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by

Burgess Davis

Summary

Let b; be Brownian motion. We show there is a unique adapted process x; which
satisfies dz; = db; except when z; is at a maximum or a minimum, when it receives a
push, the magnitudes and directions of the pushes being the parameters of the process.
For some ranges of the parameters this is already known. We show that if a random walk

close to b; is perturbed properly, its paths are close to those of x;.
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1. Introduction

This paper studies walks on the integers which jump to one of the two nearest neigh-

bors according to the rules

p, ifn >0 and X,, = maxg<, Xi
P(Xpy1=Xn+ 11Xk, k<n)= { g, ifn>0and X, = ming<, X
0, otherwise.

The parameters p and ¢ satisfy 0 < p < 1 and 0 < ¢ < 1. These walks will be called pg
walks. A strong version of the invariance principle is proved, completing results in Davis
(1996), which did this for only some p and ¢q. The limit processes are shown to be the
unique strong solutions of certain equations which intuitively should, and as it turns out,
do, define them. This completes results of many authors. Chaumont and Doney have
independently, simultaneously, and differently proved this, in the paper Chaumont-Doney

(1998) published in this issue of this journal.

! Work partly supported by NSF.



This paper is organized as follows. Only the cases with reflection at zero are treated
first. We introduce these following Le Gall-Yor (1992). Then in Section 4, the softly

perturbed at both extrema motions are discussed. Random walks are treated in Section 3.

Put f*(t) = supg<s<; f(s)- Let 7 > 0 and § > —1. The following equations define,
path by path, a process v™¢ = ~.

i) Yo=T
ii) If v =7, and 7, > 0, t <y < s, then
(1.1)rp Ys — Yt = bs — by + § maxi<y<s(by — by).

iii) If =0, and v, <7/, t <y <s, then

Vs — V¢ = bs — by — mintgygs (by —by).

The argument that <y is determined by these equations is given in Le Gall-Yor (1992):
use ii) to determine - until the first time, call it T, that v hits zero, then use iii) to define
v until it equals 7., then use ii), and so on. We will also consider the equations (1)g g,
where now we insist that v, ¢ > 0, be continuous at 0, which is no longer implied by the

equations. The construction just given fails here, since it is not clear how to start, because

75 = 0.

Let F; = o(bs, s < t). We prove the following theorems, which hold for all § > —1,

unless otherwise noted. Throughout this paper « and 3 stand for strictly positive numbers.

Theorem 1.1. For each t > 0, lim, g0 |'yf"9 - 'yf’el* = 0 n probability.

This theorem and the next were known to Le Gall and Yor for the cases § < 1. See the
end of Le Gall-Yor (1992), and Carmona-Petit-Yor (1997). Le Gall and Yor encountered
the equations (1)p ¢ while studying the winding of three dimensional Brownian motion.
For all the cases §# < 1, and all ¢ > 0, |[y™° — 'ytﬁ’a| < |B — al, while if @ # B and 6 > 1,
e - 'yf ’9| is not bounded for any ¢ > 0. This follows pretty easily from the methods of
Davis (1996).

Theorem 1.2. There is a unique solution of (1.1)o ¢ which is adapted to the filtration F;.
Furthermore, if the filtration G, t > 0, satisfies Gy O F;, and that for each t < s, G; is

independent of by — by, there are no additional G; adapted solutions.
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It is easy to prove that v ’0, t > 0, converges weakly as r decreases to 0: Let € > 0. If
0 < o, B < ¢, and 74, T stand for the first hitting time of € by yef B0 then vfa’it, t>0,
and 'yf éﬂ_t, t > 0, have exactly the same distributions, and if ¢ is small the distributions of
7o and 74 are close to zero. Alternatively, a weak solution of (1.1)9 ¢ may be constructed
using the excursion methods of Perman-Werner (1997). So processes with the distribution
of the unique solution guaranteed by Theorem 1.2 are already known to exist and have
been studied. In fact, the distribution of these processes at fixed times ¢ is explicitly found
in Carmona-Petit-Yor (1997). At bottom, the results proved in this paper are concerned
with the stability of these processes. Theorem 1.2 does not imply that for almost every

Brownian path there is a unique solution of (1.1)g ¢, and in fact our method does not show

this. It is true, though, and proved in Chaumont-Doney (1998).

In Section 3 we show that if a fair random walk is embedded in b; in the usual
manner, and then perturbed by reflecting at zero and by tossing independent biased coins
with probability p of heads to determine the motion at maxima, then this perturbed walk
stays close to the unique solution v® with # = (2p—1)/(1 —p) guaranteed by Theorem 1.2,
in the usual sense that if you divide the supremum of the differences of the processes for
0 < k < n, by 4/n, the resulting random variable converges to 0 in probability. This is
stronger than and immediately implies weak convergence. This is extended to all pg walks
in Theorem 4.8. Partial results towards weak convergence are proved in Davis (1996),
Toth (1996, 1997), and Toth-Werner (1997), and in this latter paper it is announced that
weak convergence for a large class of processes, including pg walks, will be proved in a

forthcoming paper. The methods of Toth and Werner are very different from ours.

