 0.0726901 0.288547 | 0.807502
20 | 2.0623x107° 0.000296154 0.0180733 0.156334 | 0.731713
150 | 5.39602x1072* | 6.68171x10~% | 0.0000385165 | 0.0100744 | 0.455874

do == 04, dl = 04:9

n
a 20 30 100 200 650
3 0.0133153 0.125563 0.304465 0.524858 | 0.862851
6 0.0000769 0.0162069 0.112603 0.332335 | 0.793375
10 3.899x 1077 0.00205183 0.041854 0.21218 | 0.730886
20 | 3.80093x10~* | 0.0000562934 0.00753345 0.097711 | 0.633246
150 | 9.16093x1072° | 7.68586x 1072 | 3.92776x107° | 0.00310943 | 0.323105

From all the results in this section, we get the common conclusion that detection (and
discrimination) of long range dependence with sample sizes we commonly have is very very

difficult. Especially difficult is distinguishing between two large values of d.
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3 How Long Memory Affects Inference Itself

In this section, we give some basic results, examples and illustrative computation to explain
how presence of long range dependence fundamentally affects inference on the mean u. First
we give a fairly surprising result, true for every sample size n. The result says that the presence

of long range dependence makes estimation of u fundamentally harder.

3.1 Effect on Variance of the BLUE and Bayes Risk

Theorem 2. Let r(r) = r(m,n,d) denote Bayes risk under a prior = for estimation of u
under squared error loss. Then, for every n, r(x) is increasing in the long memory parameter
d. '

The proof requires use of the following two lemmas. Of these, the first lemma should be

of interest in nonBayesian inference as well.

Lemma 3. For any fixed n, The variance of the BLUFE of u

1 Beta(n,1 — 2d)
_ _ 1
Vin,d) 1'YS-'1  Beta(l—d,1 —d) (3-1)

is an increasing function of d.

Proof: The fundamental formula (3.1) is available in many articles, see, e.g. Samarov &
Taqqu(1988). We prove by induction that, V'(n, d), the derivative of V(n,d) with respect to
d, is always positive.

First we prove V'(1,d) > 0.

Note,
V(1,d) _ggtf_?g
= /_7r %(232’7;%)_2‘1(1)\
= /0 %(28?:77,5)_2dd/\
Hence,
V(1,d) = —2 /0 i %Zog(%in%) (23in%)—2dd)\ (3.2)

12



and

V'(1,d) = 4/07r %_—(log(%in%))2 (232’n%)‘2dd/\. (3.3)

From (3.3), V”(1,d) > 0; on the other hand, from (3.2),

2 T
V'(1,0) = —;/0 Zog(2sz'n:2\-)d)\ =0.

(By ezxact integration on Mathematica).

Thus, V'(1,d) > 0 for all 0 < d < 2.
Now we show that V'(n +1,d) > 0 if V'(n,d) > 0. That will complete the proof.
By straightforward integration by parts,

n

V(n + 17d) = 1 — 2d(V(n,d) - V(TL + ]-ad))
= (1-2d+n)V(n+1,d) =nV(n,d). (3.4)

By taking derivative with respect to d on both sides of (3.4), one gets

—2V(n+1,d)+ (1 —=2d+n)V'(n+ 1,d) = nV'(n,d)

! _ ]' (4

= Vin+1,d)= T o _2d+n[2V(n+ 1,d) +nV'(n,d)]
>0 (by the induction hypothesis).

This proves Lemma, 3.

Now we state a second lemma which is of some basic interest in Bayesian statistics. The
proof of this lemma is available in DasGupta(1997) and will not be duplicated here. In
addition, the only proof we are aware of uses a completely different set of tools and will be

out of place in this article.

Lemma 4. Consider the canonical problem of Y ~ N(u,t) and estimation of y under
squared error loss. Let 6(Y) = §(Y,t) denote the Bayes estimate of u under a fixed prior =
and r(7) the corresponding Bayes risk. Then

d

Zr(m) = En(8(V)V, (33)

where 6’ denotes the derivative of § with respect to Y and E,, denotes marginal expectation.

In particular, the Bayes risk r(r) is an increasing function of .

13



Proof: See DasGupta(1997).
Lemma 3 and Lemma 4 lead to Theorem 2.

Proof of Theorem 2: The sufficient statistic ¥ = 1,2 11 has the N(p,t) distribution
with ¢ = 1,21—_11 By lemma 4, r(7,n,d) increases with ¢ and by lemma 3, ¢ increases with d,

for each fixed n. So the theorem follows.

