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Abstract

The current research on wavelet regression has been mostly focused on equispaced
samples. In general nonequispaced samples require different treatment. And the
currently available wavelet methods for nonequispaced samples are relatively difficult
to implement.

In the present paper, we consider samples with random uniform design. We show
that if the samples have random uniform design, the universal thresholding method
can be applied directly to the samples as if they were equispaced. The resulting
estimator achieves within a logarithmic factor from the minimax rate of convergence
over a family of Hélder classes. Simulation results also show that the mean squared
error for samples with random uniform design is comparable to that for samples with
equispaced design.
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1 Introduction

Wavelet shrinkage methods have been very successful in nonparametric regression. But
so far most of the wavelet regression methods have been focused on equispaced samples.
There, data are transformed into empirical wavelet coefficients and threshold rules are
applied to the coeflicients. The estimators are obtained via the inverse transform of the
denoised wavelet coefficients. The most widely used wavelet shrinkage method for equi-
spaced samples is the Donoho-Johnstone’s VisuShrink procedure (Donoho & Johnstone
(1992), Donoho, Johnstone, Kerkyacharian & Picard (1995)) . The VisuShrink procedure
has three steps:

1. Transform the noisy data via the discrete wavelet transform;

2. Denoise the empirical wavelet coeflicients by “hard” or “soft” thresholding rules with

threshold A\ = ev/21og n.

3. Estimate function fat the sample points by inverse discrete wavelet transform of the
denoised wavelet coeflicients.

This procedure is adaptive and easy to implement. The computational cost is of O(n).
And with high probability, VisuShrink estimators are at least as smooth as the target
function. The estimators produced by the procedure achieve minimax convergence rates
up to a logarithmic penalty over a wide range of function classes.

In many statistical applications, however, the samples are nonequispaced. It is shown
that the procedure might produce suboptimal estimators if it is applied directly to noneg-
uispaced samples (Cai, 1996). Wavelet methods for samples with nonequispaced designs
have been studied by Brown and Cai (1997) and Hall and Turlach (1996). Brown and Cai
(1997) introduced a wavelet shrinkage method for samples with fixed nonequispaced designs
based on approximation approach. It is shown that the estimator attains near-minimaxity
across a range of piecewise Holder classes. Hall and Turlach (1996) proposed interpolation
methods for samples with random designs. They used samples with random uniform design
as examples for their methods. Despite the asymptotic near-optimality for these nonequi-
spaced methods, the estimators are computationally much harder to implement than the
VisuShrink for equispaced samples.

In the present paper, we consider the special case of samples with random uniform
design. We show that in this special case the samples can in fact be treated as if they were
equispaced. That is, the VisuShrink procedure of Donoho and Johnstone can be applied
directly to the data and the resulting estimator adaptively achieves within a logarithmic
factor of the optimal convergence rate across a range of Holder classes. Therefore, we
have a fast estimation procedure for samples with random uniform design. Simulation is
conducted to evaluate the numerical performance of the method. It is shown that the mean
squared error is comparable to that of the samples with truly equispaced designs.

In Section 2 we describe the method and state the asymptotic optimality property of the
estimator. Section 3 summarizes the simulation results. Some relevant results on wavelet



approximation is presented in Section 4. Section 5 contains a concise proof of the main
results.

2 Methodology

2.1 Wavelets

Let ¢ and 1 denote the orthogonal father and mother wavelet functions. The functions ¢
and 1 are assumed to be compactly supported with associated discrete wavelet transform
W. Assume 9 has r vanishing moments and ¢ satisfies [ ¢ = 1. Let

$iu(t) = 22¢(2t — k), in(t) = 277 (27t — k)
And denote the periodized wavelets
() =2 it = 1), ¥5.(t) =D it — 1) forte]0,1]
€2 €2

For the purposes of this paper, we use the periodized wavelet bases on [0, 1]. The collection
185k = 1,...,2%; Yol = Jo,k = 1,...,27} constitutes such an orthonormal basis of
L,[0,1]. Note that the basis functions are periodized at the boundary. The superscript
“p” will be suppressed from the notations for convenience. This basis has an associated
exact orthogonal Discrete Wavelet Trasnform (DWT) that transforms data into wavelet

coeflicient domains.

