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BENEATH THE NOISE, CHAOS

STEVEN P. LALLEY
PURDUE UNIVERSITY

ABSTRACT. The problem of extracting a signal z, from a noise-corrupted time series
Yn = Tn + en is considered. The signal =, is assumed to be generated by a discrete-time,
deterministic, chaotic dynamical system F - in particular, z, = F™(zo), where the initial
point zo is assumed to lie in a compact hyperbolic F—invariant set. It is shown that (1)
if the noise sequence e, is gaussian then it is impossible to consistently recover the signal
Tn, but (2) if the noise sequence consists of i.i.d. random vectors uniformly bounded by a
constant 6 > 0, then it is possible to recover the signal z, provided § < 5A, where A is a
separation threshold for F. A filtering algorithm for the latter situation is presented.

1. INTRODUCTION

Physical and numerical experiments carried out over the past 30+ years suggest that
the phenomenon of deterministic chaos is ubiquitous in physical systems. Experience has
shown that inference of the mathematical objects (the differential equations, equilibrium
measures, Lyapunov exponents, etc.) governing the dynamics of such systems from time
series data is a delicate problem even when this data is uncorrupted by noise. See [3] for an
extensive review and bibliography. Inference from noisy data is therefore bound to be doubly
difficult. Although various ad hoc “noise reduction” algorithms have been proposed (some
seemingly quite effective when tested on computer-generated data from low-dimensional
chaotic systems, e.g., [9] and [5]), their theoretical properties are largely unknown.

The purpose of this paper is to address the following basic question: Is it possible to
consistently recover a “signal” {z,}rcz generated by an Axiom A system from a time series
of the form

(1) Yn = Tn + €5

where e, is observational noise? A positive answer would essentially reduce the problem of
inference from noisy time series data to that of inference from non-noisy data. The following
scenario for the signal will be considered here:

(2) Tn = FY(2n1) = F™(20),

where F is a C? diffeomorphism and z is a point lying in a hyperbolic invariant set or in the
basin of attraction of a hyperbolic attractor (see section 2 for definitions and examples). Our
main result is that the possibility of consistent signal extraction depends on the nature and
amplitude of the noise. If the noise e, is uniformly bounded and the bound is below a certain
threshold A then consistent signal extraction is possible; but if the noise is unbounded, in
particular gaussian, then consistent signal extraction is impossible (even when the L2 —norm
of e, is far below the threshold A).
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In a companion paper [7] we shall consider a different but related scenario for the sig-
nal z,, which is technically (and perhaps also conceptually) more difficult but probably of
greater practical importance. In this scenario, the underlying dynamical system is a topo-
logically mixing Axiom A flow F*, but observations on the orbit z; = F*(zo) are made only
at integer times n. It will be shown that the dichotomy between bounded and unbounded
noise persists, and an algorithm for noise removal (more complicated than that given in this
paper) will be presented.

We must emphasize at the outset that the results of this and the companion paper, and
in particular the type of asymptotics considered, may not be relevant or appropriate for
all signal extraction problems connected with noisy data from chaotic dynamical systems.
In various circumstances more or less will be known a priori about the dynamical system
than we assume here. In many circumstances, inference about the dynamics F* and/or the
basic set A will be of greater importance than extraction of the signal z, itself. Finally,
when dealing with flows F* rather than diffeomorphisms, the experimenter may sometimes
be able to control the frequency of observation.

2. BACKGROUND: ATTRACTORS, HYPERBOLICITY, AND AXIOM A

2.1. Invariant Sets and Attractors. The model for a smooth discrete-time dynamical
system is a C? diffeomorphism ! F of a phase space M, which, for simplicity, we take to be
an open subset of R%. The orbits of the system are the (two-sided) sequences {z,, }nez such
that z,41 = F(z,) Vn. A compact subset A of the phase space will be called F—invariant
if F~1(A) = A, so that the restriction F|A of F to A is a homeomorphism of A. Especially
important among the invariant sets are attractors, which arise when the phase space contains
a relatively compact open set {2 such that closure(FQ2) C Q. If there exists such a set ,
the set A = N5 F"Q is a nonempty F—invariant compact set, called an attractor for
the diffeomorphism, and € is contained in its basin of attraction. All orbits z, = F™(zo)
beginning at points zg € £ converge to A.