3.2 Accuracy: The Fantastic Effect on Sample Size

Since the result just proved says that presence of long memory causes an increase in Bayes
risk and so a loss of accuracy compared to independent data, if the same sample size is used,
it is statistically interesting to ask how much larger the sample size needs to be to achieve the
same Bayes risk as that under a given no when the observations are independent. We call this
the Equivalent Sample Size (not to be confused with an unrelated concept by the same
name in Bayesian statistics).

Theorem 3. Let ng > 1 be fixed. For any given d > 0, let n(x, d) denote the sample size
under which the Bayes risk r(7) equals the Bayes risk obtainable with ny observations under
independence. Then, n(w,d) depends only on d, but not on the prior 7, and as d — %, it is of
the exact order

n(m,d) ~ de™| |72, (3.6)

n
7(1 — 2d)
where (= .577215665) is the Euler constant.

Remark 1. n(r,d) also has the following interpretation: it is the sample size necessary
for the variance of the BLUE of p to equal the variance obtainable with ng observations under
independence.

Remark 2. From the expression in (3.6), it is clear how astounding the sample size

requirement is. As d — 3, n(w,d) grows faster than any exponential rate; we may call this

'2'7
Super Exponential Growth.
Proof: Step 1. The sufficient statistic Y = YZ-X has the N(p,t) distribution with

1’2 11
t= 1,2 7 For ng independent observations, ¢ becomes . It will follow from Lemma 4 that
the Bayes risks are equal iff
%71 = ng (3.7)

This already means n(x,d) only depends on d.

14



Step 2. For convenience, let 1 — 2d = z,n = n(r,d). Obviously, n — co as z — 0(i.e. as

d—)%)

With this notation, equation (3.7) becomes

i.e.

20 2
Beta(n, z) "o

Pin+z) no

T()T(z)  Beta(=, =) (38)

(n+z n

Step 3. Use now the facts (see Lebedev (1965), ppl3):

and

where

Then (3.9) becomes

T'(n) = n"Y2e /oy

F(n + 3}) = (’n —+ w)n+z—1/26_(n+$)+62m

1 1
< - < 1
el < 50 el < 12( (3.10)

n+z)

(’I’L + x)n+:z:—1/2e—(n+:c)+52
nn—1/2¢—n+e = (:E)

Taking logarithm on both sides,

(n+z— %)log(n +z)—(n— —;—)logn — 4+ €3 — €1 = logh(z)

1
= nlog(1l + E) + zlogn + zlog(1 + %) - §log(1 + %) —z 4+ € — €1 = logh(z) (3.11)
n

Step 4. From (3.11),

logh(z)

=

z x z T 1=z z
n[; + 0(5)] + zlogn + JC[E + 0(5)] - 5[;{ + O(ﬁ)] —Tte—q
zlogn + o(z) + €3 — €
I -
logn = _____ogZ(;v) —o(1) + a-c
n = [h(z)]ze M ", (3.12)

15



Step 5. We now claim

—0, as z—0. (3.13)
By (3.10)

~12n  12(n+2z)’

€1 — €9 1 1
< .
= | z s 12nz + 12(n 4+ 2)z
If we can prove
hI]%(’I’L:ZJ) = 00, (3.14)

then (3.13) follows. So we will now prove (3.14).
Step 6. By (3.8)

(n—1+z)(n—2+2) - (1+2)2l(z) o |
(n—1)(mn-2)---2-1-T(z) = Beta(l‘;‘—z,%)' (3:15)

On a bit of algebra, (3.15) will give

ng - ? 9
— Nz = —
(n—1)e Beta(1$2, 142) E i1tz
n—1
) 1—1z 2
Beta (2, 142) 1_1( z—l-l—x)
no i 1—2 2
> 14 X5 - —
- Beta(l—;‘i,lT”)( 1z—l-l—az:)
1
> e[+ (1 - 2) S5t s] — o

and so nz — oo as ¢ — 0.
Step 7. Therefore,vby combining (3.12) and (3.13), we have n ~ [h(z)]=.
Step 8. In the final step, we reduce [h(z)]= to the form (3.6) stated in the theorem.
By using the definition (3.9) of (z),

no z I'*(z)

g

(3.16)

