A NEW GENERAL INTERPRETATION OF
THE STEIN ESTIMATE AND HOW IT
ADAPTS: WITH APPLICATIONS

by
Anirban DasGupta* and Bimal K. Sinha
Purdue University and University of Maryland
University of California Baltimore County

San Diego
Technical Report # 97-22

Department of Statistics
Purdue University

West Lafayette, IN USA

November, 1997

*Research supported by NSA grant MSP 96G187



A NEW GENERAL INTERPRETATION OF THE STEIN
ESTIMATE AND HOW IT ADAPTS: WITH APPLICATIONS

Anirban DasGupta*
Department of Statistics
Purdue University and
Department of Mathematics
University of California, San Diego

Bimal K. Sinha ;
Department of Mathematics & Statistics
University of Maryland Baltimore County

Abstract

In this article, we demonstrate that Stein estimators of the form {1 —
a/(b+ ||X]|[?)]X arise under a broad variety of location parameter problems
from a natural calculation. The assumptions are limited; one does not need
independence of the coordinates, nor symmetry, and the loss function is quite
general, including the important absolute error loss.

Our method of calculation automatically shows how the Stein estimate
could be adapted to a specific parent distribution and a specific loss. A
number of examples that illustrate this adaptive calculation result in quite
remarkable features. In particular, some very specific and new Stein estimates
emerge in important cases, specifically for absolute error loss.

“The estimates are studied with respect to their risk, both theoretically and
via simulation, and the evidence suggests that minimaxity can be expected
in generality in 4 or more dimensions. In addition, the specific proposed esti-
mate appears to outperform both X and the ordinary James-Stein estimate
under absolute error loss for the normal case.

These results are different in character from classic previous works of
Brown, Casella, Strawderman, and Shinozaki in several ways.

* Research supported by NSA grant MSP 96G187.

Key Words: Absolute error loss, Extreme value distribution, James-Stein
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‘1. Introduction. Let X : p x 1 be normally distributed with a mean vector
" 9 and covariance matrix ¢2I,, 02 > 0. It is well known that for estimating 6
under the squared error loss

P
L(6,0) = |16 - 01> = Y5 ~ )%, (L1)
i=1
X is inadmissible for p > 3. James and Stein (1961) discovered that an
estimator which dominates X is given by

s =[1- (1.2)

a
b TXIP)
where a > 0, b > 0 are suitably chosen constants. Since the pioneering work
of James and Stein (1961), a huge amount of work has been done on many
aspects of the problem of estimation of a normal mean vector with either a
known or an unknown covariance matrix, including Bayesian justifications
of 4 75; see in particular the review artiles of Brandwein and Strawderman
(1990) and Stigler (1990), and also Stein (1981), Berger (1986), Gupta a.nd
Pena (1991), and Lehmann and Casella (1997).

In this paper we demonstrate that the typical Stein estimator of 8, namely,
05 given in (1.2), which is primarily derived under the assumption of a nor-
mal distribution and squared error loss, arises naturally as an approximation
to a locally best estimate of the parameter 8 for a variety of other distribu-
tions under a quite general loss function, which includes the absolute error
loss as a special case. The parameter vector 8 in these distributions can be a
general location parameter. This can be viewed as a robustness property of
the James-Stein estimator in (1.2). Furthermore, we show how the estimate
can be adapted to the loss function and the parent distribution. Note that
Stein estimators indeed have been proposed for general location parameters
in the literature; Brown (1966) is a significant reference. But the calculations
we present below have an entirely different character.

The distributions of X we have considered in this paper are purely non-
parametric except for some regularity conditions. In Section 2, we first dis-
cuss the case of a univariate normal distribution and a double exponential
distribution to motivate our results. These serve as illustrative examples.
The case of a multivariate normal distribution, including covariance matri-
ces of the form I, with an independent estimate s* of 0% being available, is
treated in Section 3. In Section 4 we consider an arbitrary location param-
eter distribution of X. A general power loss is considered in Section 5, and
some concluding remarks are made in Section 6.

“The principal contributions of this article are the following.

