ON THE DETERMINACY OF POWERS,
PRODUCTS AND CONVOLUTIONS

by
Anirban DasGupta*

Purdue University and
University of California, San Diego

Technical Report #97-21

Department of Statistics
Purdue University
West Lafayette, IN USA

November, 1997

*Research supported by NSA grant MDA 904-97-1-0031



On the Determinacy of Powers,
Products and Convolutions

Anirban DasGupta*

Purdue University and
University of California, San Diego

Abstract

It has been known for sometime that the cube of a normal random
variable is not determined by its moments in the sense of Hamburger.
Similarly, convolutions of determined random variables need not be
determined. In this article, we give some general results on the deter-
minacy and indeterminacy of powers, products, and convolutions of
random variables. The results apply to some common distributions as
corollaries, including the normal, logistic, and the double exponential.

The central theme is that slight perturbations of a determined
random variable stay determined, but adequately large powers are
typically undetermined. For convolutions, the one with the dominat-
ing tail will typically determine the determinacy of the convolution;
some results of Simeon Berman on tails of convolutions are used to
show this. It is also shown that the product of two iid normals is
determined while the product of three is not. This latter result needs

some work as the density of the product of three normals is highly
complex. On the other hand, we show that the product of just two
iid double exponentials is already undetermined.

The methods include computation of Krein’s entropy integrals and
use of the familiar Carleman conditions. Most of the results are illus-
trated by further examples.

*Research supported by NSA grant MDA 904-97-1-0031



1 Introduction

Theory of moments has flourished since the publication of the first examples
of undetermined measures by Stieltjes about a century ago (Stieltjes(1894)).
Korner (1990) says: “I always regarded this as a curiosity until I saw Yves
Myer applying it to wavelets.” For a lovely all around discussion of how
moment theory has been greatly useful in probability and statistics, see Di-
aconis (1987). One should also see Kemperman (1968, 1972, 1987), Karlin
and Studden (1966), and Stoyanov (1987) for careful developments of some
of the techniques, the associated geometry, and interesting examples. Stoy-
anov (1987) in particular is largely responsible for making some of the most
applicable results of Krein accessible to a large audience (one can see the
classic reference Akhiezer (1965) for much of Krein’s work on moment the-
ory). It will be useful and nice to have a source with illustrative examples
describing the fundamental techniques of moment theory and how they apply
to statistics and probability; this appears to be still lacking.

It is well known that the N(0, 1) distribution is determined; frequently one
simply states this as Z is determined if Z ~ N (0, 1). Indeed, with the solitary
exception of the lognormal distribution, the common statistical distributions
are generally determined. In two interesting articles, Berg (1985, 1988), it is
shown that convolutions and powers of determined random variables may be
undetermined. In particular, Z* is undetermined if Z ~ N(0,1). Likewise,
|Z|* is undetermined as a Stieltjes moment problem if & > 4 (i.e., there
exist other nonnegative random variables with the same moment sequence if
o > 4; if the restriction of nonnegativity is removed, a > 2 suffices. That is,
|Z]|* is undetermined as a Hamburger moment problem for & > 2). The set of
all measures with the same moment sequence is convex and weakly compact
and generally admits a choquet representation. Explicit description of all the
extreme points of this set is generally impossible, but some special extremal
measures and their Stieltjes transforms can be described (in principle). These
are the Nevanlinna extremal measures, all discrete. See Akhiezer (1965), Berg
(1995), and Shobat and Tamarkin (1950).

This article considers the question of determinacy of powers, convolutions
and products in a bit more generality and attempts in particular to present a
bit of coherent structure to the interesting fact that Z is determined but Z3
is not. We show, by theorems and examples, that generally “slight pertur-
bations” of a determined random variable are determined, but large powers
are frequently undetermined. We also consider the corresponding natural



questions for products i.e., what can we say about the determinacy of H x;
=1

or H |z;|% if 21, 29, ..., z, are iid copies of a determined random variable?

In Section 2, we first give two illustrative results: one on powers and one
on products. The basic underlying density for these two results is ce~®/#1%,
for ¢,a,a > 0; for given « and a, ¢ is fixed but its expression is unimportant
for the results. It is shown that if T; are iid with the density as above, then

|a:z|°‘l is Stieltjes-determined if Z a; < 205 on the other hand a single
i=1

power |z is Stieltjes-undetermined if § > 2a. The two cases & = 1,2 are
special; for these two values of o, Krein’s entropy integral for |z|® is computed
and plotted to aid in the understanding of indeterminacy for § > 2a.