For a given square-integrable function fon [0, 1], denote

Ein = (f> dir), Oir. = {f,bix)

So the function fcan be expanded into a wavelet series:

f(z) =Y Eiordion(z) + i > Ointin() (1)
k=1 J=jo k=1

Wavelet transform decomposes a function into different resolution components. In (1),
€iox are the coeflicients at the coarsest level. They represent the gross structure of the
function f. And 0;; are the wavelet coefficients. They represent finer and finer structures
of the function f as the resolution level j increases.

We note that the DWT is an orthogonal transform, so it transforms i.i.d. Gaussian
noise to i.i.d. Gaussian noise and it is norm-preserving. This important property of DWT
allows us to transform the problem in the function domain into a problem in the sequence
domain of the wavelet coefficients with isometry of risks.

A good introduction to wavelets is given by Strang (1989). For a detailed treatment on
wavelets, the readers are refered to Daubechies (1992) and Meyer (1990).



2.2 The Estimator

Consider the nonparametric regression model:

Yi = fz:) + ez (2)
i = 1,2,..,n(= 27), z;’s are independently uniformly distributed on [0, 1], z’s are
independent N(0,1) variables and independent of z;’s.

The function f(-) is an unknown function of interest. We wish to estimate f(-) globally
with small integrated mean squared error:

R, 1) = B [ (F0)- sy ar

Let 0 Sz < z(g) < ... < T(n) < 1 be the order statistics of the z;’s. Now relabel y;’s
and z;’s according the order of the z;’s. For convenience, we use the same label. So,

yi = f(z@) + ez (3)

Now we observed (z(1),v1), (2(2),¥2), - - * , (Z(n), Yn) With z; independently uniformly dis-
tributed on [0, 1]. So z ;s are not equispaced in general. But we pretend that z(; is
Ez; =1i/(n+1). That is, we pretend to have an equispaced sample:

1 2 7

n+ l,yl), (—7y2)7 R} (—7yn)

( n+1 n+1

We apply Donoho and Johnstone’s VisuShrink procedure directly to y = {y1,¥2, ..., yn}-
Let 6 = W - n~%y be the discrete wavelet transform of n=2/2y. Write

n & s n N 0 n T
0 = (éjolv e 7§j02j070j01a e 70‘7'021'07 e an—l,l) T 70J—1,2J—1)

Here fjo r are the empirical coefficients of the father wavelets at the lowest resolution level.
They represent the gross structure of the function and are usually not thresholded. The
coefficients 0;1(7 = 1,---,J — 1,k =1,---,27) are fine structure wavelet terms.

We estimate the function f by
. 200 J-1 28 .
ful) = D Gordion(z) + D° D 05 I (10;e] > €y/2n1 log n)epsu()
k=1

J=jo k=1

If one is interested in estimating the function at the sample points, then the three step
procedure can be applied:

1. Transform y = {y1,y2, ..., y»} into wavelet domain via discrete wavelet transform W:

V=W.y



2. Denoise the empirical wavelet coefficients by soft thresholding:

A

051 = nx(vik) = sgn(vir)(Jvje] — A)3, where A = e4/2logn
3. Obtain the estimator via the inverse transform of the denoised wavelet coefficients.
(felz@y))iey =W 0

The estimator is adaptive and easy to implement.

Theorem 1 Suppose that the sample (z1,y1),(%2,Y2), *,(Tn,yn) is observed as in (2)
and the mother wavelet 1 has r vanishing moments. Then the estimator constructed above
achieves within a logarithmic factor of the optimal convergence rate over the a range of

Hoélder classes A*(M) (defined in Section 4) with 1/2 < a < r. That is,

N ].O 2a
sup E|fu— fl2 < C- (F22)m8a(1 + o(1)) (4)
feAx(M) n
1 _— ]. 2a
sup — S E||fu(mi) — f(2)]2 < C- (F2LyHER (1 4 o(1)) (5)
feax (M)

for all M € (0,00) and o € [1/2,7].