1. We demonstrate, by a seemingly interesting and simple calculation,
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that Stein estimators arise naturally under a broad spectrum of parent
distributions and loss functions.

2. We show how adaptation to the parent distribution and the loss func-
tion occurs automatically in our method of calculation; in particular,
we can handle median estimation for skewed distributions and we can
also handle absolute error loss.

3. We show a particular ridge estimate [1 — p—-F_IIPJCT]X to be especially
interesting, and we also give a nice closed form estimate for the spher-
ically symmetric case under the important absolute error loss. The
estimate [1 — EIITDXT]X emerges as the natural Stein estimate in the
normal case with an identity covariance matrix for an arbitrary power
loss 3°0_, |d; — 6;|® for any o > 1. An exactly similar result also holds
in the case of 0°I, with unknown o? as the covariance matrix. This is
quite interesting.

4. We give many encouraging risk calculations and simulations to support
the proposed estimates. In fact, the estimates emerging from our calcu-
lations appear to be minimax for p > 4 in a broad variety of situations,
covering skewed distributions and the absolute error loss. Literature
on the important absolute error loss in particular is very limited. In
all these respects, our results differ from Brown (1966), Casella (1980)
and Shinozaki (1984).

5. Due to the canonical nature of our results, they apply to many prob-
lems, e.g., the important evolving area of regression under L; norm.

2. Two Illustrative Examples.

2.1. Univariate normal: Example 1.

Suppose X is normal with mean 6 and variance one, and consider the
problem of estimating § under the absolute error loss

L(6,6) = |6 — 6] (2.1)

by linear estimates of the form § = cX. If |c| > 1, X dominates cX. Indeed,
for |c| > 1,

0
EoleX — 0] = |lEolX — -] (2.2)
> |c.EolX — 6]
> Eng - 9|



In view of this observation, we only consider ¢ such that 0 < ¢ < 1. It is
interesting to investigate what would be an optimal choice of ¢, if any, under
the above loss. Of course, if # = 0, the optimal c is equal to 1. Writing
c= Ti_,\ with A > 0, and noting that for Z ~ N(0,1), and any constant a,

E|Z —a| = /aoo(z — a)¢(z)dz + /_‘;(a — 2)¢p(z)dz
= 2¢(a) — a(l — ®(a)) + a®(a)
= 2{¢(a) + a®(a)} — a, (2.3)

where ¢(.) and ®(.) denote the standard normal pdf and cdf, respectively,
we have,

E'[-l——i(-—/\ _g = T-}L—/\mz |
- H%[z(qb(xe) + A0B(26)) — ]
= f(A\|9), say. (2.4)

It is clear from (2.4) that the optimum A depends on 6. Writing u = Mg, a
direct minimization of f(\|6) with respect to u for fixed § shows that, for
' # 0, the minimum obtains at ug which is a solution of

0@(’110) = —Z— + (}5(‘&0)

A formal first order Taylor expansion of 6@ (ug) — ¢(uo) — § around ug = 0
gives ug ~ %, and hence an approximation to the optimum A as A¢ ~ aLz

This results in the estimate

b = 11X
1+§2-
1-

1
14 62

)X. (2.6)

Substituting X for € in (2.6) produces the estimate

§=(1-



a James-Stein type estimate in one dimension, starting with absolute error
loss. This is a special case of the estimate '

, P
0=[1-—==]X, 2.8
L= = (28)

in general p dimensions, which, as we shall see later, arises naturally in many
interesting situations.

2.2. Double exponential: Example 2.

Suppose next that X follows a double exponential distribution with the
pdf f(z|0) given by

f(z]8) = %e-lz-ﬂ, 00 < 1,0 < 0o. (2.9)

Consider again the problem of estimation of 8 by ¢(X) = H_i/\ under the
absolute error loss given by (2.1). Noting that

E|Z—a| = %(e" +e?) (2.10)

where Z = X — @ follows a standard double exponential distribution, we
immediately have '

E|l=2 — g = (¥ + 7). (2.11)

As in Example 1, minimization of (2.11) with respect to A for fixed 8 # 0
results in the derivative equation for u = A:

(0 + ug)(e™ —e7™0) — (e™ +e7™) = 0. (2.12)

A first order Taylor expansion now gives ug ~ %, resulting in the estimate

b=(01- 7352) X Substituting X for 6 results in the same estimate obtained
in Example 1, i.e.,

1

I=1-175

IX. (2.13)

3. Multivariate normal.

In this section we consider the case when X : p X 1 follows a multivariate
normal distribution with mean vector # and an identity covariance matrix
for p > 1. Consider the problem of estimation of by ¢X under the absolute
~ error loss L(4, §) given by



o , _
L(6,8) = |6 = 8]}y = >_ |6: — 64l. (3.1)
=1
As in Example 1, we can assume that 0 < ¢ < 1 and write ¢ = =5 for some
A > 0. Using (2.4), we can write

X 1 &
T |l = T3 - [26(20;) + 2X8;2(70;) — A6;]

=1

Ell

1 P P P
= =2 0(M6:) + 20> 6:2(26:) — A > 6] (3.2)
1+ A i=1 i=1 i=1 .
Again, if 8 = 0, the optimal choice of A is A = 0. Minimization of the above
with respect to A for fixed 8 # O results in the derivative equation

14 1 p
FX8) =5 6:{®(N6;) — -2-} =Y ¢(A8;) = 0. (3.3)
=1 i=1 ,
Since f(0|f) = —pp(0) < 0 and F/(A|f) = (1 + N) T, 026(A]6;) > 0 for
§ # 0, it follows that there is a unique root of f(Alf) = 0 for any given
8 # 0. A first order approximation of the true root Ag(f) can be obtained by
expanding f(A|8) around O, thus resulting in

0 = f(Mlf)
~  f(016) + Xof'(06)
= —pg(0) + Ao (0)[|6]I? (3.4)
so that Ag(4) ~ Wé‘ﬁ; Replacing ||6]]2 by ||X||?, we end up with the estimator
- X P
f=—2  —1-—F __x 3.5
e R 82

which resembles the well known James-Stein estimator of 4.

Remark 3.1. First notice that the estimator in (3.5) does not have the
usual disadvantage of the traditional James-Stein estimator § ;5 = [1— ﬁ!ﬁ]x
of being a ridiculous estimate of  for X near 0. In other words, the positive
part of the estimator in (3.5) is the estimator itself. Figure 1 gives a one
dimensional plot of the mean absolute error of both estimates for p = 4 and
clearly the estimate in (3.5) does better. Thus, we believe our calculations

here can serve as a stepping stone to deriving an explicit estimate better than
"X under absolute error loss.



FIGURE 1 here

Next, although (3.5) was derived under the assumption of an absolute error
loss, it is interesting to explore its performance under squared error loss. A
direct evaluation of its unbiased estimate of risk (Stein (1981)) gives

p(4—p) - 2pIIXH2]
(I1X}[? + p)?

(3.6) immediately shows that 8 is minimaz under squared error loss for p > 4.
It also follows from Theorem 5.1 in Casella (1980) that 6 is not minimax for
p = 3. Table 1 below gives the mean squared error of 8 for some selected
values of ||8}| for p = 3 and 4. Note that even for p = 3, § has a smaller risk
than X for ||0]| < 50. :

Ellf-0|P=p+ E[ (3.6)

Table 1. Mean Squared Error of 8: normal

6]l | p=3 | p=4
0 | 2705 | 3.561
25 | 2701 | 3.562
5 | 2,692 | 3.561
75 | 2.682 | 3.561
1 | 2.670 | 3.562

2 | 2651 | 3.574
3 | 2.691 3.629
4 | 2.757 | 3.704
5 | 2816 | 3.772
10 | 2.944 | 3.927
o0 | 2.998 | 3.997

Remark 3.2. We have compared the risks of the proposed new estimator
of 6 given in (3 5) with the traditional James-Stein estimator of 6 given by
05 = [1- X||2]X under squared error loss, and found that in general neither
dominates the other.