2.2. Example: Smale’s Solenoid Mapping. The following example, Smale’s solenoid
mapping, shows that attractors may have a complex structure. The set § is a solid torus
in R® centered at the origin that may be parametrized by a real coordinate 6 € [0, 27) and
a complex coordinate z € {|z| < 1}. (Picture the torus as a solid of revolution obtained by
rotating the solid disc {|z| < 1} once around the origin.) Fix a € (0,1), and define

(3) F(6,2) = (20,02 + €2 /2)

where 26 is reduced mod 27 if § > 7. In geometric terms, the mapping F, is obtained as
follows: (1) Cut the torus and unroll it to get a solid cylinder. (2) Stretch the cylinder
lengthwise by a factor of two, then compress the resulting cylinder in the directions orthog-
onal to its length by a factor of . (3) Wrap the resulting long, thin cylinder twice around
the origin and place it so that it is entirely inside the original solid torus, and reattach the
two ends. See Figure 1.

A C? diffeomorphism is a bijective mapping F such that both F and F~! are twice continuously
differentiable.
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For each o the diffeomorphism Fi, has an attractor A C 2 whose intersection with any
“slice” Qg = {(e*, 2) : 8 = B} is a Cantor set — see Figure 2. For each £ € A N Qg there is
a smooth curve v, through £ transverse to (g that is contained in A. The homeomorphism
Fo|A multiplies distances locally along each v, by 2, and multiplies distances in Qg N A by
a. See Devaney (1986), section. 2.5, for helpful diagrams and further details.

2.3. Hyperbolicity and Orbit Separation. A compact invariant set A is called hyper-
bolic if at every point £ € A the space of tangent vectors splits as a direct sum E* @ F° of
subspaces in such a way that for all n > 1,

(4) IDF™|| > c,A?||v]] Vo€ E*
(5) IDE™|| < esA™v]] Vo€ B,

with suitable constants 0 < ¢, ¢, < 00. The solenoid attractor is hyperbolic: for £ € A, E®
is the two-dimensional space of vectors pointing into the slice Qg containing £, and E* is
the one-dimensional space of vectors pointing in the direction of the curve v.. Hyperbolicity
(together with compactness of the invariant set A and smoothness of F') implies that orbits
of nearby points diverge rapidly. In particular, there exist constants 1 > A > 0 (which we
shall call a separation threshold) and C > 0 such that if 0 < |z — 2| < A for two points
z,z' € A then

(6) |F*(2) — F*(2')] > A for some |n| < —Clog |z — z'|.

2.4. Axiom A Attractors. A compact hyperbolic invariant set A is called an Aziom A
basic set if (i) periodic points are dense in A, and (ii) there exists € A such that for
every m > 0 the forward orbit {F"(z)},>m is dense in A. (NOTE: See [1] for the standard
definition.) We shall only deal with Axiom A basic sets that are topologically mizing: This
means that for any two (relatively) open sets U,V there exists an integer n, such that for
any m > M, '

(1) FMU)NV # 0.

(By Smale’s spectral decomposition theorem [[1], section 3.5], there is really no loss of
generality in assuming that the basic set is topologically mixing.) It is not difficult to verify
that the solenoid is a topologically mixing Axiom A attractor. Theoretical results (e.g., the
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Structural Stability Theorem — see [10], Corollary ) suggest that Axiom A basic sets occur
commonly? in dynamical systems.

The ergodic theory of Axiom A basic sets and attractors is well understood - see [1] for
a thorough exposition. Of special importance in the study of Axiom A attractors is the
existence of a (unique) strongly mixing F—invariant probability measure u,, the so-called
“SRB measure”, that is supported by A and has the following property: for every continuous
function ¢ : @ — R and for a.e. z € Q2 (relative to Lebesgue measure on Q),

.1 & &
(8) fim 30 (7o) = [ wdn.
It is the SRB measure that one would expect to “see” in time series data. For our purposes,
the essential fact about the SRB measure is that it is a Gibbs state in the sense of [1],
chapter 1. See section 7 below for the important facts about Gibbs states and more on the
ergodic theory of Axiom A diffeomorphisms.