In Section 3, we give three general results. One says that if a random
variable z is determined, then a “nearly linear” monotone function h(z)
is also determined and an example shows that the near linearity cannot be
relaxed; one needs a minor condition on z. We give an application to Bayesian
Statistics: for estimating the unknown mean of a normal distribution, the
sampling distribution of a Bayes estimate is often determined by its moments.
A second result shows that the convolution of a N(0, 1) with another random
variable will often be determined. A third result says that (in addition),
under quite mild conditions on the density ¢(-) of €,Z+ € and € will be
simultaneously determined or undetermined. This result is derived by making
use of the order of tails of a convolution; see Berman (1992).

In Section 4, the central message is that high powers, on the other hand,
are generally undetermined. A result is proved that the cube of a convolution,
(Z+ €)?, is generally undermined when Z is N(0,1). Then we specialize to
the densities ce~2#l* of Section 2, and prove that if z;, ... , Tn, are iid from
such a density, and T,, = max(z1,...,Z,), then irrespective of the value of
n, T* is undetermined if & is odd and k > «, and it is Stieltjes-undetermined
if k is even and k > 2a. Thus, the threshold power between determinacy
and indeterminacy depends only on ¢, not on n. Thus for @ > 1, when the
density ce~®#* is log concave, a third power is undetermined.

The article closes in Section 5 with the result that if 2,...,2, are iid

N(0,1), then H Z; is determined if n = 2 but undetermined if n = 3. This
result is perhaps expected as the cube of a standard normal is undetermined;

however, since the density of the product of 3 is a complicated Meijer func-
tion, the result is not very easy to prove and depends on a saddle point



approximation. To demonstrate the subtlety of the topic, this is preceded by
the result that it only takes two iid double exponentials for the product to
be undetermined!!

To summarize, the main messages of our results are the following:

(a) If a random variable z is determined, then slight perturbations of z are
often determined and the determinacy of a convolution is often decided
by the dominating tail;

(b) If a higher odd power z%*! is determined, then z itself is also of course
determined;

(c) Large powers are often undetermined; in particular, for many log con-
cave densities, a cube is already undetermined. This includes, from our
theorem, the normal, double exponential and the logistic . In fact, the
cube of the maximum (and the minimum) of any number of iid random
variables of these types is undetermined;

(d) In some cases, products of a few (2 or 3) iid random variables are also
undetermined. In this sense, products of many and powers of one act
similarly.

In addition, the results are illustrated by examples and applications, includ-
ing one application to Bayesian Statistics.

2 Two Illustrative Results

In this section, we give two illustrative results on products and powers for
the basic underlying density

f(x) =ce™" ¢ a,0>0 -0 <z <00, (1)
The exact expression for ¢ = ¢(a, &) is unimportant.

iid

Proposﬂslon 1 Let z; ~ f(z) and o; > 0 given constants, 1 < i < n. Then

n
H |z;|% is Stieltjes-determined if Y- o; < 2a..
i=1 i=1



. Proof In the following, the notation ay ~ by will be used to mean that the
sequence ay = O(by) and it will be helpful to let us ignore explicit calculation
of constants. n

For given n, denote z = .Hl |z;] and denote the k** moment of z by [y

Thus, ’

n k T n
e ([l —fowpe-fiome. @
i=1

i=1 i=1

Now, for any S > 0,

o0 T (&) '
E\X|° = 2e/tse‘“tadt = constant —g>r7, (3)
0 ="
where the constant depends on «, but not on S. From (2) and (3),
n ngai+1}
Hy ™~ I1 2 g i1 (4)
=1 o

Applying Stirling’s approximation to the Gamma function, from(4) one con-
cludes on calculations

g

1
lu’kz:k ~ k 2a y (5)

and so ioj —171; = oo if i a; < 2. This will imply by the familiar result of
k=1 Bi i=1

Carleman (see Shiryayev (1980)) that z = ﬁ | X;|* is Stieltjes-determined if
i=1

1=

n
Z a; < 20.
1

Corollary 1 Let X; ~ f(x) as in (1). Then |Xy|® is Stieltjes-determined if
6 < 2.

The next result says that | X, | is Stieltjes-undetermined if § > 2c.. In this
result and the subsequent sections, two results due to Krein are extensively
used. We state them as lemmas; see Stoyanov(1987) and Berg (1995).



Definition. Consider X ~ f(z), a general given density f. If X is non-
negative, the entropy integral of X (or of f) is defined as

log f(z) -
T+ o) & (6)

otherwise, the entropy integral is defined as

)= [ LD g4 )

El(f) =

—00

Lemma 1 Let X be a real valued random variable with density f(z). X is
determined in the sense of Hamburger if and only if E5(f) = —oo.