Remark 3.3. We have also looked into a second order approximation of
the true solution Ag(6) of f(Ae]@) = 0 by keeping terms up to the quadratic in
Ap in (3.4). However, our numerical computations do not show any advantage
in doing this extra work. In fact, a first order approximation can give a
smaller risk at # = 0 and also a more aesthetically pleasing form for the
estimator itself.

~ Remark 3.4. In the case of the covariance matrix of X being I, with
o? unknown, and an independent estimate s? of 02 with v df being available,
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it follows readily from (3.2)-(3.4) that Ao(#) ~ -%— Replacing ||6]|? by ||X|]?

and o2 by s?/v, we immediately arrive at the following estimate of 6:

. 2

f = ( —_ L
ps* + v[|X]|[?

which is a wellknown version of the James-Stein estimate in this case.

)X (3.7)

4. General median estimation.
4.1. Derivation of the estimate

In this section we address the general situation when X : p x 1 follows an
arbitrary location family distribution with a joint pdf f(x|0) and the marginal
of X; is denoted as f;(z;|6;). We assume that 6; is the median of X; for all
i. Note that we do not need to assume that the X;’s are independent; our
calculations are general but the independence case is automatically covered.

Consider the problem of estimation of 8 by Ti{TX’ A 2> 0, under the absolute
error loss L(4, ) given by (3.1). Write Z; = X, — 0; so that Z; ~ f;(z) with
Fy(z) as the cdf. Thus, F;(0) = 1/2 for all i. We further assume that
f:(0) > 0 for all i. Incidentally, this excludes the so-called power family of
distributions with densities of the form f(z) ~ e~I*"|2]° with b, ¢ > 0. Then,
by Fubini, for any real a,

E|Zi—a = /:o(z — a)fi(2)dz + /_;(a — 2)fi(2)dz
= /a°°(1 — Fy(2))dz +/_;E-(z)dz

= h,-(a)+g,-(—a),say, (4.1)
where
me) = [ (1= F(9)}dz, 9ia) = [ Fil)dz. (4.2)
Thus, we can write
Bl ol = HAE[ZIZ — X6

_ i: ) + 6i(=A8:)}. (4.3)

. Since h{(a) = Fi(a) — 1 and gj(a) = —Fi(—a), minimization of E||X5 — 6|}
"W__:lth respect to A for fixed 4 leads to the derivative equation :

8



P

(1 VIR0 - 6]~ 3 o(-30 = LRI =0, (44

=1 i=1

Denoting the LHS of (4.4) by ¥()|6), we easily see that

$(06) = Zgz 0) — Zhi(0)<0 (4.5)
#(06) =2 65:(0) (49
¥/ (A9) = 2(1 + X) zpj 62 £:(76;) > 0}‘, (4.7)

Thus there is a unique root Ag(8) of ¥(A|#) = 0, and its first order approxi-
mation is given by

w(0le)
(o)
2, 6:(0) + £y hi(0)

Ao (6)

4.8
S 50 (48)
Using (4.2), one has, for each 1,
9:(0) + hi(0) = E|Zi|. (4.9)
On using (4.9) and substituting X for 8 in (4.8), one gets the estimate
5 p ElZi|
f=[1- =12 ].X. (4.10)

p BIZL L s X2£(0)

In particular, in case of identical marginals F's (except, of course, for distinct
6;’s), the estimate in (4.10) reduces to

o pEZIR0)
=~ X ez 20

SN

(4.11)

Remark 4.1. Recall that the estimate § = [1 — TRl X was earlier

. obtained in (3.5) in the context of the normal distribution. It is interesting
- to observe that for independent double exponential distributions, F|Z;| =1
“and f;(0) = 1/2 so that (4.10) simplifies to



=~ X ﬁXlP]X’. ) (4.12)

I

the same estimate as in (3.5) !