Remark: The same results hold for hard threshold estimators. The results show that in
the case of random design with uniformly distributed z;’s, we can treat it as if they are
fixed equispaced design.

3 Simulations

A simulation study is conducted to compare the estimator based on random-x samples with
those estimator based on truly equispaced samples. The results show that the quality of the
estimator based on random-x samples are very close to the estimators based on equispaced
samples. So simulation confirms our theoretical results.

We studied eight functions representing different level of spatial variability. The test
functions are Doppler, HeaviSine, Bumps, Blocks, Angles, Blip, Corner, and Wave. The
definition of the test functions is given in the appendix. For each of the eight objects under
study, we compare the estimators at two noise levels, one with signal-to-noise ratio SNR =
5 and another with SNR = 7. Sample sizes from n = 512 to n = 8192 are studied.

We report in Table 1 and Table 2 the mean squared errors over 100 replications of the
eight test functions. The wavelet used is the Symmlet “s8”. From the tables, we can see
the MSEs are comparable for estimators based on random-x samples and for estimators
based on equispaced-x samples.



The following plots compare the visual quality of the estimators. The solid line is the
estimator and dotted line is the true function. The signal-to-noise ratio is 7, the sample
size 1s 1024, and the wavelet used is the Daubechies Symmlet “s8”. For each function, one
is based on a sample with uniformly distributed design and another is based on a sample
with equispaced design. Both samples have the same noise level. One can see from the
plots, the quality of the estimators are comparable.
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In the appendix, we also include more plots to compare the visual quality of the two
estimators. On each plot of the estimator, the solid line is the estimator and dash line is
the true function. Two estimators are plotted on each page, one is based on a sample with
uniformly distributed design and another is based on a sample of the same noise level with
equispaced design.

4 Wavelet Approximation

Wavelets provide smoothness characterization of function spaces. Many traditional smooth-
ness spaces, for example Holder spaces, Sobolev spaces and Besov spaces, can be completely
characterized by wavelet coefficients. See Meyer [11]. In the present paper, we consider the
estimation problem over a range of Hélder classes.



Definition 1 We define the following Hélder classes A (M):

@) Fa<l, A*(M) = {f:|f(z) - f(y)] < M|z - y|*}
(). Fa>1, A%(M) = {f:1f1D(@) - fl12Dy)| < Mz ~y*" and |f/(2)] < M)
where | o] is the largest integer less than a and o = a — |a.

The wavelet coefficients of functions in a Hélder classes A*(M) decay fast.

Lemma 1 Let f € A*(M) and let the wavelet function v has r vanishing moments with
r 2> a. Let 05 = (f, ;) be wavelet coefficients of f. Then

0;1] < C - 279(1/2+) (6)
where C'is a constant depending on M and the wavelet basis only.

If one has a sampled function {f(k/(n + 1))}?_, with n = 27, one can utilize a wavelet
basis to get a good approximation of the entire function f. Denote s(a) = min(a,1). We
have the following.

Proposition 1 Suppose that f € A*(M), and let £33, = (f, d), then

7% f(——) — En| < C - = W/245(e)) (7)

n+1

According to this result, we may use n~% f(%) as an approximation of £;;. This
means that if an equispaced sampled function is given, we can use a wavelet basis to
get an approximation of the entire function f. To be more specific, we can use falz) =
> ohe1 n-z f (#)¢Jk($) as an approximation of f. Furthermore, the approximation error
can be bounded based on the sample size and the smoothness of the function. We quote
the following result from Cai (1996).

Proposition 2 Suppose that f € A*(M). Let f,(z) = SF_, n~2 f(E5)¢ak(z) Then the

approzimation error satisfies

1 = £II7 < Crn=2(®) (8)

5 Proof

We need some preparations before we prove the theorem. First some well known results
on the order statistics of uniform variables.



Lemma 2 Let z; be iid uniform random variables on [0, 1]. And let 0 < T < Z(g) <
. < Z@) < 1 be the order statistics. Then z(x) is distributed as Beta(k, n - k + 1). In
particular,

k ) k+ k2 (n+ 1)k — k?

