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Abstract
We present some probability inequalities and identities for the Poisson distribution.
One of these identities shows a complicated sum involving products of Poisson CDF's to be
an elementary function. We also give an inequality on Poisson probabilities looking like the
three term recursion formula for orthogonal polynomials. These all follow from a rather
remarkable combinatorial identity and it seems likely that the combinatorial identity has
other applications.

1. Introduction

In this note, we present some identities and inequalities for the Poisson distribution.
They all follow from a peculiar combinatorial identity. It seems likely that this combina-
torial identity has applications to other common discrete distributions.

2. Notation and A Combinatorial Identity

The following notation is used in the sequel:

e r\® .
(A z) = g = P(Poisson (A) = z)

F(\z) =Y p(\y) = P(Poisson ()) < z)
b(), 8, z) = (Z) 6*(1 — §)"* = P(Binomial (n,§) = z) (2.1)

We will now present a special case of a more general combinatorial identity. The special case
is done first because there is a probabilistic proof of the special case and this probabilistic
proof is crucial for the inequalities of Section 3. A nonprobabilistic proof of the general
combinatorial identity will be presented in Section 4.

Lemma 1. Let n be any positive integer and z < n any nonnegative integer. Then

2l = n® — (f)(n —1)°+ (;)(n —2)" — .. 4+ (=1)*(n— )"
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Proof: Let A = {l,...,2} and B = {1,...,n}; A = ¢ if z = 0. Let f be a random
function from A to B and consider the event C that f(A) = A. If we let C; be the event

that : € f(A4), then C = [ C;. By the inclusion-exclusion formula,
=1

2

P(C)=P(()C)
~1-7(Joy)

:1—iP(C§)+ZIZP(CfﬂC;)—---

i<j=1

N 9 L= ) [LEE

n< nt

However, C can happen in 2! ways and so from (2.2),

() (T (e
= at == (=14 (D) -2~ + (1))

proving the lemma.

3. Probabilistic Inequality

The method of proof of Lemma 1 leads to a rather interesting probability inequality
for the Poisson distribution. The following Bonferroni - type inequality will be needed in
addition.

Lemma 2. Let Ci,...Cy be measurable events in a probability space (Q,B,P). Let

SE = Z P(C’z-lc*z-z...Ci,c), 1 <k <m. Then
11 <t <...<ip,

(k + 1)Sk+1 — (m—k— 1Sk

(%)

P(CiCy...Cr) >

Proof: See pg 93 in Galambos and Simonelli (1997). Combining Lemma 2 with the
method of proof of Lemma 1 leads to the following inequality for Poisson distributions.
The proof of Thereom 1 actually contains a much more general inequality.



Theorem 1. Foralln > 2,0 <z <mn,

(z - )

p(n —2,z)
z(z —1)
902

Remark: For z = 0,1, the Theorem can be proved directly. The following proof is for
2<z<n.

T
p(n,z) — Zp(n —-1l,z)+

< e <p(na) §p( ~1,2)+ p(n —2,2)

Proof: In Lemma 2, take C; to be as in the proof of Lemma 1, identify m with z, and
let n continue to be a fixed positive integer > z as in Lemma 1.

Now,

Se= Y P(CyCi...Ci)

11<...<1p

k
- ¥ AUer

11 <... <1 7=1

k
- X a-rJe

11<...<1p

( ){1—ZP(CC)-i-ZZP(CCCC)—...+(—1)’“P(Cfl...ka)}

i<e

(i> {1_ <1>(i‘;z1—)z+ <2>@;Tz)z_m+( 1)’“(n k)z}
@) ;0(_1)j (f)gg_]) (3.1)

Therefore, by an application of Lemma 2,

~

==r()0

(k + 1)Sk+1 — (:II —k — l)Sk
;)
k+ Nz
(k + 1) ey 2 (—1)1‘("?)% — (o =k~ e z< 1)7 (%) {meDm

z!