16



By the Duplication formula for gamma functions (see Lebedev(1965), pp4),

I‘(l A ['(z)/m 217

APL 69
LT Tt

FG+3)  vr

Hence, from (3.16),

no T 221:—2

[h(2))* = [P——T*(

8~

)]

N8

In (3.17), write I'(Z) = 2'(1 + £). This will mean:

ng & 2272 4
2

R = | T(1+

= 4

T

HINCEE)E

T 2

No

N8

8-

)]

(3.17)

(3.18)

On Using a Taylor expansion for I'(1 4 £) arround z = 0 and the fact that I'(1) equals —y

(the negative of the Euler constant), (3.18) will finally yield

1 No .1 Y \2
hE@)F ~ 421 - 1)

as asserted in the statement of the theorem.

The following table gives some numerical values; these are exact, not coming from Theorem

3. The numbers are amazing; to get the same accuracy as one would get with 50 observations

under independence, one will need 7.75 billion observations if d = 0.4!!

Table 3. Equivalent Sample Size

n

d 10 30 30 100
10 17 66 125 297
1.25 110 986 2736 10943
40 | 2.48 x 10° | 6.03 x 10% | 7.75 x 10% | 2.48 x 10!

3.3 Severe Bias: An Example

Although a large number of our subsequent results will show that asymptotically, for every

fixed d, simple estimates like X perform well, the case of practical sample sizes is important.
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The following little table is illustrative of how a short observed series can give a totally

misleading Bayes estimate for u.

Example 1. Consider estimation of y by using the popular Double Exponential prior with
density %e"”'. The following table gives the correct Bayes estimate under d = 0, 0.25, and
0.49, for n = 30. At such sample sizes, detection of long memory is extremely difficult, and
yet the table below shows how seriously the estimate is affected if one unknowingly assumes

independence (d = 0). In the following, y denotes the BLUE.

Table 4. Posterior Mean with Double Exponential Prior

y
n|{ d |0]05 1015|2025 30
0 |0]047]0.97|1.47|1.97 247|297
30 1025|0037 (0.82)1.31 |1.81 231|281
0.49 | 0|0.05]0.10 | 0.15 | 0.21 | 0.26 | 0.31

3.4 Effect On Bayes Factors

In this section we give a result that says that presence of long range dependence will cause
an order of magnitude deflation in the Bayes factor in favor of a point null hypothesis on
the stationary mean u. Thus , if the long memory is undetected, a Bayesian will see a much
smaller Bayes factor in favor of the null than he/she is used to and can easily be deceived into
an erroneous conclusion. Theorem 4 explains it; the rate of growth of the Bayes factor slows
down with d. _

The following table illustrates the point. In this table, the expected Bayes factor under
the null:p = 0, is given for selected n and d; the prior on the alternative is N(0,1).

Table 5. Average Bayes Factor In Favor of Null
n

d 30 | 100 | 300 | 1000
0 [3.97 712 12.28 | 22.38
10| 2.96 | 4.66 | 7.16 | 11.53
2511841235 | 3.0l | 3.98
40 (116 | 1.22 | 1.28 | 1.36

Theorem 4. For the ARIMA(0, d, 0) process, let Hy: u =0 and Hy : p # 0. Suppose,

conditionally on H; being true, y has a prior density =(x), which can be defined continuously

18



at 4 = 0 and that this value 7(0) > 0. Let B; be the Bayes factor in favor of Hy. Then, as

n — 00,

under Hy for every d in [0,3); in particular, the norming is different for d = 0 and d > 0, In

the above,
I'%(1—d)
I'(1-2d)I'(2 — 2d)

Proof: The argument is standard and so we only briefly describe it. By is defined as

c(d) =

e _1’2;11y2
B, = YLE Le (3.19)
2rm(y)

where y denotes the BLUE and m(y) denotes the marginal density. By virtue of the continuity
and strict positivity of the prior density at 0, m(y) £, 7(0) under Hy. The stated result will

therefore follow from the following:

/llz—lle_!lzz_lly2
B, — Vir m(0)
7(0) m(y)

s,

1 1
= logBy + logn(0) = 5109(1’2"11_) — EZOQ(ZW) -yt 0p(1)

1 , 1
= logBy+ logm(0) + 510g(27r) — glogc(d) - %lognl“zd

'y-11
S ), (3.20)

(because IS ~ ¢(d)n'~2%)

from which the result follows on a little algebra.

