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Abstract

Bayesian optimal design of a dose response trial is considered when the response
admits a linear regression relationship with the amount of dose applied. The important
aspects the results are that we allow the variance of the response to depend on the mean,
the number of patients to be used is itself part of the design, and in addition to a lower
and an upper bound on the applicable dose, there is also a constraint on the total amount
of the medication available. This last restriction is important in cases where an additional
supply is not feasible due to logistic, financial, or other factors. We also avoid making any
assumptions whatsoever about the form of the likelihood function by using the linear Bayes
estimate of the response rate. The closed form results are illustrated on some examples by
numerical computations.
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1 Introduction

Designing a dose response trial is one of the most important problems in practical
health statistics. There is certainly a huge literature on various aspects of this prob-
lem. See [1] [4] [5] [6] [7] [8] [9] [10] [11] [12]. A very common problem in designing
of clinical trials is to find optimal designs for estimating the probability of a dose re-
sponse; often, this problem is of interest for binary type responses. Another common
problem, with continuous responses, is to design for estimating the probability that
the response exceeds a specified relevant threshold value.

In this article, we consider Bayesian optimal designs for a rather novel situation.
There are some review articles for Bayesian optimal designs. See [2] [3]. We consider
optimal designs when there is a regression type model between a response and the
applied dose, and there are simultaneously three types of constraints: a lower bound
on the applicable dose, an upper bound on the applicable dose, as well as a constraint
on the total available dose that can be used. Such a situation might arise when
there is a minimum dose that has to be given for any therapeutic consequences, a
maximum dose beyond which toxic reactions can occur, and when the total supply
of the particular medication is not easily augmentable due to logistic or budgetary
reasons. In any case, this extra constraint on the total supply makes room for a
new type of optimal design problems. Another novel aspect of this article is that we
include the number of patients to be used in the clinical trial as a design variable
itself. Consequently, we are able to address questions of this type : should a large
number of patients be given a small dose of the substance, or a small number be
given a high dose of the substance. Of course, in specific contexts, one may well take
extraneous factors into serious consideration in designing the clinical trial and not be
driven entirely by the formalism of a mathematical theorem.

The model we consider is the following : n patients are given dosage z1,zs, -, 2,
to which they produce a measurable response y1,yz,- -, yn. We assume y; = 0f(z;)+
€;, where the random errors are assumed to be independent. The goal is to estimate
the regression coeflicient. Commonly, one assumes in regression type models that the
errors are homoscedastic. We, however, allow more flexibility. We let the variance
of the errors to possibly depend on the regression coefficients. More specifically, we
entertain a variance function of the form var(g;) = A[6f(z;)]; here, A, 8 and p are
regarded as unknown parameters. For many applications, this should probably allow
sufficient flexibility in modelling heteroscedastic variances.

At this stage, one can proceed along one of two routes. One is to assume a
specific likelihood function, for example a normally distributed response, and combine
it with specified priors for the parameters to compute a Bayes estimate. This avenue
leads into difficulty in the kind of model we are looking at. As soon as we want to
allow heteroscedastic variances of the type suggested above, the ensuing Bayesian
calculation becomes impossible analytically. We take an alternative route. This
alternative route has a lot to offer positively, and is open to some criticism as well.



We consider estimation of 6 by the best linear Bayes estimate with respect to a
specified prior for all the parameters 8, A\, and p. Let us pause momentarily to
discuss the pros and cons. Here is the drawback : by settling for a linear Bayes
estimate, we are settling for something less than the optimal. A linear estimate is not
in general the true Bayes solution. On the other hand, here is what we gain : a) we
can completely avoid making any distributional assumptions about the errors; so we
gain some nonparametric flavor for the estimates, as well as the final designs; b) in
certain cases the best linear estimate is already the true Bayes estimate; c) a linear
estimate makes common sense for the model we have; d) by using a linear estimate,
we are able to derive the optimal design and the optimal sample size in completely
closed form and save on major numerical optimization; e) since the designs are derived
analytically, we are able to show unifying structure in the optimal designs. Purely
numerical optimization would generally preclude this.