Rz —k)!
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$—@§f oy (F it u~k—n§34v6)@g}f
e g {()- ()
gl
S12 (eI m}:(ly{(k+1) tHeoir

" sz:o(_l)j (f) (i;i (3.2)

Choosing, in particular, k to be 1 in (3.2), we have

1> (z 1)(n 2)* — (¢ — 1)("_—1_)I n 7_;'; _(n ;!1)’”
n® n—1)* n—2”
B e

n( 1)

=e"p(n,z) — e"—p(n —l,z)+e p(n —2,z)

:pmwr~mm—1xmﬁ )Mn—2@<e ,
as claimed in the Theorem. The reverse inequality follows easily.

4. The Generalized Combinatorial Identity

The combinatorial identity of Lemma 1 has the following strong generalization. We
are unable to present a probabilistic proof of this generalization. Here is the generalized
combinatorial identity.

Lemma 3. Let A be any real number and z any nonnegative integer. Then

2l =A% — (f)(x —1)° 4+ (;)(/\ —2)" — .+ (=1)%(A—2)*

Proof: For a general A, the proof consists of treating the rhs of the identity as a polynomial
in A and showing that the constant term equals z! and the coefficient of M for 1 < j < z
is 0. Tomescu (1985) gives a proof using this technique in Exercise 1.38 for A equal to a
positive integer. But that proof applies for every real number .

5. Probabilistic Identities:



We will now present three identities that follow from Lemma 3. The first expresses
Poisson probabilities in terms of binomial probabilities; the other two show a complicated
function involving Poisson CDF's to work out to an elementary function. This is quite
mysterious.

Theorem 2. With the notation of Section 2,
A

(a) p(\,z) = —— , for any A > 0 and z < [}]
143 (552) b(z,4,9)

i=1

(b) Forevery even integer m > 0 and every reale > 0, > (=1) e F(j +¢,5)F(j +¢&,m — j)
Jj=0

_ e ?*(m+2)
2

m . .
(c) Forevery odd integer m > 1, and everyreale > 0, > (—1)e* F(j +¢,7)F(j +&,m — j)
j=0

_ e”2%(m+1)
2

Proof:
(a) By Lemma 3,

-

i (o-4r

=13y (fa-prdgrgra-gy

=14 206 - K

_1+Z(

)’b(fv, )\,J) (5.1)

and so part (a) follows:

(b) Again, by Lemma 3, for all A > 0 and 0 < z < [}],

A (A=1)° A—2)° sA—2)”
125‘((33_1))'1'+(( —2))!2! O
= Z(—l)jez(*"')p(A — & = 5)p(A = 5,5) (5.2)

=0



Therefore, for all A > 0, and 0 < 2 < [}],

z

e =Y (—1Ye ¥ p(A - j,z — j)p(A — 4,5) (5.3)

§=0

Summing (5.3) over z,

REE:
(W +1e™ =3 3 (1Y e ™p(A = j,o = 5)p(A — 4y )
Al A o
=Y > (1PeHp0— iz = )pA )
LN
= Z(—l)]e_zfp()\ = 5,0)F(A =4, [\ - 7)

{A]
= (—1)PMe 2y (1) e2ip(X — [A] + 4, [A] ~ 5)

FO- D 4 7,9) (5.0
Hence, for all A > 0,
(A]
(=D + 1)ePH=22 = Z(—l)jesz(A —+5, M -DFA -\ +5,5)  (5.5)

Writing n for the integer part of A and ¢ for the fractional part of A, from (5.5) one has,
for alln > 0 and € > 0,

(=1)"(n+ 1)e™ =} (~1)e¥p(j +e,n = F( +e,5) (5.6)

If we now sum (5.6) over n, from n = 0 to any specified integer m, we get

e (~)"(n+1)= > Y (1Y e¥p(j +e,n — §)F( +¢,5)

n=0 j=0

=) (—1Ye¥p(j +e,n ~j)F(j +¢,5)
j=0 n=j

=Y (-1Ye¥F(j +e,m—j)F(j +¢,5) (5.7)
j=0
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However, for even m, »  (—=1)*(n +1)is 1 + %, and so the identity in (b) follows.
n=0

For part (c), one uses that for odd m, > (—1)"(n+1)is — 2.

n=0
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