2.5. Lyapunov Exponents. The Lyapunov ezponents measure the exponential rates at
which orbits separate. For the solenoid mapping F, there are two exponents, log2 and
loga. In general, there are I < d Lyapunov exponents Ay > Ay > -+ > A;. For u,—a.e.
point z € A there are vector subspaces £y D E2 D ... FEjyq of the space E of tangent vectors
at z such that E = E,, Ejy; = {0}, and for every v € E; — E;41,

1
©) lim —log || DF™]| = ;.

This implies that the rate of separation of orbits will in general depend on the direction of
the difference ' — z in the initial points, a fact that may have important ramifications for
the smoothing algorithm defined in section 3.2 below. See Eckmann and Ruelle (1986) for
a detailed discussion of Lyapunov exponents.

" More background on Axiom A diffeomorphisms, Gibbs states, and SRB measures, of a
more technical nature, is given in the Appendix below. This additional material is needed
for the proofs, but not the statements, of the results stated in the following section.

3. SIGNAL EXTRACTION

3.1. Bounded Noise. Consider now the problem of reconstructing an orbit {z,} from a
noise-corrupted time series y, = 2, + e,. The sequence z, is generated by (2), and we
assume that the initial point z¢ is either an element of a (compact) hyperbolic invariant
set or in the basin of attraction of a hyperbolic attractor. We first consider the problem of
noise removal under the hypothesis that the noise is uniformly bounded:

Hypothesis 1. Conditional on the sequence {z,} (equivalently, conditional on zq) the
random vectors e, are independent, uniformly bounded by a constant § > 0, and have
expectations

(10) E(en|zo) = 0.

2whatever this means
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3.1.1. Smoothing Algorithm D. This algorithm is designed for time series produced by a
diffeomorphism (hence the D), with noise satisfying Hypothesis 1, and assumes that a
suitable bound 6 > 0 for the noise is known a priori. The algorithm takes as input a finite
sequence {Yno<n<m and produces as output a sequence {#n}o<n<m of the same length that
will approximate the unobservable signal {z,}o<n<m. Let K., be an increasing sequence of
integers such that o

Kom

(11) im kp =o00 and lim = 0;
m-—co m—oo logm

e.g., k;m = logm/loglogm. For each integer k,, < n < m — K,;,, define A, to be the set of
indices v € {0,1,...,m} such that -

(12) mMax [Yy4j — Ynsj| < 36,
l7|<5m

with the convention that |y; — y;| = oo if either of ¢ or j is not in the range [0,m]. For
n < Km OT N2> M — Ky, define A, to be the singleton {n}. In rough terms, A,, consists of
the indices of those points in the time series whose orbits “shadow” the orbit of z,, for &,
time units. In Lemma 1 below we will show that v € A, implies that |z, — z,| is small.
Thus, even though the values z; are unobservable, neighboring points may still be picked
out by virtue of having similar orbits. Now define

(13) Ep = ﬁ > v

7l yedy,
Theorem 1. Assume that zg is either an element of a compact hyperbolic invariant set A
or an element of the basin of attraction of a compact hyperbolic attractor A, and assume
that the noise sequence e, satisfies Hypothesisl. Let A be a separation threshold for the
invariant set. If 56 < A then for every e > 0,

(14) mhlnm P{m™! Z 1{|&, —zn| >} >} =0.
n=0

Theorem 1 is valid for every orbit {z,}n>0 contained in A, but the conclusion is only a

weak convergence statement. For “generic” orbits of an Axiom A basic set, the conclusion
can be strengthened to an a.s. convergence statement.

Theorem 2. Assume that zo is chosen at random from a Gibbs state p. supported by an
Aziom A basic set A, and assume that the noise sequence e, satisfies Hypothesis 1. Let A
be a separation threshold for the attractor. If 56 < A then with probability one,

(15) Jim N max |£n, — zn| = 0.

The most important case (probably) is when A is an Axiom A attractor and pu, is the
SRB measure. In practice, when dealing with an attractor, the initial point might be chosen
at random from an absolutely continuous distribution on the basin of attraction 2, and an
initial segment of the orbit would then be discarded. Theorem 2 remains valid under this
hypothesis.