Bro =00 BP0 = GiDmay V0 T i m s 2

Now let us consider the noiseless case. We want to simply use f(z(;) as an approxi-
mation of f(17). We are interested in knowing the approximation error. Denote E; the
conditional expectation given 1, ,,- - -, z, and denote F, the expectation with respect to
L1, L2, 5 Ty

Lemma 3 The upper bound of the approximation error is

k
su E.(f(z — )< Cn0) 9
feAaI()M)nZ (k) f(n-l—l)) < (9)

Proof: For f € A*(M), we have |f(z) — f(y)| < C |z — y|**). Hence,

k C ko oue
—ZE (o09) = 7)) < 5 20 Bl = g™
k n+ 1)k — k?
< OBy — —F—y2psta) = ()
Z[ Sy Z[(n+1 )]
CZk ks(a) C(TL 4+ 1)1+s(a)
n(n 4+ 1)*@)(n + 2)5® = n(n 4+ 1)5()(n + 2)s(=)
< Cn=@ g

'To prove the main result, we also need the following upper bound of the risk of threshold
estimator of a univariate normal mean. Similar bound holds for hard threshold. The proof
can be found in Cai (1996).

Lemma 4 Suppose that y ~ N(0,n"'¢?). Then 6 = n5(y) with A = e/2n"Tlogn satisfies

E(6—0)* < (26> + n"2%) A (2logn + 1)n~te? (10)

Proof of Theorem 1: We give the proof of (4) only. The proof of (5) is similar. First,
some notations. We use ;) as coefficients of ¢;; (the “father wavelets”), and use ;) as
coefficients of ;5 (the “mother wavelets”). The &;,; are the empirical coefficients at the
coarsest level. They represent the gross structure of the function and they are usually
not thresholded. The discrete wavelet transform W is an orthogonal transform, so it is
norm-preserving. This fact is useful in the proof.




Let f(z) = Y;n %y;ds(z). Then f(z) can be written as
fle) = XIn72f(em) +n ealpnlo)

A

>

R
/—’H

) +n 7 ezildui(e)

= Z[&i-l-(n_%f( )—fJi)Jr(n"%f(m(i))_”_%f( n+1

= Z[ﬁyok + ok + b]ok + Fiok) Gior () + 22[9 ik + @ik + bix + rie]ie(z)

Here the £,k and 6 are the~discrete wavelet transform of £7; , and likewise G;,x and a;x
the transform of the term A, b;,x and b;) the transform of B and #jx and rj; the transform

of R.
Let fjo,; = Eiok + Gjox + Ejok + 7;,& be the coefficients of gross structure terms. These
coeflicients are not thresholded. Set

éjok = Ejok
Let G’k = 0;p+a;r+b;, and let v, = 6 ikt ik be the noisy empirical wavelet coefficients.
Then vjr ~ N(0j,n7"e?). Now let A = e/2n""logn. And let 01 = sign(vie)([vje] — A)a-

Set the estimator of the regression function f to be

Zé}ok%ok + Z Zt%k?/)gk

J7=Jo

E|\fe = fll3 = B=(Eullfx = £1I5)

Ef =2 = 3 Eilior — Eiok) +ZZE1 Bie — 036)* + > > 0%
k

J=jo k i=J

From Lemma 1, we have

>3 = 0(n) (1)

Also we have

N Er(Eior — Ei)? = 200712 + > (@jok + bjgr)? < 20071 +2Z k+22bjok (12)
k k

A

Now counsider E1(0;r — 0,
E(B3 — 051)

2. Apply Lemma 4,
(2(0)* +n72®) A (2logn + 1)n ™ e” + 2a5;, + 203,
780?-,0 A 3n7'e? logn + 10a2, 4 1003, + n=2€?

S—

IAIN A

9



Let J; satisfy 2t = (n/logn)*/(1+2%), Then,

A J-1
Y B0k —0i)* < E 2371 2logn + Z 280 +10 > > (ak +0%) +n7te

3k J=jo i=h i=jo k
< C(n 'logn)™3= (1 + o(1)) + 10 Z Zajk +10 Z Z (13)
J=jo J=jo

It follows from Lemma 1 and Lemma 3 that

; jok T Z Za’]k = Y (n7E -Zl-l) —&n)? < ConB@ (14)

