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Abstract

Let X(t) be a real valued Gaussian process and F a given absolutely continuous CDF on the
time interval [0, 1]. Suppose the process is observed at n random times t; < t5... < t,, which are
the order statistics of n samples from the CDF F. We give a formula for the expected number of
sign-changes among the values X (¢;) for every fixed n. For the case when X (t) is the standard
Brownian motion starting at zero and F is the uniform distribution, the expected number of sign-
changes reduces to a neat expression giving a mysterious exact connection to the simple random
walk. The expected number of sign-changes. We also consider the random variable T, the epoch
of the first sign-changes. A second peculiar phenomenon arises for the Brownian motion case if F'
is again taken to be uniform. For any given integer ¢, P(T > i) only depends on %, and not on n,
as long as n > 1. We indicate how to derive a more general formula for P(T > i) for the general
Markov case, not just the Brownian motion. The article closes with a formula for the predictor of

the end-value X; given the earlier observations X;,, X;,,..., X, .

n
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1 Introduction

Properties of sample paths of the Brownian motion and more general Gaus-
sian processes have been studied in extensive detail by probabilists and math-
ematicians - see Ito and McKean (1965), Resnick (1992), Ross (1996), among
numerous sources. Relatively less seems to have been explored if a Gaussian
process is observed at discrete random times, say for instance at the times
of realization of an independent Poisson process. In this article, we con-
sider a general mean zero Gaussian process X (t) which is then observed at
times t; < ty < ... < t,, the order statistics of a sample of size n from an
absolutely continuous CDF F on the interval [0,1]. We consider C,, the
number of zero crossings among X (¢1), X (£2), ..., X(¢.) and T, the epoch
of the first crossing. Among various results, we establish a rather peculiar
phenomenon which is not otherwise obvious. We show that for every n > 2,
the expectation of C,, when X(t) is the standard Brownian motion and F
is u[0, 1], equals % times the expected number of returns to the origin of the
simple symmetric random walk till time 2n — 2.

Section 2 gives a general formula for £(C,,) for a general X(¢) and a gen-
eral absolutely continuous F'. The standard Brownian motion, the Brownian
bridge, and the integrated standard Brownian motion are used as examples
to illustrate the general formula. Asymptotics of E(C,) are considered in
Section 3. In Section 4, we consider T, the epoch of the first crossing. Un-
der the added assumption of X (¢) being a Markov process, we show how to
give a formula for P(T > i) and then present another peculiar phenomenon:
if X(¢t) is the standard Brownian motion and F is u[0, 1], then P(T, > 1)
is a fixed number depending only on ¢, but not on n, as long as n > i. We
then give the exact values of P(T, > 1) for certain values of ¢. In particular,
P(T, >2) =32 foralln > 2and P(T, > 3) = 2 for all n > 3. For larger
i, P(T, > 1) can be accurately approximated by Monte Carlo approximation
of our exact formula. Section 5 closes the article by giving a formula for
the Best Linear Unbiased Predictor of the end-value X, given the earlier
observations Xy,,..., X:,. Here X(¢) is the Standard Brownian motion but
F' is arbitrary. The effect of F' on the predictor is quite interesting.
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2 Expected Number of Sign-Changes

In this section, we present a general formula for the number of zero crossings
of a general mean zero Gaussian process observed at discrete random times.
Thus, let F be a CDF on [0, 1] and let for n > 2,¢; < 5 <,...,< t, be the
order statistics of a random sample of size n from F. X(t) is a mean zero
Gaussian process on [0, 1] with covariance kernel C(s,t) and let C, denote
the number of sign changes among X (t;), X(t2), ..., X(ta).

Theorem 1
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Proof: Note that C, = X (X (¢;)X (ti+1) < 0)

i=1

Therefore E(C,) = ni:l P(X(t)X(tiy1) < 0)
= n—l—Z:lP ’L+1)>O)
i=1

i=1

Now note that if (X,Y) has a bivariate normal distribution with means zero
and correlation p, then P(X >0,Y > 0) = 3 — = cos™! p (see Tong (1990).

