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ABSTRACT. Let {Y(t),—00 < t < o0} = {Xg(t),—00 < t < 00}, be a se-
quence of Gaussian processes with o2(h) = E(Xp(t + h) — Xx())?. Put ¢*2(h) =
max;>1 02(h). M.Csbrgs et al.(1994) studied moduli of continuity of Y'(-) when it
is an [°-valued process under the condition that o*2(h)/h® is quasi-increasing for
some o > 0. In this paper we establish the large increment result for the [*°-valued
process Y (-).

1. Introduction.

Let {Y'(t), —00 <t < 00} = {X(t), —00 <t < 00}, be a sequence of contin-
uous Gaussian processes with stationary increments o2 (h) = E(X(t+h)— Xi(t))2.
Csorgd and Shao(1993) and Csorgé,Lin and Shao (1994) established moduli of con-
tinuity of Y'(-) as an [P-valued process (1 < p < oo) and [*-valued process respec-
tively. For the former, the large increments are also studied under the condition
that o(p, h)/h® is quasi-increasing for some o > 0 where o (p, h) = (3 o0, o (h))*/P.
Lin (1996) established the large increment result when o(p, k) is bounded. What
about the large increments for the {*°-valued process Y (-})? We intend to answer
this question in the paper.

2. The large increments of [*°-valued Guassian process.

Throughout this paper we assume that EX(¢) = 0 for any ¢ and every & and
that 02(h) = E(Xg(t+h) — X(t))? are nondecreasing in h and strictly positive for
h > 0. Put 0*2(h) = maxy>1 02(h). In this paper, we establish the large increment
results for Y(-) as an [°-valued process with both infinite ¢*(h) and finite o*(h).
We pay more attention to the latter case.

As the first part, we consider the case of infinite o*(h),i.e., we assume that for
some o > 0

(2.1) 0*?(h)/h® is quasi-increasing.

Let ar,0 < ar < T, be a continuous function satisfying ar — 00 as T' — o0.
Let yr be the solution of the equation

(2.9) i( aTyr )U‘Z(GT)/aﬁ(aT)_ ar
' =\Tlogo*(ar) " Tlogo*(ar)’
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The following theorem is an analogue of theorem 1 of [1] in the case of large
increments.

Theorem 1. Suppose that there exist positive numbers hg, A and B such that for
any h > ho

(2.3) > (ox(m)/o*(h))* < B.
k=1

Then

(2.4)

limsup sup sup max [k (t +5) - Xa(t)] <1 a.s.
T—co 0<t<T—ag 0<s<ar k>1 o*(ar)(2log((T loga*(ar))/ar))/?

If condition (2.3) is replaced by conditions that there exist positive numbers hy, ¢,
To and C so that

(2.5) inf

0<s<h ak(s) - O'k(h)
for any h > hy and every k> 1 and
(o) *2 2
ar o**(ar)/ox(er)
2.6 _—
(26) ;(Tloga*(arp)) <C
for any T > Ty, then (2.4) remains true. If, in addition, Xi(-),k = 1,2,---, are
independent and for 0 < t; <ty <tz <y,
(2.7) E(Xx(t2) — Xe(t1))(Xe(ta) — Xi(t3)) <0
and
. log(T/ar)
2. 1 — =
(2.8) 750 loglogo*(ar) o
then
. le(t-}-S)—Xk(t)l
2.9 lim su su =1 a.s.
GO N S ar o, B 5 ar) @ og (T an))
and
(2.10) limsup sup [X(t + ar) — X, (0) =1 a.s.

T—oo 0<t<T—ar k>1 o*(ar)(2log(T /ar))*/?

Remark 1. Condition (2.3) is a correspondence of condition (2.2) of [1] in the case of
large increments. It is understandable by comparison with (2.11) in [1] and noting
that o*(h) — 00 as h — oo.

Remark 2. As an analogue of Lemma 1 in [1], we have

1 > ak(aT) A

for T satisfying o*(ar) > e4/2. Hence

(2.11) yr >B71>0
2



by (2.3) for large T. Moreover in the same way in [1], we can show the following
facts: yr < 1 and the solution of equation (2.2) exists and is unique under condition
(2.6), which is implied by (2.3).