In Section 2, we present the essential notation, and the basic calculations. In
Section 3, we consider the design problem without considering a cost of sampling in
the loss function. First we consider the case f(z) = . The mathematics of this case
is useful for more general choices of f, which we consider next in the same section.
f is not completely arbitrary; we have assumed that f is convex or concave in the
applicable interval for z. In Section 4, we consider the design problem by including a
cost of sampling. For simplicity, we have used a linear cost. The main result in this
section can be somewhat generalized to nonlinear cost functions. In Section 5, the
theoretical optimal design is assessed against a reference design in order to explore if
the optimal design was worth deriving. This is done by presenting two examples with
the corresponding numerical illustrations. In Section 6, we give some brief concluding
remarks. An interesting feature of our results is that time and again it is seen that
there is a pretty common structure in the form of the Bayes optimal design and it is
that contrary to intuition it is often the case that it is better to use a small number
of patients at a high therapeutic dose in order to better estimate the response rate 6.

In summary,

i. we consider a popular model, namely a regression type model;

ii. we allow the variance of the observations to depend on the means;

iii. we allow a restriction on how much total medication is available;

iv. we allow the number of patients to be used to be part of the design;

v. by using a linear Bayes estimate, we can completely avoid making

any assumptions about the form of the likelihood function;
vi. we consider the design problem both with and without cost of sampling;
vii. we show that there are some recurring features in the optimal designs.



2 Essential Notation

Consider the linear regression model
yl———ef(l',)—[-&“ Z=1,2,,’I’L, (1)

where €!s are independent random variables with mean 0 and variance var(e;) =
MOf(z)]’, 0 <a <z <b<oo, Y,z =T with a, b, T fixed, f is a positive
differentiable function on [a, b], and > 0, A > 0, p > 0 are unknown parameters.

Let f(z) = (f(z1), f(z2),- -, f(2a)) and y = (y1,4p," - ,9n) be two n x 1 column
vectors. Then the expectation of a linear estimator § = 'y is

E) = E(dy) = 0c f(z),
where ¢ = (e, ¢z, -+, ¢n)’. Under squared-error loss, the risk function of 0 is

R, 0) = E(6-06) (2)
= E(cy—0c f(z) + 0 f(z) — 0)*

n

= AL e0f(@)l + 0l (@) -1

Let 7 be a prior on (6, A, p) and denote

™ = E™(6%) > 0, (3)
m(p) = E"(lp) > 0,
p = E"(A) >0
and  ¢(z) = E"([f(z)’m(p)) > 0.

Then from (2), the Bayes risk of § equals

r(m,0) = p 3 (@) + I flz) — 11 (4)

i=1

By differentiation, it can be shown that the minimum of the Bayes risk r(w,é) is
obtained when 8, = ¢y, where the ¢-th component of ¢, is

ﬁ;;(:Ci)

p Oz

Cri = - " AR (5)
T+ 2 v, 58

Since

cd flz) =112 = T_2 = fz(wi) -2
@) -1 =+ T3 L,



(5) simplifies to
2

N T
r(m,0r) = > .
’ T n .f fah!
1 + P =1 &(z:)

We will call this the Bayes decision risk:

A T2

BDE(n) = r(r,0r) = G- (6)
T 2= g

Let C(n) be the cost of sampling n units. Then the total Bayes risk of 0, is defined
as

BR(n) = BDR(n) + C(n). (7)

A Bayesian optimal design is defined to be a probability distribution ¢ over the
design space X = [a, b] which minimizes the Bayes risk in (7). It is obvious that the
Bayes risk can be minimized in two stages. First of all, find an optimal design for
each fixed n. This corresponds to minimizing only BDR(n). Then find the minimum
of BR(n) over n.

For each fixed n, minimizing BDR(n) is equivalent to maximizing the quantity

_ - A=)
Q= ; o(z:) ®)

Note that @/n can be treated as the mean of A(X) = f*(X)/¢(X), where X is a
random variable with probability distribution £ over the design space X satisfying
the constraint

n g T
E(X) = &=t % _ 2
¢(X) - ~
Therefore, for each fixed n, we have the following problem:
- FA(X) : T
Maximize E subject to FE¢(X)=—, a< X <b. 9
& 50X) j ¢((X) = — (9)

Note that this approzimate optimal design allows that nP:(X = z) is not necessarily
an integer and we may take [nP:(X = z)] or [nP:(X = z)] + 1 observations at each
design point z. We will assume both T'/a and T'/b are integers.