4 Point Estimation of p

4.1 A Positive Result: Asymptotic Unanimity

The first result is a prelude to the asymptotic efficiency results of the subsequent sections and
shows that there is asymptotic unanimity in a fairly strong sense among the four estimates

listed in (1.3). We have the following result.
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Theorem 5. Let fi;, 1 < ¢ <4 be the four estimates presented in (1.3). Suppose the
prior density 7(u) is symmetric and unimodal and |%f)l| < alu| + b for some a, b > 0, and
[ lplw(p)dp < co. Then fi; — ji; converges in L; to 0 under the marginal as well as under each
fixed p, for every pair 7, j. In particular, ji; — fi; converges to 0 in probability.

Remark. Actually a stronger result can be proved giving the rate of convergence as
well. Also note that the conjugate normal and the double exponential prior each satisfies the
conditions on 7(u).

Proof: We will only show E, |1 — i3] — 0 and E,|fis — 14| — 0. The others are similar.

Since fiy — fiz|u ~ N(0, lnle o= 11) clearly E,|f1 — i3] = \/— 1 1,21—_11

— 0, as 1'Y1 = O(n!*?) and 'S~ = O(nl~2),

Next,
. —\/ﬁ _nl I,L;'E 2 —\/ﬁ _n(p—7%F 2
= [ e () / VI~ ()
fiz /ume w)du/ N m(p)dp
_n(p—7 ;
n e ()
(integration by parts; see Brown(1986)).
Similarly,
e ()
PR B K s (0L (4.2)
— — Iyn—1 —a)2 Y .
IS p o= () dy
where as before y denotes the BLUE.
Hence,
nl )2 Isv=lqr,, . \2
NPT O st (0SS W K-t ().
lu2_l'l’4 = m_y - n(u—= - — In—1l3(pu—
M n(uydy VI o gy
= jh—fis+ R+ Ry (say) (4.3)

We have already seen that E, |1 — fis] — 0. If we can prove the expectations of R;, R,
go to 0, the proof will be complete.

Now,

Bl < = / T )l [ T )

~ [ e a4 by (u)dpf / e-ﬂ“T‘“w(mdu

20
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b aE[ur(p)lp ~ N, 1)
n n Elr(u)lu~ Nz,
b

_+aﬂMm~N@—MEwmm~N@¢ﬂ
n Elr(u)lp ~ N(z, 7)]

( by assumption w(u) is decreasing and |u| is

increasing in |p|, and so their covartiance is < 0)

b a 1
= —4+-F ~ N(z, -
Yt Bl ~ Nz, )
b 2
< 2iE+yD)
n n ™

- Loram [ (14)

From (4.4), it quickly follows that E,|R;| — 0 by simply using the fact 1'S1 = O(n!*24).
Similarly, E,|R,| — 0, and thus E,|f; — fi4] — 0. Convergence in probability follows as a

consequence.

4.2 Brown Identity

In this section, the asymptotic efficiency of the estimates fi;, i = 1,2,3 with respect to the
exact Bayes estimate will be investigated. Naturally, the criterion for efficiency is Bayes risk.
In our view, the most important result is that the asymptotic efficiency of ji,, the estimate that
completely ignores the dependence structure, is close to 99% for every d. This is not apriori
evident. The main technical tool is the Brown Identity for Bayes risk, which we describe next.

Suppose X is distributed according to a location parameter density f(z|p) = f(z ,u) and
p has prior density 7(x) > 0. Let m(z) be the marginal density of X:

= / flz — p)dp = / ft)r(z —t)d (4.5)
For an absolutely continuous function g, we define

° (')
I(g =/ YAL)) 4z, 4.6
0=/ (46)
the familiar Fisher Information function. See Bickel(1981) and Huber(1981).
Lemma 5. If w(u) is absolutely continuous and m(z) can be differentiated under the
integral sign, then
I(m) < I(n).
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Suppose now X is a normal random variable, with mean p and variance o%. i is the
posterior mean of u, r(7) = E™®EHe(j — 1)? is the Bayes risk. Then I(m) and r(x) have

the following interesting relationship.

Theorem 6. If 7(y) is as in Lemma 5, then
r(r) = o® — o*I(m).

This is implicit in Brown(1971); we call it the Brown Identity.
So one immediately gets the Bayes risk lower bound:

Corollary 3. Under the setup of Theorem 6,
r(r) > o® — o*I(r).
This will be used below.