2. Proof of Theorems 1.1 and 2.1.

Throughout this and the next section we assume 6 > 1. Our arguments require only
minor modifications to handle the < 1 cases, just a few of the constants are different. In
addition the # < 1 results are included in the results of Section 4. Throughout this paper,
7, stands for inf{¢ : b; = z}. The following notation is used in this section. The numbers
o and B will satisfy 0 < a < 8. We designate fyf"o and v, 0 by ¢: and h; respectively,
and we put Ty = 0, Th;41 = inf{t > To;: g+ = bt = 0}, 4 > 0, and Ty; = inf{t > Tp;_1:

either g; = g; or hy = hf}. It is not hard to see that Ty < oo a.s., since a large enough
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decrease in b; will push both h; and ¢; to 0. Similar considerations show that T < oo
a.s. for every k. If this isn’t clear to the reader now, it will be after a reading of the
proof of Lemma 2.6. We put I', = |g7, = — A% |/max(g}, _,h7, _ ),n > 1. Define
Als, t] = max{b, — b;: s <z <y <t}

Lemma 2.1. For all0<s<t, and all T > 0,

(2.1) Als, t] < max{y"® — 'y;’e: s<y<z<t}<(@+1)As,t].

Proof: Shorten v7*° to ;. The left hand side of (2.1) follows from Yy — Yz = by —bg, which
in turn follows from its truth on intervals of the kinds considered in (1.1), g ii) and iii). To
prove the right hand inequality, suppose that s < u < v <t and v, —7y, = max{y;—7,: § <
y < z < t}, and that v, > 0, u < z < v. Then if ¢ = min(v,inf{y > w: vy = 7;)}, we
have b, — b, =¥, — Y4 > 0, and

=% =T =) + (Yo — )
< (04 1) max{by —by: ¢ <z <v}+by,—by
< (04 1) max{b; — by: ¢ <z < v}
< (0 +1)A[s, t]. O

Proposition 2.2. There is a number pu = p(0) > 0 such that E(T'p 1Tk, k <n) <Ty, on
{T'r, < p}.

This proposition is central to the proofs of the theorems. We do not know whether I',,,
n > 1, is a supermartingale. The next few lemmas will be used to prove Proposition 2.2

which is essentially restated as Lemma 2.5. The first of these is easy and essentially known.

Lemma 2.3. Let n = inf{t > 0: v = 0}. Then
(2.2) P((p)* > 7) = r= @07 > 1,

Proof: Designate ~ytl 6 by y:. Only (1.1), ii), is needed to determine y;, 0 < ¢t < 7. Scaling
and the strong Markov property for b; give P(y, > dly; > a) = P(y; > d/a),if1 <a <d.
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Thus P(y; > 7) = P(y, > r1/m)" and so what we are trying to prove is equivalent to

(2.3) lim n fnP(y, > /™ = —tnr/(0+1).

n—oo

Let w = r*/™ — 1 and recall 7, = inf{t: b, = z}. Then {7, /41y < 7_1} C {yp >/} C
{Tw/@+1) < T—(w+1)}- The probabilities of the first and last of these events are easily
computed, and (2.3) follows. O

Now at any T5,, n > 1, one of the essentially equivalent events

An = {gTZn = g;zn = hTZn S h;’zn}7

Bn = {hT2n = h;’zn = gTZn S g;an},

occurs. Let 6 > 0. We define y, = 'ytl ’0, as in the last proof, and a:f = z; so that
the distribution of (y:,x:), t > 0, is the distribution of (gr,_ ¢, hr,,+t), conditioned on
{1 =91, = 97,, = hny,, kT, =148} Precisely, x; is defined by the equations created
by replacing vo,7s, V¢, and y{ by zo, s, z¢, and max (z},1 + J), respectively, in (1.1), 4,
and by adding the rule that z; — 1 = b; for ¢ < min(7rs,7_1). Put ¢ = inf{¢: z; = 0} (note
¥ < n=inf{t: y; = 0}, recalling that > 1), and also put z;7 = max(z},1 + 6), and

|z — yj|

My= ¥ T
o max(x;b",y;‘/‘))

Lemma 2.4. The following inequality holds.

1494 6
(2.4) lim sup + EMgSm.

510 0

Proof. Note that |x;},‘ — yy| < 66, with equality exactly when 75 < 7_;. Now (2.4) is

implied by 5 08 ;
limsupljs_ E— < Y
810 Yy +2

which is of course equivalent to

1 1
2.5 limsupF— < ——.
( ) 510 y;‘l‘, 0+2
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Let v = inf{t: y; = 06}. Since yy < 04, v < ¢ and so y;; < y;,. Note also that y; 4 (1-64)
Yy, +06. Using these, Lemma 2.3 and scaling give
B < EL
y¢ yu
1
= Pyt < s Y)ds
0
1
_ / 1= [(1— 88)/(s~ — 06)]M/ @+
0
1
/ (1 — 51/ O+ s as 60
0
1
. O
0+ 2

Now put
Yo = inf{t > ¢: z, = mf or Ys = Y; },

3 = inf{t > 15: z; =0 or y; = 0},

g = inf{t > 3: z; =z or y, = yi'},
¢ =inf{t > ¢: z; =y, =0}, and
g — y¢|

max(xg',yg)'

Ns =
As mentioned earlier, the following lemma is essentially the same as Proposition 2.2.
Lemma 2.5. For every 0, there is w(0) = w, 0 < w < 1, such that if 0 < § < w then
(2.6) ENs <6/(1456).
Proof: We have N5 = MsI(€ < h2) + NsI(ho < € < hg) + Nsl(gs < €):=X+Y + Z.
Now clearly
(2.7) EX < EM;s.