Proof of Theorem 1. There is d > 0 such that 6*2(h) > dh? for any 0 < h <1 (cf.
(2.9) in [1]). If Ao > 1, then for any 1 < h < hg, 0*2(h) > 0*2(1) > h20*2(1)/R2.
Hence, putting d' = d A (6*2(1)/h3), we have *2(h) > d'h? for any h < hg, which
implies that for h < hg

o0 o]

(2.12) > (orm)/o"()* < &~ hA Yo (ho) =: dih~4,
k=1 k=1

where dy = d'~*/ Yore; o (ho).

Let 6 > 1. Define A; = {T : 0! < o*(ar) < 6%}, 4ij = {T : 97 < T/ar
< 09T € A;}, aij = sup{ar,T € Ay}, Tij = sup{T : ar = aij, T € Ay},
T}; = sup{T : T — ar = suppea,,(T ~or), T € Aj} and J = max{j : 67 <
maxrsoI'/ar}. Then J < oo and
(2.13)

limsup sup sup max | Xk (2 + ) — X (D)
T—oo 0<t<T—ar 0<s<ar k21 0*(ar)(2log((T logo*(ar))/ar))1/?

< limsup sup sup sup [ Xk (t + 8) — Xi(2)]
T oo 1<<J 0<t<T—ag 0<s<ai; k21 6771(2log(67-1 log 6i~1))1/2
ij

< limsup sup sup sup max 02| X (t + 5) — Xi(t)]
T imoo 1<G<JT 0Kt<TY —agy 0<s<ai; k21 0*(ai;)(21og((T;; log o*(ai;))/ai;)1/?
ij

For any € > 0,7 = r(e) > 0 will be specified later. Put r;; = a;;/2". For any ¢t > 0,
put ;= &5 = [t/r,-j]nj. Write
(2.14) | Xi(t +5) — Xp ()| < | Xe((E + 5)r) — Xi(tr)]

+ D Xk ((t + 8)rri1) = Xt + )r)| + D 1 Xk (brinr) = X (g
=0 =0

Similarly to (2.14) in [1] and noting (2.11), for large T', We have
(2.15)

[ Xk ((t+ 8)r) — Xi(tr)]|
:=P sup sup
Po {OStSTi'j—aT!. 0<s<as;—ry; k21 0*(ai;)(2log((Ti; log o*(aij))/ass))*/?
>1 +€}
| Xk ((E+ 8)r) — Xi(tr)|
<P su su m
= {OStSTi'jp‘“aT{, 0<s<any—r; K21 0% (as;)(210g((Tyj log * (aiz))/ (@ijyrs; )2
>1 +e/2}
aT!. | =@ eN2(,  Tijlogo*(ai;)\ o**(asy)
< —22 Y "expy—(1+ =) (log =~ -~ =
= ; { ( 2) ( S ayun, )Gﬁ(az’j)}
aty, ay  \Me_ T\
< idg2r i <el=H *(ai))"tE
< (Tij 1oga*(%)) _c(%_) (logo* (as3))

< 9 (ilogf) 71 F,



If Tj; < T;; (here, c stands for a constant whose value is irrelevant). In the contrary
case we have

Ty < Ty < Paqy, < 0Ty,
and hence (2.15) is also true. Combining the lines of proofs of (2.15) in [1] and
(2.15) and using condition (2.3) instead of (2.11) in [1] we have
(2.16)

" p [Xu((t + 5)2) = Xi(t)|
0StST,—agy aij—rij<sas; k21 o*(ai;)(2log((Ti; log o (aij)) /ai;)) /2
25/2}
T!. . 24+A , o* L [9T) A o\ —A
X ) () (3
Qij T,,;j IOgO' (aij) o (aij) 27
cTy;as

< chii72A)

= i Tog o (aig) FHA
provided r and T are large enough. Under conditions (2.5) and (2.6) we also have
the same bound.

Consider the first series in the right hand side of (2.14). Let b,;; = sup{b :
agj/2rHliogabeisltl > pot and lo = [logy(brijaiz)]. Let D = 3/ci, af = zf; =
2D log(T;jlog o*(as;)/ai;) + 2(1 + A)l. If condition (2.3) is satisfied, then by (2.3)
and (2.12)

(2.17)

D2 = P{ sup sup ma,xz | X5 (¢ + 8)rt141) — Xu((E + 8)rti)|
0<t<T,; —-aT, 0<s<as; k=

> lea* (as /2“‘“’1)}

! 2(q.; Jor+Hi+1
S L (i) el (e )
% 120 k=1 Tijlogo~ (G’ZJ) op(ai; /2r )

Tijlog o*(as;) }
QijYT:;

-log

T!. _ Uk(ai,/2r+l+1) A
SC CLZ (T’L] lOgU*(az ) (z+ Z )Zzl (1+A)I(W)

=0 I=lo+1 k=1

!