2
Since t;, t;41 are the order statistics of a sample of size n from F* and therefore

i—1

have the joint density (1_1)—,(’1‘1'_1_-1—), F(t:) (1 = F(tir))* L () F(Biw1), 0 <
t; < tip1 < 1, (1) now follows from (2).

Example 1. Suppose X(t) is the Standard Brownian motion (SBM) on
[0,1] and F is the u[0, 1] CDF. Then, by Theorem 1,
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Since Jy cos™ z-z%1ldz = (1’—,()22%-;%, (Gradshteyn and Ryzhik (1980), pp 607)
it follows on simplification from (3) that

s ()
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E(Cn) =

Do

One therefore has the following mysteﬁous corollary:

Corollary 1 For every n > 2,E(C,) = % - E (Number of returns to the
origin of the simple symmetric random walk in 2n — 2 steps).

The fact that Corollary 1 holds as an identify for every n is an interesting
and quite remarkable fact and we find it intriguing.

Example 2. Suppose X(t) is the Standard Brownian Bridge (SBB) on
[0,1] and F' is the u[0, 1] CDF. Then,

1

BC) = T3 (z’-—l)!(nl—i—l)! L

=1

cos™! ?—il_——s—%si‘l(l — )" s dt (5)

Making the substitution z = /2<% and on using the representation [y £¢(1
& (1-3)t 0

) (1—at) "t = Bi+1,n—i+1)F(i+1,i+1;n+2,a), whereF(-,-,-, )
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denotes the o} hypergeometric function, it follows from (5) on using Fubini’s
theorem that

2 n—1 ) .
E(Cp) = Tt D) ; i(n — i)
1,
/0 ¥ Yeos ' 2)F(i + 1,0+ L;n +2; 1 — 2°)dz (6)

It does not seem possible to simplify (6) further to a closed form.

Example 3. Suppose X () is the once integrated Brownian motion (ISBM),
X (t) = [; £(u)du, where £(u) is the SBM on [0, 1]. Then, on application of
Theorem 1, one gets

' 31

2 n-—-1 1 .
E(C) =1+ - Y ia;, where a; = / % 1cos™! (;z - §x3> dz. (7)
=1 0 =

Again, although, as in (6), simplification to a closed form does not seem
possible, expressions (6) and (7) are useful in investigating the asymptotics
of E(C,) as n — co. The following table gives values of E(C,) for some
selected values of n and the three processes discussed in the above examples.

Table 1
n E(Cy)

SBM SBB ISBM

2 .25 33333 1.17301
3 4375 .6 1.27853
4 .59375  .82857  1.35461

5 .73047 1.03174 1.41414
10 1.26197 1.83772 1.60111
20 2.00741 2.98814 1.79003

3 Asymptotics of E(C,)

There is some intrinsic interest in knowing the rate of growth of E(C,) as
the number of points n — co. Since the SBB returns to the origin at ¢t = 1,
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intuition might suggest that £(C,) grows faster for the SBB than the SBM.
Also, since the sample paths of the ISBM are more smooth than those of the
SBM, one would expect that in that case E(C,) might grow slower than for
the SBM. This is apparent in the numbers presented in Table 1 as well. We
have the following result.

Theorem 2 E(C,) ~ %2 for the SBM and the SBB

~ 1+ g logn for the ISBM

Proof: For the SBM, we have the closed form expression (4): E(C,) =

24
L (5)
3 TTZ ——52— from which the result follows immediately. The rate for the

i=1
SBB can be derived either from the SBM, or by following the steps of the
ISBM case given below. For the ISBM, from (7),

n-1
E(C,) = 1+% S ia,

=1

LI 3
, 2i-1__ -1(2 _
a,—/o T coS (22:—-—2>d1:

Now note that cosz ~ VI — 22 as z — 0,ie,costy~+T=7y2asy — 1.
Thus, as z — 1,

where

~ S-(1-z% (8)

. n
Since fy z%~1(1 — z%)dz = 51.(-—1.1;_—1—), it follows that 3 ia; ~ \/Ts logn and the
1==]

stated result of the Theorem follows.
The following table illustrates the usefulness ofthe asymptotic rates pre-
sented in Theorem 2.