Remark 4.2. Indeed, when f;(2) is a normal scale mixture, namely,

K= @)= [ - f%)e-fffdc:(a), (413)

it follows easily that f(0) =

\ﬂ2 ; E(1/0) and 3E|Z| = E(G). Thus,

whenever G(.) is such that E(1/0) = E(0), for all such marginal models,
the same form of § as given in (4.12) obtains. These give evidence of a fairly
interesting phenomenon : this apparently new version (4.12) of the James-
Stein estimator arises quite frequently in our calculations. It seems natural to
briefly investigate its risk performance. Table 2 gives the risk of the estimate
f=[1- W]X for 1ndependent double exponential models at parameters
of the form 6 = ¢1 = (c,---,c)’ under absolute error loss. Note that the
-risk of X is p. In view of the calculations presented in Table 2, it is not
unreasonable to speculate that 8 is minimax under absolute error loss for
p 24

Table 2. Mean Absolute Error of 6: double exponential

c p=3 | p=4
0 2.505 3.391
.25 2.628 3.512
.5 2.782 3.682
1 2.986 3.905
2 3.045 3.979
) 3.033 3.982
10 3.033 3.982
20 3.032 3.983

Example 3. Consider the problem of estimating the vector of medians of
independent Eztreme value distributions, i.e., X; are independent with
f(xi — 91) = e_e(zi—9i+‘ﬂ‘ﬂ2).ex,-—a,-+lnln2, -0 <z, 6; <co. (4.14)

Here the median of X; is 8;, but obviously f is extremely skewed. To obtain

_the estimate in (4.11), we will need f(0) and E|Z|. Of these, clearly, f(0) =
elnin2 g=ei"? — In2  Algg
ning, s, ,
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E|Z|

o .
_p(z+inin2)
/ Izle e ez+lnln2dz
-0
o0 z
= an./ |z]le" ("D e*dz
-0

oo . 0 .
= I[n2[ / ze~ (2" o2 gy / ze~ (2 o7 7]
0

—0

1
= In2[ /loo(lnz)-e_(lng)xdx— /0 (lnm)e‘(lnz)’da:]

o o0
= ~({n2)z — —(In2)z
In2[2 /1 (Inz).e dz /0 (Inz)e dz]
= 2FEi(In2) + (C + Inln2) (4.15)
where Fi(z) = [© Stdt and C = — [{° et (Int)dt = limnosao(l +1/2+ ... +
1/n—logn) is Euler’s constant; see pp. 573 in Gradshteyn and Ryshik (1980).

Substitution of (4.15) into (4.11) gives the following James-Stein estimate for
the Extreme value distribution under L, loss:

3 p{C + Inin2 + 2Ei(In2)}
p{C + Inin2 + 2Ei(In2)} + (In2){|X|}?

b=t 1X. (4.16)

Table 3 gives a comparison of the mean absolute errors of f in (4.16) and of
X.

Table 3. Mean Absolute Error of 0 and X for @ =cl: Extreme value

p=3 | p=3 | p=4 | p=4
c 0 X 0 X
0 | 1.551 | 2.904 | 2.091 | 3.872
25 | 1.664 | 2.904 | 2.208 | 3.872
5 | 1.875 | 2.904 | 2.476 | 3.872
75 | 2.096 | 2.904 | 2.767 | 3.872
1 | 2.206 | 2.904 | 3.034 | 3.872
3 | 2.886 | 2.904 | 3.832 | 3.872
5 | 2912 | 2.904 | 3.868 | 3.872
10 | 2.901 | 2.904 | 3.871 | 3.872
20 | 2.895 | 2.904 | 3.871 | 3.872
50 | 2.894 | 2.904 | 3.871 | 3.872

By virtue of being a shrinkage estimator, 0 in (4.11) will always give a
- lower risk at § = O than its natural competitor X. Writing a = %I(%l)-, the
‘relative improvement in the risk at § = 0 is clearly equal to

11



= E|Zi| - T Bl

~ e
: €=1 E|Z7.l
?_ Z;)
_ peBl]
pE|Z|
- 2 T | Zi ]
E|Z|" "pa+||Z|[?
a Ez-—l IZ I/p
= : 4.17
E|Z| Bl o+ EE ] (4.17)
(4.17) does not require independence of X;’s; if they are, then by the Weak
Law of Large Numbers (see Ferguson, 1996), Z—xzpliz—’- — E| Z| and iz —p' N

E(Z?), in probability, as p — oo, and by Schwartz’s inequality, w is a

bounded sequence. It then follows from (4.17) that the following prop(_)smon
on the relative risk improvement at § =0 holds:

Proposition. For independent X;'s with identical margmals F;’s (except
for distinct 8;'s), under absolute error loss, the relative risk improvement at

0 by § (in (4.11)) over X converges to fl'ZH-_g‘lebJW as the number p of
dimensions tends to oo.