Lemma 2 Let X be a nonnegative random variable with density f(x). Then
X s Stieltjes-undetermined (i.e., the moments of X can be duplicated by
another nonnegative random variable) if Ey(f) > —oo.

Proposition 2 Letz, ~ f(z) givenin (1). Then|X:|® is Stieltjes-undetermined
if 6 > 2a.

Proof: By a straightforward calculation, the density of ¥ = | X;|® is

9(y) = constant y5~! e W%

1 24
= logg(y) = constant + (3 — 1) logy —ay? (8)

(o 0]
Since f mdy, f \/_(1 LS —logy__dy) are both finite real numbers and f __y_\/_(l 5 W

is also finite if § > 20: it follows from Lemma 2 that ¥ = |X1|5 is Stieltjes-
undetermined.

Example 1. By Lemma 2, if the entropy integral E;(f) > —o0, then the

corresponding random variable is Stieltjes-undetermined. For the densities

\/—127'6“%2 and e, By(f) > —oo for the random variable Y = |X;|® when

6 > 4(2) respectively. It could be interesting to see a plot of E,(f) for these
two cases to see the convergence to —oo as § approaches the threshold value.
This is described in Figure 1.



3 Determinacy of Slight Perturbations

In this section, we give two results that convey the message that if a random
variable X is determined, then a slight perturbation is also often determined.
The perturbation could be a nearly linear function h(z) or a convolution
X+ €. Of course, the latter result is not always true.

Theorem 1 Let a real valued random variable X with a bounded density
f(z) be determined. Suppose h € C1(R) and there ezist 0 < § < K < oo
such that § < h'(z) < K for all z. ThenY = h(X) is determined.

Proof: Note that h(z) is monotone increasing due to the hypothésis. Hence
the density of Y is

A )
9(y) = W
=logg(y) = log f((h7'(v)) —logh' (h7'(y)). (9)

Also, by hypothesis, f is bounded and we may assume without loss of
generality in the following proof that f < 1; thus —log f > 0. Also note that
we may assume h(0) = 0 and that by hypothesis and an application of the
fundamental theorem of calculus, h%(z) < k%z2. Hence,

7 —log f(h~(y)) d

J Ty
_ : %}(—; K () da
- 5/ Iifif((x)
= 5/ _ioi ];(f) 11++1~:269252 dz
> min(1, )5 7 ‘—i‘fl}f—)d:c (10)



On the other hand, f Mﬁ/_)) dy > log 6 f Tz dy > —co. Hence,

+y

from (9), (10) and Lemma 1, f %y— dy = oo as f is assumed to be

determined. Now Lemma, 1 applies again and Y = h(X) is seen to be deter-
mined.

Corollary 2 Suppose X ~ N(0,1) and §(X) is the posterior mean of 6 with
respect to some prior CDF G. Then the sampling distm’bution of 6(X) is

determined by its moments if inf ( > log m(m)) > —1 and sUp ( 5 log m(:c))
o0, where m(zx) is the marginal density [ — Wors —3(e- e)sz’(H).

Proof: It is well known (see Brown (1986)) that 6(z) = z + & log m(z).
So under the hypothesis of Corollary 2, inf §’(z) > 0 and sup&'(z) < o0. §
certainly belongs to C1(R) (in fact it is in C(R); see Brown (1986) again).
So Theorem 1 implies the assertion of Corollary 2.

Remark. For many common choices of the prior G, the conditions on
logm(z) in Corollary 2 are verifiable. These include all normal and dou-
ble exponential prior distributions. We could not verify if these conditions
hold for ¢ prior distributions as well.

Example 2. Consider Z ~ N(0,1) and the function h(z) = e***¥* | where
A > 0 and K is any nonnegative integer. h'(z) diverges near z =0 as well as
at the two tails. Calculation shows that h(z) is not determined. Thus a very
nonlinear function of a determined random variable need not be determined
(of course, 23 is another example of this).

Instead of a functional perturbation, one may look at random perturba-
tions, like convolutions. One result is given in the following proposition. The
result can be stated in a more general form.

Proposition 3 Letz, € be mndom variables with moment sequences {u}, {vi}-

If {ue} satisfies lim sup S hdr < oo and so does {vy}, then z+ € is deter-

mined.



N TEAN
Remark. If Z ~ N(0,1), then pgy = E(Z%*) = 21‘(%2) and so, by

1 , .
Stirling’s approximation the condition lim ksup ﬁp,;g < oo is satisfied. So if
—00
Z is convolved with any € whose moment sequence {1} satisfies the above

condition of Proposition 3, then Z+ € will be determined.