Let us look at (9) in general. In order to find { which maximizes E¢h(X) for
some function h under the restriction that E¢(X) = T/n and ¢ < X < b, the
concavity/convexity of A plays an important role. Below is a useful result.

Proposition 1. .
(a) Suppose h(z) is concave on [a, b]. Then the probability measure ¢ which maximizes
FE¢h(X), under the restriction that E¢(X) = T/n and a < X < b, is obtained by
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taking { = b4r/s}, a point mass at T'/n.

(b) Suppose h(z) is convex on [a, b]. Then the probability measure £ which maximizes
E¢h(X), under the restriction that E¢(X) = T/n and a < X < b, is obtained by
putting weights ¢ and 1 — q at a and b respectively, where q satisfies

_b—T/n
 b—a

T .
E(X)=qa+(1—q)b= — e, g (10)

Thus the concavity/convexity properties of the function » are crucial
for the design problem at hand. So in Section 2, we first investigate the
sign of h"(z) for the special case f(z) = z.

3 The optimal design without a cost function

3.1 Preliminary Calculations

In this section, we focus on the special case f(z) = z first. This makes the mathe-
matics for the case of a more general f easier. If f(z) = z, then

def f2(z) z?

") =) T Bl =
Let
o(e) = 53 = Em@)] = [ m@)iuce), (12)

where u is the marginal prior for p. Differentiating both sides of the identity
h(z) - g(z) =1 gives:
K (z)g(z) + h(z)g'(z) =0

and on differentiating again,

R'(z)g(z) + 2k (z)g' (z) + h(z)g"(z) = 0.

Hence, /
and
W(2)g(z) = —2K(2)g(x) - h(a)g'(2) (13)
_ BEEE
- z(—gmg'(wn? — 4(@)"(@)}
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Since h is positive, from (13) one concludes that A”(z) and 2[¢'(z)]* — g(z)g" (=
have the same sign. We will now derive a useful integral representation for 2[¢’(x)]* —

g(z)g"(z).
Using the notation « = p—2 and dv,(a) = z*m(a+2)du(a+2) (du(a+2) means
the obvious thing), direct computation gives

2*{2[¢'(2)]* — 9(z)g"(2)} (14)
= 9 / advy(a)]? — | / 1dva(a)][ / o — 1)dvs(a)].

In order to determine the sign of (14), we use double integrals to represent product
intergals and split the second part into two. Then (14) becomes

2 [ afdva(a)dva(8) — [ (o — 1)dva(a)dva(B) (15)
= 2 [ apdva(e)dna(8) - 1/21 [ ol — )dva(@)dus(B) + [ B(B —1)dva(a)dvs(B)]
= 1/2 [[4ap - ala — 1) — B(8 ~ 1)]dva(a)dv. (8)

— 1/2 / M(a, B)dvs(a)dvs(B),
where
M(a, B) = 40 — a(a — 1) — (B — 1). (16)

From (15), we arrive at the useful conclusion:
If M(a,B) >0 in its domain, then % is convex;
If M(e,) <0 in its domain, then % is concave.

3.2 f(z)=2z, 0<p<1

Theorem 1.
Suppose 0 < p < 1. Then h(z) is convex, and for any fixed n, the optimal design &,
which maximizes

E¢h(X) subject to Ee(X) =T/n,

puts weights ¢ and 1 — q at a and b respectively, where q = b;ﬂ . Furthermore,
mazeBeh(X) = qh(a) + (1 — q)h(b). (17)
Proof.  The function M(e, ) may be rewritten as
M(e,8) = —(a+ 1)(a+2) = (B+1)(B+2) +4{a+1)(B+1). (18)
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If p varies in [0, 1], then «, B are in [—2, —1], and so from (18), M(«, 8) > 0. Conse-
quently, h is convex and the optimal design follows from Proposition 1.

Theorem 1 solves the first stage of the problem, :.e. it provides an
optimal design for fixed n. Now we proceed to the second stage: namely,
how many patients should be used, i.e., maximize BDR(n) over n.