4.3 Asymptotic Efficiency

For the stationary Gaussian ARIMA(0,d,0) process, X:,t € Z, as defined in section 1, we have
the following theorem. Following Theorem 7 and its Corollary, we will have a discussion of
the implications of these results. e(z,7) below means asymptotic efficiency of f; with respect
to ;. Also, 7(d) will denote the function

(14241 + (2 — 2d)
7(d) = T d) .

(4.7)

Theorem 7. If the conditions of Theorem 6 are satisfied, then in general
(a) e(3,4) =1,
(b) If, furthermore, 7(p) is symmetric and unimodal and |";’(%l| < a|p|+bfor somea, 6> 0
and [ |pu|*7(p)dp < oo, then
e(1,2) = 1.
Corollary 4.
(a) Without any condition on the prior,

e(1,3) = 7(d) (4.8)
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(b) If x(u) is as in Lemma 5,
e(1,4) = 7(d) (4.9)

(¢) If furthermore the conditions in part (b) of Theorem 6 hold, then

e(2,4) = e(2,3) = 7(d) (4.10)
Proof of Corollary 4:
& 31
r(in) = Var(X) = 1+
T(ﬂ3) = V(IT(BLUE) = Fﬁ

Now, by using Theorem 8.1 of Beran (1994) (see also Adenstedt 1974, Samarov and Taqqu
1988)
e(1,3) = 7(d)

Part (b) and (c) follow from Theorem 7.

Proof of Theorem 7:
(a) SinceY = [I'Y7"1)7'1'S~"X is a sufficient statistic for 4, distributed as N (u, [I'S~11]1)
by Corollary 3, we have

b

Hence,

. () . I(r)
> = > —
12¢(3,4) nh—{g) r(fs) — nh—>I£lo(1 '>-11

)= 1.

(b) The proof closely follows the steps of Theorem 5 and so we will limit the details.
First,

,0'2 =z + gn(f)a

where .
o e T (W) du

gn(x) = S —— .
n e e ()

(4.11)



Hence,

EE[is — p]> = EE[X + ga(X) — p?
= EE[X -y’ + EEg;(X) + 2EE(X — p)ga(X)

11 e 1'Y1 -
< 5 4 Engi(X) + 2\ =7 Bngi(X), (4.12)
where F,,, as before, denotes marginal expectation.
Since r(j) = %, if we can show
Eng*(X
lim EngnX) _, (4.13)

n2
(4.12) will imply e(1,2) < 1. That e(1,2) > 1 is easy to see. Together, therefore, (4.13) will

complete the proof of part (b) of Theorem 7, which we now prove.

@) < Lorame2)

Using (4.4), one gets

— 30 3a? _, 6
2 < T+ B X+ —
= Em'.gn(X)l —_ Tl2 + n2 E | | + 7rn3
362 3a? 131 6
" —{E(p) + ==} + —. .
— ’I'l2 + TL2 { (Iu' ) + TL2 }+ 7TTL3 (4 14)

Hence,

E.g2(X) < 3b? +3a2E,r,u2 §a_2+ 6
1x1 - 1M 1>1 n?  wnl’Y1

— 0 as n— oo,

(4.15)

completing the proof.

Discussion. Theorem 7 says that asymptotically, the sample mean X, the independence
case estimate fiy, and the BLUE [i3, are all safe proxies to the exact Bayes estimate fi4 for
most priors. Figure 1 describes the situation in finite samples for the double exponential
prior 21—76_|I;'L_|, which has variance 272. Note the interesting Gibbs Phenomenon: at any

given n, there is a drop in efficiency at d = %; but for any given d, this is cured as n — oo.
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Figure 1: e,(fi1, l4) as a function of d for 2—1;6‘7" prior

9 Interval Estimation of u

5.1 Introduction

In this section, we will show that asymptotically the easily computed interval BLUFE +
Zo/28.d.(BLUE) has the nominal 1 — & posterior probability for a general prior on . This
is certainly a positive fact, as computation of the exact HPD set, which may not be even an
interval, is by all means a formidable task. We will also show another rather interesting phe-
nomenon: the interval X + z,/,5.d.(X) behaves randomly, i.e., its posterior probability
P converges in law to a random variable p. We will explicity give the density of p and we will

see that p acts essentially like a point mass at the nominal level 1 — ¢, a reassuring property.