Table 4 lists this limiting % improvement in mean absolute error for a
few important parent distributions.

Table 4. Limiting % Improvement in Mean Absolute Error at O

Distribution % Improvement
Normal 50%
Double exponential 331%
Logistic 45.73%
t(3) 331%
£(5) 42.86%
Extreme value 62.90%

4.2. Important Special Case: Adaptation to a Spherically Sym-
metric Law under Absolute Error Loss.

Stein type estimators for spherically symmetric distributions under squared
_error (or concave functions of squared error) loss are well studied (Brandwein
‘and Strawderman, 1990, 1991). In this subsection we show how the estimate

12



in (4.10) simplifies for a general spherically symmetric density. Note that the
estimate in (4.10) corresponds to absolute error loss, literature on which is
extremely limited.

Let X|0 ~ f(X0(z:—8:)?). Let F(2) be a primitive of f(2), i.e., F'(2) =
f(2) for all z > 0 and the primitive is such that F(co) = 1. The quantities
required in (4.10) simplify as follows on familiar calculations. The marginal
density of Z; = X; — 6y is

7rP;_l R p-3
fzi(2) = = 2 f(z+2°)dz
(5
ul.
T2 X p-3 .
—)le(O) = _IT%I)— A x 2 f(m)dx, (418)
e=1
Aial = I?ZFLI [ =+ s
2
E_
2 LL’, 2
= zf(z + z°)dzdz
ek ST
Ll
_ w2 00 p=3 o _a _ 9
= FP—;—l)'/o Tz /0 [ dz{l F(z + z°)}]|dzdz
= L /mxlgé{l F(z)}dz
O T(EH) o
WL;l X p=1
= T Jo z % f(z)dz. (4.19)
p

Substitution of (4.18) and (4.19) into (4.10) results in the following nice
closed form estimate adapted to the spherically symmetric density f under
absolute error loss:

9

1o p 52" f(z)ds

— = X, (4.20)
plP T f(z)dz +||X|P(p-1) "z 2 flz)dz

Example 4. Adaptation: Normal vs ¢

It is readily verified that (4.20) simplifies to the estimate 0= - ofxp
when X is multivariate normal with an identity covariance matrm l'Eh1s is
"_consistent with what we saw in (3.5).

13



. If X has the sphencally symmetric ¢ den31ty with m degree of freedom,

i.e., if
() 1

QF( +1)m2 17['2 [1+ (zl—at ]""+ !

F(x|8) = (4.21)
then a remarkable calculational simplification occurs, and the estimate (4.20)

reduces to ) p
f=[1- ———T=mX (4.22
L =R :
Comparison’ with the estimate § = [1 — +“X”,,]X shows that according to
(4.21), for the heavier tailed multivariate ¢ distribution, a little more shrink-
age is recommended than for the normal case, for the important absolute
error loss. Figure 2 gives a plot of the mean absolute error of the estimate
in (4.22) for p = 3 when the degrees of freedom m is also 3. It is clearly
encouraging.

FIGURE 2 here

For the general spherically symmetric case, following the spirit of (4.17), a
completely general formula for the relative risk improvement under absolute
error loss at # = O can be given for the estimate presented in (4.20). Following
the derivation of (4.17), this equals

1 | Z1]
AT

(4.23)

pi [T fla)iz
P S
Transforming to polar coordinates, the other term E[ﬁ-ILTIZIW] upon some
algebra, is seen to be

where b = . An expression for E|Z;| was given in (4.19).