T!. Qis
e - M(—"Y Bole— (AN dy 2te—(1+A)
=7 ay (Tij log o*(ai;) ) (Z e lzo;kl 1
. (aij/2r+l+1)—A)
TI Qi 2 i

<ec. .29 ( % < 09 (s -2

=¢ Qij (Tij loga*(aij)) < cf™(ilog)
for large » and T'. Also, if conditions (2.5) and (2.6) are satisfied, we have the same
bound.
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For the second series in the right hand side of (2.14), we also have the same
conclusion.
Moveover, it follows from condition (2.1) that

Tijlogo*(as;) )1/2
aij

= * T € «
(2.18) > " z10*(ai;/27TH) < 2° (az'j)(log
=0

provided r is large enough (cf. (2.20) in [1]). Combining these estimators, we obtain

iz]:P{ sup sup max | X% (t+ s) .10

0<t<T!, ;o 0<s<ay; k21 0*(ai;)(21og((T3; log 0*(aiz))/ai;))'/?

i=1 j=1
>1+4 26}< 0.
Therefore by the Borel-Cantelli lemma, the right hand side of (2.13) is bounded by

one almost surely. (2.4) is proved.
Now we prove (2.10). Having (2.4), it is enough to show

| Xe(t + ar) — X (t)]
2.19 lim su su >1 a.s.
(2.19) T——)oop0<t<’1P ar k21 0*(ar)(2log(T/ar))1/2 =

Using (2.8), Slepian’s lemma and independence of {X(-)}32,, we have for T, (1 o)
large enough
(2.20)

P{ max | XE(E+an,) = X ()] <1_€}

su
0<t<T, ar, ¥21 0*(ar,)(210g(Tn/ar; )/

Xi((j + Dar,) — Xx(jar,)
< P n n
= {ogéni?’;’?m W21 o*(ar,)210g((Tn log 0*(az,))/ (a1, yr ) /2
[Th/ar,] oo

I e ]

<1~£}

j=0 k=1
[Tn/ar,] I .2 2
ar, YT, (1—¢e)o"*(az,)/ox(er,)
= ],I;-[) exp{ ;(T logo*(ar, )) }

n . —€ '\ &/
SGXP{‘%(#W)I }Sexp{‘((%)”}*“

as n — oco. Hence (2.10) is proved.

Finally we prove (2.9). Recalling (2.4), it suffices to show that the ” liminf”
is not less than one almost surely. Let aj; = inf{ar,T € Aj}, tj; = inf{T : ar =
ai;, T € Ayj}, tij =inf{T : T — ar = infrea,; (T — ar),T € A;;}. We have

35
| Xkt + s) — Xi(2)]
liminf su sup max
T—oo0 0<t<’1P—aT o<s<paT k>1 o*(a7)(2log(T/ar))1/?
> liminf inf sup sup max |Xk(f +5) = Xk (8|
100 155 0<t<tij~ar, 0<s<al, k21 01(2logf7)1/2
> liminf inf max Imnax | X (( + l)a’éj) - Xk(la;j)l
T i—soo 15T 1§l5t.;j/a:.j k>1 02o% (a"’l,])(2 log((t‘lu log U*(aij))/(a;]ytij)))l/z .
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Then, similary to (2.20) we have
Pl max max | Xk (I + 1)ay;) — Xu(laj;)]
0<i<ts; /oy, k21 0 (al;)(2log((ty;log o* (ai;))/ (aj;ye, )/

127} a§j o
< { - (—_—) }
= SPUTg, \e; log o™ (aly)

< exp{—(t;/aj;)/* log o*(a};)} < exp{~6UV/(ilog6)}.

The second inequality is due to (2.8) again. Hence by the Borel-Cantelli lemma,
(2.9) is proved. This completes the proof of theorem 1.