Proof of Proposition 3: Follows from the elementary inequality

Yoo = E|X+ €| <2% (g +vgy)
a1 i 4
> < 2 ()
. 1
= lim ksEEO ﬁ'yf,’g < co. (11)

Now one applies the Carlman sufficient condition for determinacy (see Shiryayev
(1980)).

The final result of this section says that if Z ~ N(0, 1), then a convolution
Z+ € will often be simultaneously determined or undetermined with €.. The
restriction to Z ~ N(0,1) can be removed by saying that the convolution
has often the same determinacy character as the one with the dominating
tail. We also take € to be symmetric only for convenience .

Theorem 2 Let € have the density function g(| € |) which satisfies:
(i) For every 6 > 0,q(x)e®®” is increasing for all sufficiently large x;

(i) q?'(%) is of reqular variation;

(iii) g(z) is continuous and ultimately monotone;

) Tim 2@)
(w) i % >0
Let Z ~ N(0,1) and let f(z) = (¢*q)(z) denote the density of the convolution
xz = Z+ €. Then the entropy integrals of X and € converge or diverge
simultaneously.

Remark. Many logconcave densities (which necessarily have all moments)
with tail heavier than that of a normal satisfy conditions i-iv.



Proof of Theorem 2:  Under condition (i), (3.18) of Berman (1992) holds,
and (3.19) in Berman (1992) follows from conditions (iii) and (iv) on a bit
of calculations. So by Corollary 3.3 of Berman (1992), Theorem 2 follows, as
we make assumption (ii) of regular variation as well.

4 Indeterminacy of Large Powers

In this section, we give a few results that indicate that large powers are often
undetermined. In particular, there is something special about the third power
and for many logconcave densities, the cube is undetermined. However we
give a more general result on large powers.

Theorem 3 Let X be a real valued mndom variable with density p(z ) and
suppose for some a > 1, and a > 0, =+ @ satisfies the growth condition - ( 5 <
el Let € be any other random wariable and suppose both X, € have all
moments. Then T?*+1 is undetermined whenever 2k+1 > a, where T' denotes
the convolution X+ €.

Corollary 3 For the normal, double exponential, and logistic densities, the
cube is undetermined.

Proof of Corollary 3: This will follow from Theorem 3 as o = 2 works
for the normal and o = 1 for the double exponential and the logistic (take
€= 0).

Proof of Theorem 3: Let f(¢) denote the density of the convolution T
and G the cdf of €. Then,

f(8)
)

[ pt— €)dGee)

= log f(t) = logEgp(t— €)
> Eglogp(t— €) (by Jensen's inequality)
1
= —1 t) < Egl < aFglt— € |* 12
og f(t) < glog oy <@ ol | (12)
Since o > 1, pointwise,
t—el* < 227(|tl* +| € %)

= —log f(t) < a2*7'(|t|*+ E¢| € |%) (13)

10



Now, the density of Y = T%+1 ig

g(y) = constant. y*fl%?f f (yTlﬂ)

log [y| —log f (y7)  (14)

= —logg(y) = constant + 2
S9W = 2+ 1

By (13),

T —log f (y#)
/ 1+9y2 @

-0

< constant.

(o o] o [+ ] .
B |€ |a/ 1 du+ / |y|2k+1 g
—00 -0

<o0if 2k+1> 0. (15)

1+y2 1+y2
if 2k +1 > @, and hence Y = (z+ €)%**1 is undetermined if 2k + 1 > a.

A very similar argument gives the following result for the particular den-
sities ce~®#l* previously considered in Section 2. Note that if the density is
already in this exponential form, then we do not need the restriction o > 1.
The thing worth mentioning is that the result is about the powers T2+ of
the maximum T = T, of n iid random variables z, ..., z, but n has no role
in the indeterminacy result.

Since T Lelvl 1y < 00, it follows from (14) and (15) that — T el 1y « o
—00

Proposition 4 Let zy,...,z, be iid with density f(z) asin (1) and let T =
T, = max(Ty,...,Tn). Then T**L is undetermined if 2k +1 > o

\
J

We omit the proof.

Remark. From Proposition 4, it will follow for instance, that not only the
cube of one normal, but the cube of the maximum (and the minimum) of
any number of normals is undetermined.

5 Product of Random Variables

Since the square of a normal is determined but the cube is not, one may
surmise that the product of two iid normals is determined but the product

11



of three is not. We close the article by showing that this is indeed the case, -
but indeterminacy of the product of three needs quite a bit of caculation. It -
is almost certainly true that the product of four or more iid normals is also
undetermined. The density of Y = Z,2, is KOT(y) where K, is the Bessel K
function and the density of Z;2,73 is a complicated Meijer function. They
are plotted in Figure 2 and Figure 3. But first we give a rather curious result.
For iid double exponentials, the product of just two is already undetermined.