Furthermore, since 0 =z, > yy — 06, if 66 < 1 we have

(2.8) Py < §) = EP(’sz < fl.7¢) < P(Tl_g5 < 7'_95) = 06.
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In addition, there is a positive constant C(f) such that
(2.9) 2 —yg| < C(0)8 on {92 <€ < u}.

To see this, first note that in [¢), 9], |£: —y:| is monotone and that lx:b'z —Yu | = |:r;/)" —yyl <
66. Now in [12,%3], only (1.1) ii) and its analog for x are needed to define z and y.
Considering the three possibilities zy, < yy, = Y, < ‘U;p:’ Ty, < :U;ZZ < Yy, = Yy, and

Ty, =T < Yy, < Yy, it is easy to check that there is a C'(6) such that |z; —y}| < C(6)4,

2 <t < 3. And of course |z — yf| = |z} —u} |, if 3 <t < ¢4 This, together with

the previous sentence gives (2.9), which with (2.8) implies

(2.10) EY < 6C(9)6%.

Also, since |y, — yy,| < C(6)4, it follows in the same way (2.8) was proved, that

P(ph4 < Elps < £) < C(9)8.

Together with P(13 < §) < P(v2 < £) < 64, this gives P(¢4 < €) < 0C(6)62, and since
Ns <1, this gives

(2.11) EZ < 0C(0)6°.
Inequalities (2.7), (2.10), and (2.11), together with Lemma 2.4, give (2.6). O
Lemma 2.6. Given 0 < € < 1, there exists 6 > 0 such that if 8 < 6 then

P(Tony1 <eand 'pyq <eforsomen>1)>1—¢.

Proof: Consider 6 fixed. There are almost surely four numbers 0 < r < s <t<u < ¢

such that the following eight conditions, which we divide into three groups, hold.
L i) b, = b}; i) by — b, < —(0+2)A[0,7]; iii) A[r, 5] < A[0, 7]

II. iv) by = min{by: 7 <y <t}; v) b — bs > [(202 + 1)/ A[0, 5]

ITL. vi) by = b};  vii) by — by < —(0 + 2)A[0,¢];  viii) Alt,u] < A[0,1].
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We now show that if 8 < A[0, 7], there is an integer n such that both T5,41 < € and

['pi1 < e. Since A[0,7] > 0 a.s., this will prove the lemma.

The three conditions of I, together with § < A[0,7], imply that 71 < s. For the
second condition insures that both g and A hit zero in [r, s], since neither g, nor h, exceeds
A[0,7] + (8 + 1)A[0, 7], by Lemma 2.1. Thus condition ii) guarantees both g and A hit 0 in
[r, s]. Furthermore they must both equal zero at a common time in [r, s, since the only
thing that could keep this from happening is that one would rebound after hitting zero
to hit its maximum before time s. But this possibility is precluded by Lemma 2.1, which

guarantees both ¢g* and h* are not less than A[0, 7], and by iii) and Lemma 2.1 again.

Let n be defined by To,—1 < s < Ta,. We have [0, s] < g, A% < (8 + 2)A[0, s], and
so |g¥ — h¥| < 26)A[0,2]. Because of condition iv), only prescription ii) of (1.1) is needed
to determine the motion of h and g in [s,t], and it is not hard to show that |g; — h}| <
202)[0, s], and g}, h} > b — bs. Thus condition v) guarantees |gf — h}|/max(g;, h;) < ¢,
and s < Ty, < t. Finally, the last three conditions guarantee that ¢ < 75,1 < u, using an

argument like the one which showed 15,1 < €. 0

Lemma 2.7. Given e > 0, there is ¢ = p(0,e) > 0, such that if B < ¢ there is an N such
that P(Ton_1 <€) > 1 —¢€ and P(sup,> 5 T'n >¢€) <e.