Table 2
n E(Cn) Asymptotic expression
SBM SBB ISBM SBM SBB ISBM

20 2.007 2.988 1.79003 2.52313 2.52313 1.826
30 2.57735 3.75332 1.90106 3.09019 3.09019 1.93759
50 3.47946 * 2.041 3.98942 3.98942 2.078
100 5.13485 * 2.232 5.6419  5.6419 2.269
For n > 50, exact evaluation of E(C,) for the SBB became numerically
difficult, thereby making the asymptotic expression even more valuable.

4 Epoch of First Crossing

In this section, we present a second quite remarkable phenomenon. Let T,
denote the time at which the first zero crossing happens, i.e.,

T.>1 if X(t),...,X(&)>0<0). (9)
There is some interest in knowing the distribution of 7;,. We assume the same
structure as before, i.e., t; < ¢y < ... < t, are the order statistics of a random
sample from an absolutely continuous CDF F on [0,1] and {X(¢)} is a zero
mean Gaussian process on [0,1]. With the added condition that {X(¢)} is
Markov, one can give a general formula for P(T > i) for i = 2,...,n. We
present the case when F' is the u[0,1] CDF and {X(¢)} is the SBM and

present a nice phenomenon. In the following theorem, a product [] a; is
i=m
defined to be 1 if m > n..

Theorem 3 Let {X(t)} be the SBM on [0,1] and let t; < t3 < ... < tn
be the order statistics of a random sample from the uniform distribution
on [0,1]. Let T = T, denote the epoch of the first sign-change among
X(t), X (2),...,X(t,). Then for anyi < n,

P(T >1)=; !

=1
T . gi(%){ ui‘l(l—w)"*f-l}du (10)
jQiB(j,i—j) /‘“"” 1 ’



where

iﬁz {1 3 (cos™ /7 + cos ™! /BT + cos™! /U1 |
g(w) == .
H {1 — 2 cos™1 \/—}

j=2

In particular, for any given i, P(T > i) depends only on ¢ and not on n.

Proof: We use the notation Y; = I(X (¢;)X (£i+1) <0). Then,

P(T>4) = P(Y;=0,...,Yi.,=0)
= EP(Y]_:O,...,K_I=O|t1,...,ti), (12)

where E(-) means expectation with respect to the joint distribution of (¢y,...,#).
Now, given the times ¢, ..., t;, due to the Markov property of SBM, one has
the identity

P(Y;=0,...,Yi—; = 0}¢)
_P(A=0.%=0) PO = 0% =0 - Pl¥ig = 0.y =0l
P(¥a = 0) - P(¥a = 011 '

(13)

(13) is obtained by induction on 7 and by using the fact that for a Markov
process, given the present, the future and the past are independent.
Now, in (13), use the following probability expressions:

P(Y;=0[t) = 2P(X(t) >0, X(tj41) > Olt)
= 1 Leost [
=1 —cos o (14)

and

P(Y] = Oy}fj+1 = OE)
= 2P (X (tj) >0,X (tj+1) >0,X (tj+2) > OIE)



= 2{ +—<sm ,/ + sin” 1/ +sm j )}
_7+1 t]+2

(see Tong(1990))

1——<cos 1/ +cos ,/ L cos‘l,/—7-> (15)
tir2

If we now write t—:i-l- = u,, then substitution of (14) and (15) into (13), leads
to

P(T >1i) = Egi(y) (16)

where g;(-) is as it is defined in (11). We now use the fact that the ratios
u;,1 < 7 <4i—1, of the successive order statistics of the uniform distribution
have the property that they are independent with u; having the marginal
B(j,1—j) density (see, e.g., Reiss(1989)). Formula (10) follows immediately.