Recall that in this entire section, the cost function C(n) is being ignored. The
following result holds.

Theorem 2.

Suppose 0 < p < 1. Then the optimal sample size is the smallest possible n = T'/b
and the unique point in the support of the optimal design is x = b. Furthermore, the
minimum Bayes decision risk is

7.2

BDR=——.
1+ 270

Proof. From (17), we want to maximize

nlgh(a) + (1 — q)h(d)] (19)
= (nb-— T)% + (T - na)%
 aalbe)fa b0, THO) = (e

which is a linear function in n. Applying ’Hospital’s rule twice, we have
lir%h(x) =0 for 0<p<2.
r—

The convexity of h for 0 < p < 1 yields the fact that A(u)/u is increasing in u. That
means the linear function of n has a negative slope. Hence the maximum of (19) is
obtained when n is the smallest, i.e., n = T//b. The rest of the theorem follows on
using Theorem 1.

3.3 f(z)=2, 1<p<2

Theorem 3.
Suppose 1 < p < 2. Then h(z) is concave, and for any fixed n, the optimal de-
sign £ which maximizes E¢h(X) subject to E¢(X) = T/n is a point mass at T/n.
Furthermore,

maz¢Eeh(X) = h(T/n). (20)
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Proof. The function M(«, B) can be written as
M(a,8) = ol 1) + BB+ 1) — 2(a— ). (1)

From (21), It is clear that M (e, 8) < 0if 1 < p < 2. Consequently, h is concave and
the optimal design follows from Proposition 1.

Analogous to Theorem 2, we now proceed to the second stage of the problem, z.e.,
work out the optimal n. The following result holds.

Theorem 4.

Suppose 1 < p < 2. Then the optimal sample size is the largest possible n = T /a
and the unique point in the support of the optimal design is * = a. Furthermore, the
minimum Bayes decision risk is

7_2

BDR = ————.
1+ Z7e

Proof. Similar to the proof of Theorem 2.

In summary,
i. Suppose 0 < p < 1. Then h(z) is convex,
the optimal sample size is the smallest possible and n = T'/b
the unique point in the support of the optimal design is = = b.
ii. Suppose 1 < p < 2. Then h(z) is concave,
the optimal sample size is the largest possible and n = T'/a
the unique point in the support of the optimal design is z = a.

3.4 Generalization to more general f(z)

The crucial feature driving the nature of the optimal design in section 2.1 and 2.2 is
the concavity/convexity of the function h. So for a generel f, the driving feature is
the concavity/convexity of the function f?(z)/¢(z); see (9). We have the following
important lemma.

Lemma 1.
(a) Let f be convex. Then f*(z)/¢(z) is convex if 0<p<1.
(b) Let f be concave. Then f*(z)/¢(z) is concave if 1< p < 2.

Proof. Observe that f2(z)/#(z) is just the composition function (ko f)(z) where A



is as defined in (11). By chain rule,

L (ho P)@) = K(7(=) - @) + (=) - (o). (22)

For part (a), use the facts: h is convex and increasing and f is convex, and use (22).
Part (b) follows analogously.

Application of Lemma 1 leads to the following two theorems.

Theorem 5.
(a) Suppose 0 < p < 1 and f(z) is convex on [a,b]. Then for each fixed n, the
Bayesian optimal design that maximizes E¢f?(X)/¢(X) subject to E¢(X) = T/n

puts weights g and 1 — q at a and b respectively, where q = b= T/ ~. Furthermore,

fZ(X) 7_2

¢(X) 1+ —n{ ¢(a) +(1- Q)%z(%l}

(b) Suppose 1 < p < 2 and f(z) is concave on [a, b]. Then for each fixed n, the Bayes
optimal design that maximizes E¢f>(X)/#(X) subject to E¢(X) = T/n is a point
mass at T'/n. Furthermore,

maze B (23)

r2X) _ 72

1T{nh
(X) 1+ Znfdh

maze B p (24)

Proof.  Similar to the proof of Theorems 1 and 3. We omit the details.

The following theorem is an analog of Theorems 2 and 4.

Theorem 6.