Proof: Let w be as in the statement of Lemma 2.5, and assume that 0 < e < w < 1. Put
N = inf{n: T\, < €?}, M = inf{n > N: T, > w}, and Z, = Tiin(n4n,m), # > 0. Then

Zn, n > 1, is a nonnegative supermartingale, and so by Doob’s maximal inequality,

P(sup I',, > &) = P(sup Zx > ¢)

n>N k>0
< EZO/€
<e.
And Lemma 2.6 insures that ¢ can be chosen so small that P(Toy—; <€) >1—¢. O

Lemma 2.8. Let ¥(t) = |g: — ht|/ max(g;, h;). There exist § = §(0) > 0 such that if
0<n<1/4 then

(2.12) 6P( sup () >n) < P(supTy >n/2),n > 0.
tZTZn—l an



Proof. Fix n and let 7 = inf{¢ > T5,_1: ¥(t) > n}. Since ¥(t) can only increase when
either gy or h increases, 7 cannot lie between T} and Tk4; if k£ is odd. Define N on

{T < oo} by Tov—1) < T <Ton_1. We will show that there exists § such that
(2.13) P(Tn >n/2|F;) > 6 on {1 < oo},

which upon integration proves (2.12). If 7 = T,_1, (2.13) is trivial with § = 1. Assume

from now on that 7 > Ts,_1. Let
v =inf{t > 7: h; or g; = 0},

and ¢ = inf{t > v: hy = h} or g+ = g} }.

Now both |h; — g¢| and |h} — g{| are non-decreasing on [, v], and |h} — gf| < |h: — g4
on this interval. For suppose without loss of generality that k. > g,. Then h, = h’ while
gr < g5 so hy — g: can only increase on [1,v]|. Furthermore, on {¢ > Ton_1}, |hf — g7|

does not decrease on [, Ton_1]-

Now if

- < * *
gax (b —br) < (0+ 1) max(gr, h),

by Lemma 2.1 the denominator of ¥(t) can not double before time Toy_1, and thus 'y >
¥(7)/2. Thus, by scaling and an argument like the one used in the proof of Lemma 2.6,
we may take

0= P(T_2 < T(0+1)-1; /\[0,7'__2] < 3/4) 0

Now we complete the proof of Theorem 1.1. Lemmas 2.7 and 2.8 show that for s < ¢
fixed, sup,<,<: ¥(y) approaches zero in probability as 3 decreases to zero. Together with

“?TE%L' approaches 0 in probability as § decreases

Lemma 2.1, this implies that SUP<y<t
to zero, which implies that sup,<,<; |hy — gy| decreases to 0 in probability as § decreases
to 0. Lemma 2.1 also implies that supg<, <, |hy — gy| decreases to zero in probability as

both s and  decrease to zero. Theorem 1 follows. [l

Proof of Theorem 1.2. This proof is so close to the proof of Theorem 1.1 that we will
be very brief. Let G; be as in the statement of Theorem 1.2 and suppose that p; and g;
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are two G; adapted solutions of (1.1)g ¢. For s > 0, define

Tg = inf{t > s: p; = ¢; = 0},
T} =inf{t > T§: either p; = p} or ¢;: = ¢; },

and so on, and put

Ff" = Ip}zsn—l o q};n—l l/ max(p;;n—l ? q;;n—l).

Now given ¢ > 0 there is 6 < € such that there is an N such that P(T{y_; < ¢ and
'Yy < €)1 —e. The proof of this strongly parallels the proof of Lemma, 2.7. Using the fact
that since p and g are continuous at zero, both p} and ¢} approach zero as s approaches
zero. For t fixed, by picking € small enough we can show |p; — ¢;|* is arbitrarily close to 0

in probability, which of course implies p; = ¢4, 0 < s < &. O

3. Perturbed Random Walk

Throughout this section, § > 1 and § = (2p — 1) /(1 — p). Functions defined only on
discrete unbounded sets which include zero are identified with their extension to [0, c0) by
linear interpolation. The solution of (1.1)¢ ¢ guaranteed by Theorem 1.2 is denoted by + or
v%. All functions are assumed without mention to be continuous on [0, c0) and to vanish
at zero. We now give a non-stochastic version of (1.1)g¢. If f is a function on [0, ), we

say the function g solves (3.1)g for f if

i) 9(0)=0
ii) If g(t) = g*(t) and g(y) > 0, t <y < s,
(3.1) then g(s) — g(t) = f(s) — f(£) + O maxe<y<s(f(y) — £(s))-

iii) If g(t) = 0 and g(y) < g*(¢), t <y < s,
then g(s) — g(¢) = £(s) — f(t) — mins<y<s(f(v) — £(t))-

A function is called piecewise linear on [a, b] if its graph over [a, b] consists of a finite
number of line segments. It is not hard to check that if f is piecewise linear on [0, ¢] for
some € > 0, and not zero on (0,6) for some § > 0 (we will define class £ to be all such

functions), then there is a unique gy = g which solves (3.1)4 for f. For g may be explicitly
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described on [0, £], and then once g gets started the Le Gall-Yor procedure described after
(1.1);  may be used. This unique g will be denoted S(f).

Lemma 3.1. Let e, €,, n > 0, and & be positive numbers such that €, > & and
limp, o0 €n = €. Let f, be functions such that f}(e,) > & and such that there is a function
[ such that f,(s) — fn(t) = f(s) = f(t) ifen < s < t. Suppose that the functions g, satisfy
that g, — frn converges uniformly to zero on compact intervals, and that g,(s) = fn(s),
0 < s < ¢&,, and suppose the functions f,, n > 1, and g,, n > 1, are all in class L. Then

S(fn) — S(gn) converges uniformly to zero on compact intervals.