Remark. Formula (10) can be evaluated exactly to give P(T > 2) = 3 and

P(T > 3) = 2. For larger i, P(T > i) can be approximated from formula
(10) by Monte Carlo simulation; i.e., for a specified simulation size N, one
may simulate N uniform vectors from the (i — 1)-dimensional unit cube and

form an average of the entire integrand in (10) and divide by the constant
i=1
1 B(j,i — 7). We report some values (IV = the simulation size = 7500).
=1
Table 3
i 2 3 4 5 6

P(T>4) .750 .625 .546 .350 .003

5 Predicting the Final Location

Finally, we close the article by deriving a predictor of the end-value X given
the earlier observations X;,, Xt,, ., Xt,. In this section, {X(t)} is assumed
to be the standard Brownian motion and #; < ... < t,, as before, the order
statistics of a sample from a CDF F on [0, 1]. We will derive the Best Linear
Unbiased Predictor of X;.



Definition. The Best Linear Unbiased Predictor of X; is one that mini-
mizes Var (X1 -3 a,iXti> among all linear unbiased predictors 3 a;.X,..
i=1

=1

Remark. Without further constraints, the coefficients {a;} can be arbi-
trary if {X(¢)} is the SBM. However, we will use the restriction Z a;Ep(t;) =

1. This is the condition for unbiasedness of Z a; X, if there is a linear drift

in the Brownian motion. Thus, the predlctors are unbiased even if there is
a linear drift, but the best predictor given below is under the assumption of
no drift.

Theorem 4 Let {X(t)} be the SBM and F an absolutely continuous CDF
on [0,1]. Lett; <ty <...<t, be the order statistics of a sample of sizen
from F. The Best LGear Unbiased Predictor of X, gwen X, X,,,..., X,,

E(t)X

Proof: Let ¥ = X, denote the unconditional covariance matrix of Xty Xe)
and let ¢ = @, denote the vector with coordinates q; = Er(t;).

Thus, & = ((Ep min(t;, t; ))). Also note that Cov(Xy, Xy) = E(X;X,,) =
Ep(t;) = ;. Hence, by a direct calculation,

Var <X1 — Z a.iXti) =a'¥a—2ag+1 (17)
i=1

and so the Best Linear Unbiased Predictor corresponds to the vector g that
minimizes ¢'Xg subject to g'p = 1. This is given by

iy
= i g (18)
Now X is of the form

Q o ... o1
T = Q1 Qg ... Q9 (19)

Q) Qo ... op

and

g =(00...01) (20)



Hence, from (18),

g=(00 oi):(oo OEFttn))’

as needed.
The following table illustrates the effect of the CDF' F on the predictor.
We will use f(z) to denote the density of F'.

Table 4

B
Ep(tn)

f@y=22 fl@=1 fl@=6s1-2) flz)=21-2)

n

2 1.25 1.5 1.5909 2.1429
3 1.1667 1.3333 1.4433 1.8421
4 1.125 1.25 1.3645 16845
5 1.1 1.2 1.3145 15858
10 1.05 1.1 1.2031 1.3704
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a lot to my understanding of the invariance result in Theorem 3.

11



References

(1] Gradshteyn, L.S. and Ryzhik, .M., Table of Integrals, Series, and Prod-
ucts, Academic Press, New York, (1980).

[2] Ifo, K. and McKean, J.P., Diffusion processes and their sample paths,
Springer Verlag, New York, (1965).

[3] Reiss, R.D., Approximate distributions of Order Statistics, Springer-
Verlag, New York, (1989).

[4] Resnick, S. I., Adventures in Stochastic Processes, Birkhauser, Basel,
(1992).

(5] Ross, S. M., Stochastic Processes, Wiley, New York, (1996).

[6] Tong, Y-L., The Multivariate Normal Distribution, Springer Verlag, New
York, (1990).