5.2 Three Simple Intervals

If the prior is general rather than normal, the HPD set can be very complex. We hope to

find some simple intervals instead of the exact HPD set with asymptotically nice properties.

25



Consider the following three intervals
(a) I : Y £ [I'S711)"Y22,/,, where Y denotes the BLUE;
(b) I: X + n‘l/zza/z;
(c) L: X + LEE,

Remark 1. Note that all three intervals are of the form 7" + b,2,/, for appropriate
choices of T and b,; for Iy, T' =Y, b, = [I'S™'1~/2; for I, T' = X, b, = n~'/2; and for
I, T' =X, b, = LE2

Remark 2. Bccause ﬁf}d ~ T d)l;((11;2¢i(§)1“(1— 7 We can equivalently use
- I'(1—2d) 1 L
I X+ 2?2z,
3 Graararara=g) ™ %

instead of Is.

5.3 Asymptotic Posterior Probability

Let po be a fixed given value of y. We will study the behavior of these three intervals under

P,,. First we state a general theorem which we then apply to the intervals Iy, I, and Is.

Theorem 8. Consider the stationary ARIMA(0,d,0) process as in section 1. Suppose o
is an interior point of ©, and 7 (u) is continuous and positive at po. {b,} is a sequence such
that b, — 0 as n — oco. T" is an estimator of s such that Y — 7" — 0 a.s. (P,,). Then the
following hold:

(1) If lim,—oo b,/I'2"11 = ¢ > 0, then

Py
P € [Y — bnzay2, Y + bnzapo) | X) = O(cza)2) — B(—c2as2),

(2) If limy oo byv/1'%711 = 0, then

P(p € [T' = bpza/n, T' + bozasal|X) 225 0,

(3) If imp oo b, /'YX 11 = ¢ > 0, and VI'S11(T' - Y) £, w, a random variable, then

P(p € [T = bpzgsa, T + bpzayo) | X) £, ®(w + czaj2) — B(w — cza/2).
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In the above, ® denotes the N(0,1) CDF.
Remark. Part(1) is a special case of a theorem in Heyde & Johnstone(1979).

Corollary 5.
(a) P(p € L|X) 2% 1—q,
(b) P(u € LIX) %0,

(c) P(u € I1]X) = o(/C?—1 Z4Czap3)—®(VC? -1 Z—Czyy2), where C* = C*(d) =

%, 7(d) was defined in (4.7). Z is a standard normal variable.

Proof of Corollary 5:

(a) Here b, = —=—==, and so ¢ = 1; by part(1) of Theorem 8,

VAE-11
P(p € LX) 29 0(2a/0) — B(—2a2) = 1 — .
(b) Here b, = n"/2 and so P(u € I,|X) B9, 0 from part(2) of Theorem 8.

(c) Here b, = -[l'—zfll, and so ¢ = C = %; in addition, 7" = X, IS (T - Y) £,

N(0,C? —1); so by part(3) of Theorem 8,
P(p e LX) 55 8(VC?P =1 Z 4 Czap) — O(C?—1 Z — Caup).
Part (c) of Corollary 5 says that the posterior probability of I3 goes to a random variable
p=0(WC?—1 Z+Czy)— (C2=1 Z—Czyp). (5.1)

Straightforward calculations using Jacobians give the following density function for p:

9 e~ (07 (0))*/2(C?-1) '
0 = o er 1) 66 () — Cog) — 94 ) + Crd) 52
and
F() = P(r = ) = o L) a0 (53)
where |
g(z) = ®(x 4 Cza/2) — ®(z — Czay2). (5.4)



Example 2. Consider the nominal level of 95%, i.e., @ = .05. The following table is quite

reassuring. It says that although the interval X + 1.96s.d.(X) behaves randomly in theory,
its posterior probability is likely to be very good asymptotically.

Table 6. Values of F(3)
d

B | 025 0.4

0.90 1 1

0.91 | 0.999996 1

1

1

9

0.92 | 0.999995
0.93 | 0.999252
0.94 | 0.987336 1

0.95 | 0.683821 | 0.687326

Proof of Theorem 8: The posterior density of y is

1'Y-11 _2v's~yu-y)?
T(p|X) = 7(ply) = P 2 w(p)/m(y),

U511 _ro—txu-yy?
m(y)=/(9 5 ¢ > w(p)dp.