12 )
Zb ok T Z Zk:b?k = = Z E.(f(z@) — f(n T 1))2 < O~ (15)
For o > 3, s(a) > 25- (11) - (15) that
o 9 logn. _2e
E|lf.-fl3< C- (2R Ha(1+0(1)
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6 Appendix

The test functions come from various sources. The functions Doppler, HeaviSine, Bumps
and Blocks are from Donoho and Johnstone [6]; the functions Blip and Wave come from
Marron, Adak, Johnstone, Neumann and Patil [10]; and the function Corner is from Hall,
Penev, Kerkyacharian and Picard [8]. Formulae of the test functions are as follows.

f(z) = y/z(1 — 2)sin(2.17 /(2 + .05))

f(z) = 4sindrz — sgn(z — .3) — sgn(.72 — z)

1. Doppler.

2. HeaviSine.

3. Bumps.
fla) = 2 hiK((x — ;) /w;)  K(z)=(1+ =)™
(z;) =(.1, 13, .15, .23, .25, .40, .44, .65, .76, .78, .81)
(h;) = (4, 5, 3, 4, 5, 4.2, 2.1, 43, 3.1, 5.1, 4.2)
(w;) = (.005, .005, .006, .01, .01, .03, .01, .01, .005, .008, .005)
4. Blocks.
@) = S hiK(z =) K(z) = (1+sgn(x))/2.
(z;) =(.1, .13, .15, .23, .25, .40, .44, .65, .76, .78, .8l)

(h;) =(4, =5, 3, —4, 5, —42, 21, 43, —3.1, 51, —4.2)

f(:l)) = 14.’13[[071/7)(:6) + (10 - 5633)][1/7,3/14)(:6)
(282 — 8)Ii3/14,2/7)(7) + (2 — T2)Ij2/7,1/2)(7)
(492 — 26)I11/2,4/7)(2) + (22 = 352) Ijay,5/7)()
(28:1: - 23)1[5/7’6/7)(56) + (7 - 755)][6/7,1)(37)

11



6. Blip.

f(z) = (0.3240.6240.3¢7 100D [ (z) +(—0.284-0.62+0.3¢ 1003V [ ¢ 11(z)

7. Corner.

f(z) = 102°(1—42?)I o, 5(2) +3(0.125 - 2%)z* I 5 g(x) + (70(z — .8)% —0.4756) I 5 11 ()

8. Wave.
f(z) = .54 2cos(4nz) + .1 cos(24rz)
Table 1: Mean Squared Error From 100 Replications
SNR =5 SNR =17
n Random-x | Equispaced-x || Random-x | Equispaced-x
Doppler
512 3.953 2.921 2.846 1.814
1024 2.542 1.890 1.755 1.185
2048 1.619 1.233 1.089 0.767
4096 0.848 0.687 0.577 0.427
8192 0.522 0.445 0.339 0.266
HeaviSine
512 0.626 0.544 0.455 0.396
1024 0.425 0.399 0.299 0.282
2048 0.283 0.295 0.194 0.196
4096 0.170 0.192 0.115 0.119
8192 0.115 0.123 0.075 0.076
Bumps
512 8.302 9.271 5.330 5.812
1024 6.121 5.955 3.780 3.576
2048 3.991 3.793 2.490 2.247
4096 2.212 1.978 1.388 1.160
8192 1.341 1.219 0.833 0.706
Blocks
512 5.387 5.346 3.425 3.395
1024 3.801 3.688 2.353 2.275
2048 2.644 2.550 1.639 1.597
4096 1.547 1.435 0.937 0.887
8192 1.043 0.992 0.647 0.621