Proof: Put
1, = Inf{t > en: S(fa(t)) = 0)},
Tom = If{t 2 en: S(fn(t)) = S(fn(8))"}
T3, = inf{t > en: S(gn(t)) = 0}
Tan = Inf{t > en: S(gn(t)) = S(gn(£))"}

7" = min{max(7y n, T2,n), MaxX(T3 n, Tan) }
Put a = inf{y: sup{|f(r)—f(s)|: e <r<s<e+y}=6/3(0+1)}. Then for large enough
n, T" > € + a, since the deterministic analog of the left hand side of (2.1) shows that for
either S(g,) or S(fy,) to hit both a maximum and zero in [, a+¢], then f, or g, respectively
must rise or fall at least (1+ 0)~! times the difference between the respective maximums
and zero. Furthermore, for n large enough, if S(f,) hits its maximum on [e, a + €], S(gx»)
cannot hit zero in [, a+¢€], and vice versa. Thus, in [¢, a+¢], only (the same) one of (3.1),
i), iii) is required to determine the behavior of S(f,) and S(g,) and now the uniform
convergence to zero of S(f,) —S(gn) on [, a+¢] is easily deduced. This procedure may be
employed again, to show the uniform convergence of S(f,) —S(gn) to zero in [g,e +a+ad'],
where o’ = inf{y > 0: sup{|f(r) — f(s)]: e+a<r<s<e+a+y}=4/3(0+1)}, and so
on. O

We use Plim,,,, X, = X to designate that X,, converges to X in probability as n
approaches infinity.
Lemma 3.2. Let A}, n > 1, and D7, n > 1, be sequences of stochastic processes defined

on the same probability space that b, is defined on. Let € > 0 and let €,, be random variables
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such that e < g, and Plim,_, €, —€ = 0. Suppose the paths of A™ and D™ are in class L,
that A} = D7, t < ep, that Plimy,_,o |DP — bi|* =0, t > 0, and that A} — A7 =bs b,
if s > ¢ep,. Then

(3.2) P lim |S(A}) - S(DP)|" = 0,¢ > 0.

Proof: To establish (3.2), it suffices to show that there exists a sequence 7y < ny < ...

such that if my > ng then
(3.3) k:li)nolo |S(A**) — S(D™)|* =0 as..

It suffices to pick my so that m; > ny implies both lim, ,o |D;** — b|* = 0 a.s., and
lim,_yo0 |[AZ* — DI**|* = 0 a.s. Now Lemma 3.1 may be applied path by path, upon
observing that lim, . D = b > 0. O

Lemma 3.3. Let G, 0 <t < 0o, be a stochastic process with paths in class L. Suppose
that for each s > 0, a sequence of random variables satisfies wy s > s and Plim,_,o Wy,s =
s. Suppose that Plim, ,o |GF — b|* = 0, t > 0. Define H"® = G2, t < wp,, and
| H® — Hp?  =by— by, ,, t > wns. Then given T >0 and § > 0 there is an €0 > 0 such
that if € < &g then there is an N such that n > N implies P(|S(Hp®) — yr|* > §) < 4.

Proof: The proof of this lemma is an easy modification of the proof of Theorem 1.2. In
place of T§ we use Ty"° = inf{t > wy, s: S(H;"*) = v = 0}, and so on. Both Plim, o7} =
0 and Plim. o S(H™¢)* = 0, the last using a deterministic version of Lemma 2.1, and the
fact that Plim, ,o |GZ —be|* = 0, so that if » > 0 there is €9 > 0 such that if € < g¢ there
is an N = N(g) such that if n > N, P(|Gy, |* >n) <nand P(b;,  >n) <n. O

Now let R,, be a fair random walk with Ry = 0. Let Y,, be a sequence of iid random
variables independent of R, such that P(Y, = 1) = 1 - P(Y, = —1) = p. Inductively
define the process ©,, n > 0, by ©g = 0, ©; = 1, and Ogy1 — O = Ri41 — Ry unless
O = 0 or O = OF, in which case O 1 — O = 1 or Y} respectively. Then O, is a pl
walk, which we call R,, perturbed by Y, and by reflection at zero.

Lemma 3.4. There is a process I'y such that Plim;_,oo |Ts—R¢|* /vt = 0 and S(T',) = ©,.
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Proof: Define I'; = (0 +1)"1s,0< s <1, and Ty4s — 'y = Rgys — Ry, if 0 < s <1 and
Or €(0,05). If ©, =065, k> 1, for 0 < s <1 define I'ys — 'y = —s on {¥y = —1} and
Tpis — T =@+ 1)71son {Yy =+1}. If O =0, k > 1, define Oy — Oy, 0 <5< 1,
to be s on {R,+1 — R, =1} and to be —4s5,0 < s < % and —2—|—2(s—%), % <s<1,on
{Ry41 — R = —1}. Note on {©f = 0}, I'yy1 — I'x = Rxy1 — Ry. It is straightforward to
show that S(I',) = O,,.