Therefore the posterior probability of the general interval T” + b,z4/; is

where

T'tbnzare (1511 vz—la(u-p)?
/ ———Ze 2 w(p)/m(y). (5-5)

T'—bnza/s 2

P
By standard arguments, m(y) — 7 (o). So we will only sketch how to handle the numerator

T'tbnzarz (175711 _2'z—lap—y)?
~e 2

T'~bnzq )2 27

m(p)dp. (5.6)

S =
First construct a neighborhood N5 = (o — 8, pio + 6) such that given € > 0,
(1 = e)m(po) < m(p) < (1+ €)m(uo),
for 4 € Ns. Next,sinceY —T', Y — o — 0 a.s., and b, — 0, one can say that for all large
n, with probability 1,
(T" = brzay2, T' + bnzoay2) C Ns. (5.7)
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(5.6) and (5.7) imply

1 1
T +bnzy /0 T n—11 _1')3_11(#-—14)2 T +bnzg /2 n—11 _112—11(”_y)2
(1 — )m(ro) =——e 2 dp < 81 < (1 + €)m(po) e 2 dps, (58)
- 2w 27

I—bnzgyg T —brzgyo

We specialize to only case (3) of our theorem. This is the case when b,1/1'Y~11 — ¢ and
VI'EY(T' - Y) — w, a random variable.

Now,

T'Hbrzare (1’5711 ve—au-v)?
/ e 2 du
T'—bnza/Q 27T

= OIS T — y + bpzass)] — ®[VYEL(T' — y — bnzyy2)]

£ (w+ cZaj2) — ®(w — czas2), by Slutsky's theorem.
Thus, as € > 0 is arbitrary,
Sy 55 [@(w + c2zo/2) — B(w — czas2)]7 (o),

and combining this with (5.5), case (3) of the theorem follows. The other two cases are

omitted.

Table 7(next page) gives simulated posterior probability of the interval centered at the
BLUE for n = 20 and n = 50. The numbers are very encouraging.

6 Estimation of ¢2

6.1 Introduction

In this section, the important variance estimation problem will be discussed. Unlike the case
of point estimation of u, the everyday estimate s? can no longer be safely used; however, the
UMVUE can be. As before, the criterion is Bayes risk. The principal tool is a Bayes risk lower
bound given in Brown and Gajek(1990); we will call it the Brown-Gajek lower bound.

First we give the exact setup.
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Table 7. Simulated Posterior Probability of I;

under %e"“' prior (nominal o = .05)

n d I Prob
(-0.17,0.73) | 0.9594
0.01 | (0.17,1.07) | 0.9448

(-0.85,0.05) | 0.9537
(-0.79,1.11) | 0.9762

20 | 0.25 | (-0.39,1.52) |0.9673
(-0.83,1.07) | 0.9765
(-5.49,9.81) | 0.9998

0.49 | (-11.42,3.88) | 0.9984
(-7.72,7.59) | 0.9999
(-0.21,0.37) | 0.9594

0.01 | (-0.66,-0.08) | 0.9483
(-0.26,0.32) | 0.9601
(-0.92,0.59) | 0.9718

50 | 0.25 | (-0.80,0.71) |0.9727
(-1.08,0.43) | 0.9688

(-10.53,4.64) | 0.9993
0.49 | (-11.37,3.80) | 0.9983
(-5.44,9.73) | 0.9996

6.2 Exact Setup

For the stationary ARIMA(0,d,0) process defined in section 1, one has X ~ N(ul,o?X), and
suppose both u and ¢? are unknown. We define
Ty = s 'e'x (6.1)
T, = —-1—1(_)_(_'2—15 — VY ™1TE) (6.2)
n _—
(T1,T) is a sufficient statistic for (u,0?). Furthermore, Ty and T3 are respectively the
UMVUE of y and o?. If we assume d = 0, T; and T3 become X and s? = =37 (X, — X)2

For notational convenience, let § = ¢%. In this section, we use the natural invariant loss
1

L(a,6) = ﬁ(a —0)? (6.3)
as a loss function for estimation of . Under this loss, the Bayes estimate for § = o2 equals
5 _ EGIX)
=L, 6.4
E(X) (04

First let us see an illustrative example.
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6.3 An Anticipatory Example

Suppose the prior distribution for ¢ and @ are the natural conjugate priors

:u|0 ~ N(an)
§ ~ Inverse Gamma(e,f) (6.5)

(see Berger(1986)). Then the Bayes estimate of 6 is

»o 1 X'BTTX (UEX)? n
b=[-+————F—— —+1). .
On calculation, B drops out and the Bayes risk is
2
r(m) = Gy r——t (6.7)