(a) Suppose 0 < p <1 and f(z) is convex on [a,b], with f(0) = 0. Then the optimal
sample size is the smallest possible n = T'/b and the optimal design is a point mass
at ¢ = b. Furthermore, the minimum Bayes decision risk is

7_2

BDR= —— . (25)

72 f2(b
1+ 2T

(b) Suppose 1 < p <2 and f(z) is concave on [a, b]., with f(0) = 0. Then the optimal
sample size is the largest possible n = T'/a and the optimal design is a point mass at
z = a. Furthermore, the minimum Bayes decision risk is

2

BDR = 26
+T2Taé(;% ( )



Proof. This is because the convexity/concavity of (ko f)(z) = f*(z)/¢(z) with
(ko £)(0) = h(f(0)) = O.

4 Optimal design with a cost function

In this section, we consider the Bayesian optimal designs with a cost function C(n).
We assume that C'(n) is increasing in n. The optimal designs for different ranges of
p are derived in the following subsections.

4.1 f(z)=z, 0<p<1

From the proof of Theorem 2, we know that the Bayesian decision risk is increasing
in n. By assumption C(n) is increasing. So the total Bayes risk is increasing in n,
too. So this case is trival. We have the following result immediately.

Theorem 7.

Suppose 0 < p < 1. Then the optimal sample size is the smallest possible n = T'/b
and the optimal design is a point mass at ¢ = b. Furthermore, the minimum Bayes
risk is

7.2

BR g+ C(T/b). (27)
b

T4+ Z7E

42 f(z)==, 1<p<?2

This case is considerably harder because the decision risk is decreasing in n and the
cost function is increasing in n, and so a pretty delicate analysis is required. It turns
out that the Bayes decision risk is an increasing and convex function in u = T'/n, if
we regard u as a continuous argument as a technical device. This is useful for our
subsequent analysis and this is the content of the next two lemmas. We will write

B(u) for

7_2 7_2

BDR(n) = —— S — 28
() 1+ Znh(T/n) 1+ 2750 (28)

If we further define 1/72 as ki, T/p as kg and h(u)/u as F(u), then we have

1

Bl = o mrw)

The following lemmas are crucial for the optimal design result of Theorem 8.
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Lemma 2.
B(w) is an increasing and concave function in u.

Proof.  Straightforward calculus.

Lemma 3.
The Bayesian decision risk BDR(n) is a decreasing and convex function in n, where
n is treated as a continuous argument.

Proof.
Step 1. n and u are related as n = n(u) = T'/u and BDR(n) = B(u), with B(u)
as in (29). By chain rule, we have the following relationship:

d d u?
%BDR(TL) = %B(U)(—T)
and
&2 Wd & - d

It will therefore suffice to show that uB"(u) + 2B'(u) > 0.
Step 2. Denote the function 1/F(u) as H(u); here F is as in (29). Then, on
algebra,

uB" + 2B’ (31)
= kyB*H*{(uH" 4 2H"YH — 2kyuB(H")?}
> kg B2H-S{(uH" + 2H')H — 2u(H')?} (sincek, B = 1 — kzg <1)

Step 3. We will now show that (uH" + 2H")H > 2u(H')®>. By applying the
definition of H(u), i.e., H(u) = E™[u?"'m(p)], '

[ (w) + 2 () H ()
{uE"[(p — 1)(p — 2)u">m(p)] + 2E"[(p — 1)u?*m(p)]} E"[u"'m(p)]
E™[p(p — 1)u"~*m(p)| E"[u"~'m(p)]

> {E"[\/p(p — 1)uP~3m(p)]}? (Cauchy-Schwartz Inequality)
> {E"[V2(p — 1)u?**m(p)]}? (since 1< p<2)

2u{E"[(p — 1)u*m(p)]}*
= 2u(H'(u))>

11



This prove Lemma 3.

We are now ready to state the following theorem.

Theorem 8.
Suppose 1 < p < 2 and C(n) = ¢o + cin. If the incremental cost ¢, satisfies the
inequality

&1 > (BDR(3) ~ BDR(3 + 1)), (32)

then the optimal sample size is n = T'/b and the optimal design is a point mass at
z=b.