To establish Plim;_,o [Tt — Rs|*/+/t = 0, it suffices to show

(3.4) P lim [Ty, — Ro|*/+/n =0.
Now (I, — T1) — (R — R1) = Y. (Tx — Ri)I(Ok—1 = ©5_,). If Jp, is those integers j

k=
such that 1 < j < m and ©; = 67,

first |J,,| of iid bounded random variables with zero mean, where | | denotes cardinality.

2
then, conditioned on J,,, I';, — Ry, is the sum of the

Thus, to prove (3.4), it suffices to show that Plim,_, |Jn|/n = 0. This is quite easy.
We omit the proof, but note that the proof of Lemma 3.2 of Davis (1996) adapts to the

present situation. [l
We will call the process I'; constructed above the precursor of ©;.

Now define stopping times ap i, n > 1, k > 0, by apo = 0 and ap g1 = inf{t >
Qnk: |bt — ba, | = n~1/2}. Let Y, be iid +1 with probability p and 1 — p respectively,
and be independent of b;. Define H}} = \/ﬁban,k, k>0,n>1,let Z7} be the perturbation
of the random walk HY, k > 0, by Y, and by reflection at 0, (so Z™ is a pl walk), and let
V™ be the precursor of Z*. Define Zon = n~1/2 Zy, k>0, and vgnyk = n‘l/sz", n >0,
and extend the domains of 2™ and v™ to [0, 00) by linear interpolation, for ¢ between o, x

and oy, g+1. Noting that for any integer M,

(3.5) Pnli)rgo lsr}clgﬁn lan k — (k/n)| =0,

the following theorem implies the weak convergence of the process ¢}, 0 <t < 1, defined

by 0%/ = Z%/v/n, 0 < k <n (and by linear interpolation) to v, 0 <t < 1.
Theorem 3.5. Plim, , |2} —71|* = 0.

Proof: For s > 0 define n(s) = min{k: aynx > s}, and define 6;"° = v}, if 0 <t < ap n(s),

and 9?’3 - Qg;sn(s) = by — ban,n(s) if t > Qn,n(s)-
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By Lemma 3.3, given 6 > 0 there exists €g > 0 such that if € < &g there is an NV such
that n > N implies

(3-6) P(IS(61°) —ml" > 6) <6,

using Lemma 3.4 to show that v} stays close to the process which is formed by connecting

the points (@ k, ba,, , ) With straight line segments, which implies P limp, o0 [v] —b1]* = 0.

Next, Lemma 3.2 implies that for ¢ > 0
(3.7) Pnli_>ngo 1S(07°°) — 27|* =0,

recalling that S(v™) = 2", and again using (3.5). Together (3.6) and (3.7) establish
Theorem 3.5. O

4. Soft Perturbation at Both Extrema

We begin with a collection of equations which includes all those defined by (1.1)o6.
Let 0 > —1 and A > —1, and denote f#(t) = inf{f(s): 0 < s <¢}. By a solution 7 of the

following equation we also mean that v is continuous at zero.

i) Y =0

iy  Ify=1 and'yy>'y;#, t<y<s,
(4.1)0,x then v, — v; = bs — bt + O maxs<y<s(by — by).

iii) If'yt:'yf,and"yy<'y;‘,t<y<s,
then v — vt = bs — by + Aming<y<s(by — by)-

The following theorem, which includes Theorem 1.2 as a special case, is new only
in the cases M@ < —1, the cases |[A| < 1, [A0] = 1, A8 > 1 having been proved in Le
Gall-Yor (1992) and Carmona-Petit-Yor (1996), Davis (1996), and Perman-Werner (1997)
respectively. Also see Yor (1997).

Theorem 4.1. There is a unique solution of (4.1)g x which is adapted to F;,t > 0.
Furthermore, if F; C Gy and bs — by and G, are independent for each s > t, then there are
no other solutions of (4.1)g,» which are adapted to G, t > 0.

14



Once the analog of Proposition 2.2 — Proposition 4.2 below — is in place, the proof
of Theorem 4.1 is a close enough copy of the proof of Theorem 1.2 that we are going
to omit it. But this analog is significantly harder to prove than Proposition 2.2, and we
will elaborate on how the ideas of the proof of Proposition 2.2 need to be extended to

accomplish this.

Let p; and ¢; be two G; adapted solutions of (4.1)g », with G; as in the statement of
Theorem 4.1. For s > 0, define

ty = inf{t > s: p; :p;# and ¢; = qf},
t5;41 = inf{t > 13;: p = p} and ¢; = ¢; },% > 0,
5 =inf{t >13;_: p=pf and g =g} },i > 1,
Mair1 = Inf{t > 13,1 pt = pf& or ¢ = qf},z’ >0,
ng; = inf{t > t5;: p, = p} or ¢t = ¢} },1 >0,

Note ¢ < g <t ;. Put

_ pt —at| + Ipf —df|

#

’(/"t )
max(p} — p¥, qf ~ g’

and let Vi = Vi =10,k > 0.
Proposition 4.2. There is a p = p(6, ) > 0 such that

(42) E(V2n+2|V2k, k< TL) < V5, On {Vzn < ,Ll,}.