1

|Z4] T /
F = 4.24
ozE = 1+m (4.24)

In the case of the spherically symmetnc t distribution with m degrees of
freedom, this general formula (4.23), showing the perceniage improvement in
mean absolute error at @ = 0 for the estimate (4.22), reduces to the following:

200pI' (242), Fy (B2, 1; 552 + 1,1 — L)

(p— 2)T(BH)m™F (m + p)L ()
where oF) denotes the standard hypergeometric function. Figure 3 gives a
plot of (4.25) for p = 3 as the degrees of freedom m varies between 3 and 20.
It seems to be stable with respect to the degrees of freedom.

(4.25)

14



FIGURE 3 here

5. a-Power loss.

Finally, we now consider the more general loss function

p
g)=> 16 —6;]% a>1 (5.1)
i=1

and show that indeed the James-Stein estimators arise again. The case o =
1, as will be clear from (5.8), needs to be considered separately; this was
presented in Section 4. As before, we propose to estimate the vector 8 in
the joint pdf f(x]#) of X by 11(,\ for some A > 0. Wntmg Z; = X; — 6; and
noting that .

E|Zi—aff = / (e - o fila)dz + [ r;o(a — 2)%fi(2)dz
= h;(a) + gi(—a), say, (5.2)

we can express the risk of = o3 s

B 1755 ~ O = T 00 0200} 69

i=1

Using the facts that

H(a) = o[ (z-afi(2)dz
dlo) = —a [ (~e—2"fi(2)dz (54)

—oQ

minimization of (5.3) with respect to A for fixed 6 results in the equation

HOB) = (1+N) ilei{ /A :(z — 8% fi(2)dz

_ /_Zl (\; — 2)* L fi(2)dz} + Zp:{hi(,\ei) + gi(—78))}

=1

= 0. (5.5)

Following the same steps outlined in Sections 3 and 4, a first order approxi-

mation of the true solution Ag(6) of the above equation can be obtained on

the basis of (0|f) and ¢'(0/f) which are given by

15



¥(0|6) = Zl E\Z;|* + ; 9,-{/0 27 fi(2)dz — /_oo(—z_)""lfi(z)dz} (5.6)

#(0I0) = 1-a)) BEIZP 30 [ e [ (A R

(5.7)
One then gets, for o # 1, a first order approximation
¥(0]9)
Ao(0) 0 | (5.8)

Under the assumption that each f; is symmetric, one has the simplification

0o 0 .
/ 21 fi(2)dz —-/ (=2)*" fi(2)dz} =0, for all 1, (5.9)
0 —00
and so (5.8) simplifies to
5’:1 EIZiIa
(@ —1) X8, 02E|Zi|>2

This ultimately leads to the following James-Stein estimator adapted to the
loss as well as the parent distribution:

Ao(0) ~

(5.10)

’zi)=1 EIZ‘Lla ]X
L1 BlZile + (e = 1) Ty XPE|Zi|2 T

Note that (5.11) is obtained under very mild assumptions: one has a general
power loss, and the coordinate distributions need not be either independent
or identical, but their symmetry is assumed.

For quick comprehension and comparison, we present in Table 5 the adap-
tive James-Stein estimator for a few important cases.

e}l

=[1-

(5.11)

Table 5. Adaptive Stein Estimates

Parent Distribution o g
. - P
Independent N(6;,1) 1 [1 > +“x”.,J X
same 2 same
same 4 same
Independent double exponential (8;,1) | 1 same
2
same 2 [[1 - W]}X
samne 4 1-—- m X
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Since; for Z ~ N(0,1), E|Z|* = (a« — 1)E|Z|*"? for o > 1, one gets from
(5.11) that in the normal case the same estimate [1 — E-TPXT]X emerges for
every o > 1: quite a robustness property of this estimate&

6. Concluding remarks.

In view of our calculations, it would be interesting to investigate if James-
Stein estimators can be given an empirical Bayes interpretation in the kind
of generality we worked on, i.e., for a general power loss and a rather general
parent distribution. It would also be worthwhile to explore the particular
estimate [1 — "_|px_2]X more deeply as it arises naturally and frequently ac-
cordmg to the calcula.tmns we presented. Extension to a smooth loss function

?_, L|6; — 6;] will be similar but we did not consider it here. We believe
the adaptation methods we present can be helpful in research on minimax
estimation of general location parameters, particularly for absolute error loss.
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