Proof. The proof consists of showing that the total Bayes risk BR(n) = BDR(n)+
C(n) is nondecreasing in n for n > I. But,

BR(n +1) — BR(n)

BDR(n+1)— BDR(n
BDR(% +1) — BDR(
0 (by hypothesis)

N—r

+a
)+ e (by the convexity result in Lemma 3)

v
SHES

Y

That the optimal design is a point mass st z = b follows from this.

In summary,
i. Suppose 0 < p < 1.
Then the optimal sample size is n = T'/b and
the optimal design is a point mass at z = b.
ii. Suppose 1 <p<2and C(n)=c+cn. If ¢, > (BDR(%) — BDR(% +1)),
then the optimal sample size is n = T'/b and
the optimal design is a point mass at & = b.

5 Numerical Illustrations

In this section we give some numerical examples to show how much better the the-
orectical optimal design does relative to another reference design. The reference
design is described each separate example. All the comparison are for fixed val-
ues of n and in terms of Bayes risk efficiency. In each example, we have taken
a =05, b =20, T =10 ( so that n is necessarily in the range 5 < n < 20, and
p = 3. 0 has been given an Exponential prior with mean 1. The prior on p is described
separately in each example. p and 8 have been assumed independent.

12



Example 1. (0 < p<1) We take f(z) = z? to be the regression function, note
that f is convex; as needed for applying Theorem 5. Here are three priors for which
numerical results are reported:

p |0 025 05 075 1
™2 2 2 2 2
m |5 0 0 0 5
3 0 0 1 0 0

In this case, the theoretical optimal design is a 2-point design (Theorem 5). So a
comparison is made with a 1-point design at z = T'/n. Below are the efficiency re-
sults. Clearly, the theorectical optimal design does much better.

Table 1: BDR for different priors, f(z) = z*

n 3 7 9 11 13 15 17 19
7y | 0.0768 0.0873 0.1011 0.1201 0.1479 0.1925 0.2754 0.4841
7o | 0.0895 0.1016 0.1176 0.1395 0.1714 0.2222 0.3157 0.5454
73 | 0.0643 0.0731 0.0848 0.1009 0.1246 0.1628 0.2346 0.4200

Table 2: Efficiency of 1-point design, f(z) = z*

n 3 7 9 11 13 15 17 19
my | 1.0000 0.6533 0.4909 0.4105 0.3783 0.3865 0.4516 0.6695
7o | 1.0000 0.7008 0.5402 0.4524 0.4125 0.4150 0.4762 0.6878
73 | 1.0000 0.5983 0.4364 0.3643 0.3397 0.3535 0.4227 0.6476

Example 2. (1 < p < 2) We take f(z) = log(1l + z) to be the regression
function; note that f is concave, as needed for applying Theorem 6. Here are three
priors for which numerical results are reported:

p:|1 125 15 1.75 2
m |2 2 2 2 .2
o D 0 0 0 5)
7|0 0 1 0 0

In this case, the theorectical optimal design is a 1-point design (Theorem 6). So
a comparison is made with a 2-point design. Below are the efficiency results. The
theoretical optimal design does a bit better.

13



Table 3: BDR for different priors, f(z) = log(1 + z)

n 5 7 9 11 13 15 17 19
7 | 0.5798 0.4832 0.4217 0.3786 0.3467 0.3220 0.3021 0.2859
7o | 0.6077 0.5019 0.4352 0.3894 0.3559 0.3303 0.3102 0.2939
w3 | 0.5512 0.4643 0.4080 0.3679 0.3375 0.3136 0.2941 0.2779

Table 4: Efficiency of 2-point design, f(z) = log(1 + z)

n 5 7 9 11 13 15 17 19
m | 1.0000 0.9534 0.9366 0.9351 0.9423 0.9550 0.9713 0.9899
72 | 1.0000 0.9489 0.9297 0.9274 0.9349 0.9488 0.9671 0.9884
ms | 1.0000 0.9588 0.9447 0.9440 0.9507 0.9619 0.9759 0.9916

6 Conluding Remarks

We considered a practical design problem and showed some common structure in the
form of the optimal design and the optimal number of patients that should be used.
In particular, it is interesting that often it is the best to use a small number of patients
at the highest therapeutic dose.
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