We sometimes shorten 73, to 72,. To prove (4.2) we may and do assume with no loss
of generality that p# < ¢# , but even so we have two cases to consider. We set things up
more or less like we did before (2.4). We use the same notation, z; and y;, for both cases,
as much of their analysis can be done in common, and we put H; = o((2s,¥s),s < ¢).

Always in the following, 0 < 41,02 < .1 and—1 < a < 0.

Case 1. The distribution of the process (z;, y;) is the conditional distribution the process
(Pngn + t Qnay, + ), > 0, would have given p¥, < g% < pj < @, 0 —pl =4,
Dyyn — qﬁin =1, qp, — Py, = 02, and q#zn = a. Put z} = max(z},a + 1), v =

max(y},a + 1 + &), z; = min(z¥,a — &), and y; = min(y*,a). So z; behaves like

15



Brownian motion until it hits either a — d; or a+ 1, and y; behaves like the same Brownian
motion until it hits either a + 1 + §, or a, etc. Note yg — x¢9 = 01, and either xp =a+ 1 or

Yo =a+ 1+ ds.

Case 2. The distribution of the process (z:, y;) is the conditional distribution the process

(Pnan-+ts Gnan+t) Would have given p# < q¥ <gqi <pi ,qf —pf =0b1,q, —¢f =
Lpy, —4n,, = 02, and a = qjin. In this case x;" = max(z},a+1+02), y;F = max(y;, a+1),

and z; and y; are given by the same formulas as in Case 1.

We don’t have to consider the only remaining case since in this case V2, > 1. Again

Yo — o = 61 and now yo = a + 1.

We put Ry =0,

T, = inf{t > Ro: z} = z; and y;” = u;},
Ry = inf{t > Ty: either z; = z; or y; = yt},
T, = inf{t > Ri: z; = z; and y; =y},

Ry = inf{t > Ty: either z; = z; or y; = y; }.

Put
%, — y&,|+ |z, — Uz,
Z'i = F — F s
maX($Ri - xRi ’ le - yR.L)

1=20,1,2.

Especially, for Case 1, Zg = (61 + )/ max(1 + 61,1 + d2), and for Case 2, Zy = (61 +
82)/(1+ 61 + d2).

Proposition 4.3. There is p = p(6,A) > 0 such that
EZy, < Zy Zon < M.
Proposition 4.3 proves Proposition 4.2 in the same way that Lemma 2.5 proved Proposition

2.2.

The proof of Proposition 4.3 requires several lemmas. Let 3(0, 1, 82) = (2+6)6:1+(1+
6)d2 if > 0, and = (24 6)d1+ 62, if & < 0. Note that if € > 0 is fixed, 5(0, 61,62)/(2+0) <
Zyg if 62/61 > € and 61 + d2 is small enough.

16



Lemma 4.4. Let € > 0. There are wp(e) > 0, pr(e) > 0 and k(0,¢e) < 1, k(A,e) < 1,
such that

(4.3) EZy < k(0,€)Zo
’Lf Zo < <p9(z-:) and (52/(51 > €,

(4.4) E(Z2|HRr,) < k(X e)Zy

Proof: First note Zy < 61 + 02 < 2Zy. Inequality (4.4) is of course just a conditional
version of (4.3). And that g(€) exists so that the left hand side of (4.3) holds follows from

(4.5) |2k, — Ui, |+ 2R, — UR,| < B(6,61,62),

and calculations almost identical to those which proved (2.4). These are the content of
Lemma 4.6 below. The inequality (4.5) is a slightly more complicated version of the first
inequality of the proof of Lemma 2.4, which needs to be broken down into four cases,

namely, Case 1 or Case 2 above, and 6 < 0, 8 > 0. We omit the details.

Lemma 4.5. Given any constant K > 1, there is ¢ = q(K,0) > 0 such that if Zp <
q(K,0), then EZy < KEZy. Furthermore, E(Zs|Hgr,) < KZy on {Z1 < q(K, )}

Proof: This is even easier to prove than the last lemma and is proved very similarly.

Again, though, its proof requires Lemma 4.6 below.

Lemma 4.6 Let
ay =inf{t > Ro: z; =zt ory;, =y}

ag = inf{t > ay: = =z} ory; =y}
ag =inf{t > as: zz =2z; ory:=1y; }
ay = inf{t > az: = =z ory, = yTt}

Then there are constants C;(0) such that
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7,) P(OZz < Tl) < 01(9)(51 + 52)

ZZ) P(Oé4 < Tl) < 02(9)(51 + (52)2.
m) Z1 < 04(9)20 on {Tl < a4}.
Proof: All these inequalities are close parallels to inequalities used in the proof of Lemma
2.5. The a1 above is the counterpart of ¥ in that proof, and as, as, a4 are the counterparts

of 1, 93, and v4. Inequalities i), ii), and iii) above are counterparts of (2.8), the second

inequality before (2.11), and essentially the inequalities leading up to (2.10). O

The proof of Lemma 4.6 completes the proof of the preceeding two lemmas.