12



Table 2: Mean Squared Error From 100 Replications

SNR =5 SNR =7
n Random-x | Equispaced-x || Random-x | Equispaced-x
Angles
512 0.858 0.537 0.671 0.383
1024 0.533 0.393 0.417 0.290
2048 0.363 0.297 0.266 0.216
4096 0.130 0.112 0.093 0.072
8192 0.080 0.072 0.059 0.047
Blip
512 0.905 0.847 0.553 0.488
1024 0.610 0.596 0.368 0.341
2048 0.406 0.367 0.244 0.228
4096 0.253 0.248 0.143 0.144
8192 0.155 0.151 0.093 0.088
Corner
512 0.410 0.364 0.270 0.241
1024 0.244 0.229 0.179 0.167
2048 0.172 0.166 0.129 0.121
4096 0.107 0.103 0.071 0.066
8192 0.068 0.066 0.046 0.043
Wave
512 2.533 2.236 1.779 1.384
1024 1.666 1.521 1.072 0.795
2048 1.026 0.876 0.632 0.459
4096 0.155 0.090 0.125 0.061
8192 0.092 0.060 0.076 0.045

13




04

02

0.0

0.4

0.2

03 04 05 06 07 08

0.0

-0.2

-04

Doppler

0.0 0.2 0.4 0.6 0.8 1.0
Bumps

0.0 0.2 0.4 0.6 0.8 1.0
Angles

0.0 0.2 0.4 0.6 0.8 1.0
Corner

Y,

0.0 0.2 0.4 0.6 0.8 1.0

Figure 1:

HeaviSine

Blocks

2 1] 2 4

Blip

\

Wave

Test Functions

14



0.6

0.2

-02 0.0

-0.6

02 00 02 04

-0.4

Random-x Sample

Equispaced-x Sample

A

0.6

0.4

0

Sy

-0.6

Random-x Estimator

00 02 04 06 038

1.0 00 02 04 06 08 1.0

Equispaced-x Estimator

4

00 02 04 06 0.8

<
S
N
o
o
S
N
OI-
<
ol- -
1.0 00 02 04 06 08 1.0

Figure 2: Doppler

15



Random-x Sample Equispaced-x Sample

00 02 04 06 08 1.0 00 02 04 06 08 1.0

Random-x Estimator Equispaced-x Estimator

© 4

00 02 04 06 08 1.0 00 02 04 06 08 1.0

Figure 3: HeaviSine

16



Random-x Sample Equispaced-x Sample

Lo -
~t+ A
m
[aV]
ww Lo - | ot
00 02 04 06 08 1.0 00 02 04 06 08 1.0
Random-x Estimator Equispaced-x Estimator
i i ' i
i R I
]
1, -
: ; ,
| ! |
1| i o |
1
|
]
]
7 —‘4 QLN/ [ IR J
00 02 04 06 08 1.0 00 02 04 06 08 1.0

Figure 4: Bumps

17



Random-x Sample Equispaced-x Sample

- q— -

i (9]

- C\Il -

00 02 04 06 08 1.0 00 02 04 06 08 1.0

Random-x Estimator Equispaced-x Estimator
b |
i < A
™)
4 | L1 o

v - ol ¥

00 02 04 06 08 1.0 00 02 04 06 08 1.0

Figure 5: Blocks

18



Random-x Sample Equispaced-x Sample

00 02 04 06 08 1.0 00 02 04 06 08 1.0

Random-x Estimator Equispaced-x Estimator

h @

1 Ll T T ] Ll ] 1 ] L) ] T )

00 02 04 06 08 1.0 00 02 04 06 08 1.0

Figure 6: Angles

19



0.6 0.8

0.4

0.2

02 03 04 05 06 07 038

Random-x Sample

00 02 04 06 08 1.0

Random-x Estimator

| 4

00 02 04 06 08 1.0

Equispaced-x Sample

o

o

© .

(e}

<

o

o

o
00 02 04 06 08 1.0
Equispaced-x Estimator

[eo]

o 7 |

~

o

< | .

o

|

o

<

o

@

o

o

00 02 04 06 08 1.0

Figure 7: Blip
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