To get the asymptotic efficiency of T, and s? relative to the correct Bayes estimate in (6.6),

we use the following expressions obtained on simple calculations (see Seber(1977)).

r(s?) = trl(SHY] + [~ L ur(RH) ~ 1 (6.8)

2
(n—1)

where H = [ — %, J =11', I is the identity matrix, and

2
T(Tz) = m— 1 (69)
However, ( )
I'(1-2d 1
—p 2y 1
tr(XH) nF2(1 —J nl Y1, (6.10)
and hence ( )
1 , ) I'(1 —2d 9
Also,
2 2 loaogy 1 ' 1 '
(EH) = ¥ — ~E 11" — Ell by —I— (211)
= tr[(ZH)?] = ZZ’)/(Z, ] 1’221 + - (1'21) (6.12)
and hence
1 2
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(6.8),(6.11) and (6.13) imply that even when n — oo, the Bayes risk of s? will not converge

to 0; indeed,
I'(1 —2d)

7”(32) - [1-\2(1 _ d) - 1]2 (614)
By (6.7), (6.9) and (6.14), we get
6(T2,é) = 1,
e(s2,0) = 0

Thus the UMVUE is asymptotically efficient, but s? is very bad. This is extended to

more general priors by use of the Brown-Gajek lower bound in the following subsection.

6.4 Brown-Gajek Lower Bound

Theorem 9. Suppose a density function f(z|f) satisfies the regularity conditions which are
required for the Cramer-Rao inequality. For the loss function w(8)(a — 8)?, where w(8) and

the prior density function 7 (6) are absolutely continuous, the Bayes risk satisfies

2
") 2 5o,
where
w(8)w(6)
D = [P o) 0,  (615)
and

10) = Eol(srlog(s10))]

6.5 Asymptotic Efficiency

Theorem 10. For the model in section 6.2, suppose that given 8, u has the normal prior

N(0,0), and § has a prior with an absolutely continuous prior density (6), satisfying

——2df < 0.

_ [ (07'(6))?
k= / 7(0)
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Then, under the loss function (6.3), the following hold:

e(Ty,d) = 1,
e(s%,0) = 0.

Here § denotes the correct Bayes estimate under the assumed prior.

Remark 1. It will be aesthetically pleasing and also useful to be able to remove the
assumption of a conditional normal prior on x. However, we were unable to do so.

Remark 2. The integrability condition [ %ﬁda < oo is satisfied by all gamma and

some other common priors.

Proof: The key simplification is the following:

If ]
T1|/1,,0 ~ N(/*L, 1/2—_11)7
and
#le ~ N(07 0)7
then
1
For convenience, we use the following notation:
. 0 .
fi(-|u,80) : the density of N(y, m) distribution
) n—1 20 C .
f2(.|18) : the density of Gamma( ,Tl) distribution
f5(.|18) : the density of N(0,6(1 + Wl_li)) distribution
F(,.10) = f3(.10)f(.]9) (6.17)
Then
b o— [ [0 fi(talp, 0) f2(t2]6)m (u]6)7 (0)dpdf
[ J 072 fi(talp, 0) f2(t210)m (u|0)7 (0)dpdf
_ [0 5(1119) f2(12]6)7 (9)d6
J 072 f5(410) f2(t2|0)= (0)d0 |
-1

J 072 f(t1,12]0)m(6)d0
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By a tedious but direct calculation, in which 1’711 terms cancel out,

0? n
1(0) = [aazlogf(tlatZW)] 202" (6.19)
Furthermore, in expression (6.15),
w(@) = 672,
6=27(0) 2
¢ 1(0) =2
0~ "x(0).
D = ({5 OB AL
_ A o9, _
= (0) df = n2k (6.20)
Therefore, by the lower bound of Theorem 9
(3)? .
> 7 = n__, .
S S vl i (6:21)

Now, the formulae (6.8) and (6.9) for r(s?) and r(73) are in fact generally valid and so, from
(6.21),

. r(m) 2 pn-1
1>e(13,0)=1 >l 7L =1
> e(T2,0) nggor(TZ)*nngO1+2n—k 5 ;
also, plainly,
e(s%,Ty) =0,

and hence

e(s2,0) = e(s?, Ty)e(Ty, §) = 0.

This completes the proof of the theorem.
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