Proposition 5 Let X, Xy be iid double exponential with the density %e"z',
—00 < x < 00. Then X1X, is undetermined.

Remark. One can anticipate Proposition 5 from the fact that the Carleman
sufficient conditions fail for X, X5.

Proof of Proposition 5. Step 1. By a direct computation using the
transformation (X3, X5) — (u,v) where u = X1 X, and v = Xy, the density
of u is

glu) = constant./e‘l'vlﬂ_“ v dv
0
= constant. |u|K> (2 |u|> (16)

(pp 340, Gradshteyn and Ryzhik (1980))
Step 2. For z > 0,

T, a ¢ c3(2)
= 4 — 142422
Ky(2) 5y © { +— 2 e } (17)
where c¢1,c3 > 0, and c3(2) > 0 and bounded. (pp 963, Gradshteyn and
Ryzhik (1980); it is necessary to use the fact 0 < 63 <1 in that page).

Step 3. From (17), for sufficiently large z > 0,

Koz 2 [2 t = if (sey) (18)

Step 4. Substituting (18) into (16) and making the change of variable 24/|u| =

oo o0
x, one sees [ :11—0_%#2 du=2{ #fgzu—) du < oo and so by Lemma 1, the
—00 0

Proposition follows.

12



Theorem 4 Let Z1, Zy, Z3 be 1id N (O, 1). Then Z,Z, is determined and
ZhZa 73 15 undetermined. .

Proof: From a direct calculatlon of the moments one can veryify the Car-
leman condition lim sup 5 L (E(2,25)%)% < 00 and so Z; Z, is determined.
k

To see that 712,75 isoo undetermined, one needs an evaluation of the order
of the tail of Z;1Z,7;. This is done by studying the tail of log|Z,Z,7;| =
X1+ X2+ X3 (say), where X; = log|Z;|. The saddlepoint method is used; see
Reid (1988) and Jensen (1988) for a description. We will use the notation
T = IR § — g1 + 29+ 23,w = €5 = |Z;7Z,73|. The following facts,
stated together in Step 1, will be useful in the subsequent steps. z > 0 in
every statement in Step 1. The basic goal is to show that the tail of the
density of Y = Z,7573 is of the order e —oy?/ ; then one uses Lemma 1.

Step 1. (i) Let zp( ) = LlogT'(z). Then ¥(z) = logz + 0(;), v~ (z) =
0(e*), and ¢¥'(z (%) see pp 943 in Gradshteyn and Ryzhik (1980));

(ii) If fi(z) = 0( ), 91(z) = 0(g2(z)), and g1(z) — o0 as z — o0, then
f1(g1(z)) = 0(g2(z)).

Step 2. The moment generating function of S = log|Z;Z,7;| equals
1/ 641\
- S\
M(t) = B () = — (1“—-) . (19)

Step 3. Let K(t) = log M(t). Then K'(t) = 34 (t—;—) and so the solution to
K'(t)=7%is

£ = g(z) 2 29 (%_‘f' _1 (20)

Step 4. . s N

@) “

Step 5. k”(t)[ B §¢’ (t_+_1) B §¢, <¢~1 (?_T_)) (22)
t=t 4 2 ) 4 3

13



Step 6. By employing a saddlepoint -approximation (see Reid (1988)) the
density of T is

1

5@ ~ ( 1 )5 3k(D—i2)
N 1 A3losT (v~ (Z))-z(29(E)-1)} (23)

Step 7. By using Step 1, the density of S = 37 is
9 25 '
f5(S) ~ e (T (%)) 7267 . 8 (24)
Step 8. The density of w = 5 is

g(w) ~ w% (F (w%))g 6_2“’% logw

Ol

- w2 (25)
Step 9. .
2 2 2 1
logI‘(wg) ~§w9logw—w9 —§logw (26)
(see pp. 940 in Gradshteyn and Ryzhik (1980))
Step 10. From (25) and (26),
8
log g(w) = =3 logw — 9w$ + 0(1) (27)

Step 11. Since Y = Z;Z,Z3 is symmetric, (27) spe01ﬁes the taﬂ of YAVAYA

for both positive and negative values and since f T +y ——=dy, f iy 2dy and

f log lyzl
o0 I+y

and so Y is undetermined. Y

dy are all finite real numbers, one has E5(f) (of Lemma 1) £ —oo

14
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Fig 2
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Density of Zl ZQand Z. 2223, Zy ~ N{(0,1)
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