<1—€}

The second part is to consider the case that 0*2(h) — 0*2 < co as h — co. For
example, if X;(-) ,k=1,2, -, are Ornstein-Uhlenbeck processes, o*(h) is bounded.
Let 02 = limp—,00 02(h) and 2zr be the solution of the equation

o arar o*2 /o2 ar
(2.21) Z( = ) =2
k=1

Let « > 1 be given, m a positive integer. Put

r
o

Lz =log, ---log,,d(m,r) = o®
mfold mfald

Theorem 2. Suppose that 6*(h) = 0* as h — oo and that there ezists A > 0 such
that

o0
(2.22) > oft < oo
k=1

And suppose that there ezist 2 < a < e,0 < § < 1— 1/ and integer m > 1 such
that

(2.23) / o* (6~ )dz < oo,

1
(2.24) ar < Td(m, (L T)H/*)71,
Then

. | Xk (t + s) — Xi(t)]
2.25 lim su su su <1 a.s.
(225) T—)oopostg’lP—aT ogsgpzw k21 o*(2log(T/ar))V/? ~

If, in addition, Xi(-),k =1,2,---, are independent and (2.7) is satisfied, then
| Xk (t +5) — Xi(t)] _

2.26 lim su su ax =1 a.s.
(226) T_’°°0§t§’1P—aT ogsgpaT k>1 o*(2log(T/ar))*/?
and
— Xi(t
(2.27) limsup sup [ Xk (t + ar) £l =1 a.s.

ax
T—oo 0<t<T—ar k21 0'*(2 log(T/aT))1/2

Remark 3. It is easy to see that

,--1+(LmT)—1+5+1/a
d(m, (LmT)6+1/a) — T(LlT)_1+(L2T)
6



Put d(m, (LyT)*+1/2) = TEAT) ™™ Then o(T, m) — 0 and —"’07(1’773:)11 —+0 as
T — oo. Hence, as T' — 00,

d(m, (L T)*1/%) = o1 T "™ < (D) for any & > 0,

d(m + 1, (L 7)Y ) d(m, (LmT)‘”l/") — 0.

Proof of Theorem 2. Without loss of generality, we assume m > 3. Similarly to
Theorem 1, condition (2.22) guarantees that the solution of equation (2.21) exists
and is unique. Moreover, there exists 0 < b < 1 such that zr > b.

It is easy to see from (2.24) that

log(T'/ar)
(2.28) Toglog T =00 as T — co.

For § > 1, define A; = {T': 6"~ < T/ar < 67}, a; = sup{ar : TEA} =
sup{T': a7 = a;,T € A;} and Tj = sup{T : T — ar = supgey, (T — ar),T }
Given r > 0 for any ¢ > 0 put ¢ := t.(a;) = [td(m + 2,7)/a;](a;/d(m + 2 ,T))-
Write
(2.29)

[ Xkt + ) = Xi ()] <IXk((t + 5)3) — Xe ()]
+ Z | Xk ((t+ 3)i+z+1) - Xi((t+ 3)£+z)|
=0

oo
+ Z |Xk(t3~+L+1) Xk(tr-l-l)'
=0

For § > 0in (2.24), let 4, satisfy 1 —1/a— 6 < 61 < 1—1/a. And let e(ar) =
d(m — 1,(Lpar)t=%)/log, ar, 7 := r(a;) = Lm+2a5(a’) ' = r'(a;) = Lmy20a;.
Then d(m + 2,7) = a]-(a’) and d(m + 2,7') = a;, moreover,

(2.30) 0 <t =1 = Linyaa; — L[(Laa;)(1 + 225y,
Lzaj
=-I;(1-6)< L
Similaryly to (2.15), we have
(2.31)
, Xe((t+s)l) - Xp(t
°7 P{Ost;‘;}ﬁ'aﬂ 0<sga; K21 | o ’EE2 108()T3‘/ aj))l(/z :

>1 +€}
!
] a; 2e(aj)+ — 2, 3)+ —
G d(m + 2 () <4l T T < 5030
if T;/T; < 1. In the case of T}/T; > 1, we have
T; < T; < #aq < 67a; < 6T;.