Lemma 4.7. There are constants C5(0), Cs(0) > 0 such that |zf, — v} /|27, — vg,| >
05(0) on {Tl < 012} Zf52/51 < 06(9)

Proof: The proof is easy and omitted. The case when d2 = 0 is especially easy, and points

the way to the entire proof. Wl

Proof of Proposition 4.3. We first do the proof when d5/8; > Cg(6). Recall that
Zo < (51 + 52) < 27 if (51,52 < .1.

Let the constants k1(6) = k1 > 0 and M = M(0) < 1 satisfy
(46) EZ, < MZyif Zyg < k1 and 52/51 > 06(9)

Such M and k; exist by Lemma 4.4. Let J > 1 satisfy MJ < 1, and let k3 = k2(A) > 0
satisfy

(47) E(Z2|HT1) < JZ; on {Zl < kz}
Lemma 4.5 permits this. Let k3 = k3(0) > 0 satisfy
(48) 04(9)20 < kg if Z() < k3.

So k3 can be any positive number less than k2/C4(0). Recall Z; < C4(0)Zp on {11 < as}.
Pick k4 = k4(6) > 0 to satisfy

(4.9) 2C5(0)(61 +82)2 < (1 — MJ)Zy if Zp < ka.
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We may pick any 0 < kg < (1— M J)/4C5 since (61 +d2)/2 < Z, by the inequalities stated
before Proposition 4.3, and the fact that &;,02 < .1. Then if Zy < min(ks, ks, ks) and
82/01 > Ce(0), we have, using (4.6)—(4.9) and Lemma 4.6 ii), and the fact that Z, <2 for

all n, again by the inequalities preceeding Proposition 4.3.

EZy = EZoI(Ty < a3) + EZsI(0s < Ty < o) + EZoI(Ty > aug)
< EE(Z2|Hp ) I(Th < ag) + EE(Za|Hp, ) I(a2 < T1 < a4)
+2P(ay < T1)
< BEJZ.I(Ty < az) + EJZyI(Ty > o) + (1 — MJ)Z,
< JEZy+ (1= MJ)Zy < Zo.

Thus in this case we may take p = min(ky, k3, k4) in Proposition 4.3.

Next we turn to the case 62/5; < Cs(0). Let @ = Q(0, ) < 1 satisfy
(4.10) k(X,Cs(9)) < Q, where k is as in (4.4).
Now pick ks so small that
(4.11) C4(0)Zo < px(C5(0)) on {T1 < ag} if Zp < ks.
that is, ks < o (Cs(0))/C4(0). Using Lemma 4.7, (4.4), and Lemma 4.6 iii), we have
(4.12) E(Z3|HR,) < QZ; on {Th < ag}, if Zy < ks.
Let I' > 1 satisfy I'Q < 1 and pick kg to satisfy both
(4.13) EZ, <T'Zyif Zy < ke,
possible by Lemma 4.5, and
(4.14) Z1 < Cy(0)Zo < q(T,A) on {Th < a4} if Zy < ke,
possible by Lemma 4.6 iii). Now (4.14) guarantees

(4.15) E(ZleRl) <TI'Z; on {Tl < 014}, if Zo < ke.

19



If Zo < min(ks, ke),
EZy = EZ,I(Ty < a3) + EZoI(02 < Ty < ag) + EZoI(Th > )
< EE(Zy|Hr)I(Ty < a3) + EE(Z2|HR,) (a2 < Th < ag) + 2P(T1 > ay)
< EQZI(Ty < a3) + ETZ1I{ay < Ty < ) + 2C(0) (61 + 82)?
< QEZy +TC4(0)C1(8)(61 + 62) + 2C2(8) (81 + 92)*
< QT Zg + (81 + 82)°[TC4(0)C1(6) + 2C2(6)),

using Lemma 4.6 i) and iii) for the middle term of the next to last inequality. Since
Zo < 81 + 02 < 27, it is clear that we can pick p > 0 so small that Zy < p implies
EZ, < Zj.

The p of Proposition 4.3 may thus be chosen to be the smaller of the two p of the two

cases. g

Weak convergence of scaled pg walk to the unique solutions of (4.1)s, guaranteed by
Theorem 4.1, and analogs of the considerably stronger result Theorem 3.5, can be proved in
an almost identical manner to the proof of Theorem 3.5. Here we perturb our fair random
walk with two independent sequences of iid random variables, one of the sequences taking
on +1 with probabilities p and 1 — p respectively and used to perturb at maxima exactly
as in Section 3, and the other taking on +1 with probabilities ¢ and 1 — ¢ and used to

perturb at minima. We have

Theorem 4.8. The analog for all pq walks of Theorem 3.5 holds.

Concluding Remarks.

We conclude with a technical comment which elaborates on a remark in the intro-
duction. One way to attempt to prove Theorem 4.1 is to try to prove that almost every
Brownian path belongs to the class of those functions f which have a unique solution g of
the equations (3.1)4. If this can be established, short work can be made of the proof of The-
orem 1.2. Furthermore, all the proofs of the already known, restricted parameter, cases of
Theorems 1.2 and Theorem 4.1 prove such inequalities-indeed, all but the Perman-Werner
(1996) results show that every continuous function is in this class. We do not answer this

question here, but it is answered, affirmatively, in Chaumont-Doney (1998).
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