<

Hence (2.31) holds true in any case provided # < 5/4. By condition (2.24) we
obtain

2¢e(a; 2 2e(a; 2 a\—
a; (a;)+e/ < Tj (aj)+e/ d(m, (LmTj)J—H/ ) e/2 < T;/z.
7



Inserting it into (2.31) yields
po < 5(Tj/az)*/? < 56=G-De/2,

Let z,% := z;}z = 4log(Tj/a;) + 2(1 + A)d(m + 1,7 + 1 + 1). Then we have
(2.32)

[ o]

'::P{ su su max| (Xk ((t+s X ((t+s )‘
Da OStST;p—aTJ( 0<s<pa IZ ( )r+l+1) (( )1‘+l)

N )

“'ﬂ

co o0
< _.7( 2 Z d m+2,r+1+ 1)6—-(1+A)d(m+1,r+l+1)
1=0 k=1

20*2(aj/d(m + 2,7 + 1+ 1)) T;
-exp{ (a,zc(aj/d(m+2,r+l+1)) _2)10gaj}

! OO
< 4a; Tj S d(m+ 2,7 + 1+ e GHAdmLrY
LT

oraj/dim+ 2,7+ 1+ 1))\4
Zl(a* (aj/d(m +2, r+l+1))) '

Noting 0 < 7' — r < 1 (see (2.30)), we have
aj/dm+2,r+1+1) <dm+2,7")/dm+2,r+1) <1
for [ > 0. Hence, using the fact that 0*2(h) > dh? for 0 < h < 1, we obtain
o*(a;/d(m + 2,7 + 14+ 1))"4 < d~4%(a;/d(m + 2,7 + 1+ 1))~4

and further

Ed—A/21-A

pIZ < TJ Z(a/e)(1+A)d(m+1,r+l+1) < Ce_j.
J 1=0

For the second series of the right hand side of (2.29), we have the same estimator.
Let 8 > 0 satisfy r' —r + 8 < 1. Then
(2.33)

> d(m+ 1,7 +141)"%0*(a;/d(m + 2,7 + 1+ 1))
=0

3 - 1/2\ ~1 pd(m+1,r+i+1)/?
< Z(l_ (d(m+1,r+l+1 /3)) ) / o
e dm+1,r+1+1) Aot L)1/

< (1 - (d(m +lLr+1- g))1/2) _l/oo o (admHLr) ="y gy
- d(m +1,7+ 1) d(m+1,r+1—p)1/2

(1_ dm+1,7+1-0)

€

IN

m + )1/2) / *( y2)
d(m + o\ dy
( 177' 1) d(m+1,T+1—B)1/2—d(m+1,r’)1/2

IA
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provided T is large enough by condition (2.23). Furthermore, obviously, (2.33)
implies

o o]

Zcr*(aj/d(m +2,r+1+1)) < 20"
=0

co| ™

for large T'. Then

00 .\ 1/2
Zw;a*(aj/d(m+2,r+l+1)) < 0*(210g%) .
]

=0

| SR

Combining these results, we obtain

oo
X (t - X5 (t
P{sup sup sup max [Xe(t + 5) k(l )2| <1 +25}< 00,
521 0<t<T!—az 0<s<a; k21 o*(21og(T;/a;))V/
J

i=1

which implies (2.25).

The proofs of (2.26) and (2.27) are similar to that of (2.9) and (2.10) respec-
tively when we use (1+¢)o*(ar) instead of o* (noting o* < (1+¢)o*(ar) for large
T, so they are omitted. Theorem 2 is proved.

Remark 4. Employing the similar method we can relax the restriction (2.3) for ar
in [2],i.e., we can use a close to e enough instead of o = 2.

As an application of Theorem 2, we establish the large increment result for [°°-
valued Ornstein-Uhlenbeck process. Let {Y (¢), —00 < t < 00} = {Xk(t), —00 <t <
o0}, be a sequence of independent Ornstein-Uhlenbeck processes with coefficients
Yk > 0 and A, > 0. We have o2(h) = %\lk’i(l —e ™M) and 032 = %{Yki, k=1,2,---.
It is well-known that (2.7) is satisfied.

Corollary 1. Suppose that there exists A > 0 such that

o0

Z(’yk/)\k)A< 00

k=1
and that there exist 2 < a < ¢,0 < § < 1— 1/ and integer m > 1 such that (2.23)
and (2.24) are satisfied. Then

| Xt +5) — X ()] _

lim su su = a.s.
T—oo OStS’IP—aT OSSSI:lT k21 o* (2 log(T/aT))1/2
— X (t
limsup sup [ Xe(t + ar) 10] =1 a.s.

max
Too 0<t<T—ar k21 0*(2log(T/az))!/?
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