Since the almost sure convergence statement (15) holds for points zo chosen at random
from any F'—invariant Gibbs state, and since Gibbs states are dense in the space of ergodic
F—invariant probability measures on A, one might at first suspect that Theorems 1-2 might
be strengthened to the stronger statement that (15) holds for every zo in A. This is false:
it can be shown that every Axiom A basic set contains orbits for which (15) fails.

Theorems 1 and 2 will be proved in sections 5 and 6 below, respectively. In both cases,
only the proofs for orbits z,, contained in A will be given, as the proofs for orbits initiated in
the basin of attraction are nearly identical. The proof of Theorems 1 is relatively elementary,
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but that of Theorems 2 requires deeper results from the ergodic theory of Axiom A basic
sets, which are collected in the Appendix.

3.1.2. Implementation. One might expect to use filters of the type described above on time
series of length m = 10° or more, and so from a practical standpoint efficient implementa-
tion may be as important as statistical efficiency. Although implementation of Smoothing
Algorithm D in the form described above may require on the order of O(m?) comparisons,
there are simple modifications that can be implemented by O(mlogm)—step algorithms.
In perhaps the simplest such modification, the indices n € [1,m] are sorted into bins B,
indexed by integer vectors v, with n € B, if and only if v is the integer vector closest
to 22,/36. The indices n € [1,m] are then re-sorted into bins B? indexed by arrays w
of integer vectors of length 2k, with n € By if and only if for each |j| < k., the index
n+j € B,,, where v; is the jth entry of w. The nth entry &, of the smoothed sequence is
then gotten by averaging the vectors y, over the indices v in the bin B, containing n.

3.1.3. Consequences for Aziom A Attractors. (A) By the Ergodic Theorem, it is almost
surely the case that the empirical distribution of the points 1, z5, . . ., Ty, converges weakly
to the Gibbs state .. Therefore, by Theorem 2, the empirical distribution of the points
Z1,%9,...,2L, converges weakly to u,.

(B) Since the positive Lyapunov exponents can be recovered from non-noisy data z, (see [3]
and [4]), it follows from Theorem 2 (and some auxiliary results) that the positive Lyapunov
exponents can be estimated from noisy data y,. Moreover, since the entropy is just the sum
of the positive exponents, it too can be consistently estimated. Finally, since the correlation
dimension of the SRB measure can be estimated from non-noisy data Zn, it can also be
estimated from noisy data.

(C) Since F is continuous and the support of p, is dense in A, the set of ordered pairs
(£n,%n41), Where Ky, < 7 < ™M ~ Ky, converges in Hausdorff metric to the graph of F|A.
Thus, one can in effect reconstruct the basic set A and the mapping F|A from noisy data.
However, it may not always be possible to recover all of the partial derivatives of F| as the
support of the SRB measure may not fill up the “stable” directions E° at £ € A. This was
noted in [3].

3.1.4. Second Stage Smoothing. There is, obviously, a bias-variance tradeoff in the choice
of the sequence £y, used in the smoothing algorithm of section 3.2. Decreasing the rate of
growth of k,, increases the number of points in A,, and therefore decreases the variance
of the average (13); however, the values of z, included in the average will then tend to be
further from z,, therefore increasing the bias. But there is an even larger impediment to
the accuracy of the algorithm that derives from the fact that the rate of orbital separation
depends on the direction of the difference between initial points. In particular, the dynamical
distance between orbit segments {F*(z)}, and {F”(z')}, will tend to be smaller when
¢’ —z points approximately in a “Lyapunov direction” corresponding to a smaller Lyapunov
exponent. Thus, for most n it will be the case that the points {z,},c4, will lie in a (very)
long, thin ellipsoid, and that many v for which |z, — z,| is relatively small will be excluded
from A,.

This peculiarity might, in principle, be exploited to obtain more accurate estimates of
the points z,. Fix 8 € (0,1), and for each 1 < n < m let B, be the set consisting of those
m# integers v € [1,m] for which |3, — £,| is smallest. Define

(16) En=mP >y,

vEB,
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We conjecture that, with a suitable choice of 3, use of this second stage filter might consid-
erably improve the accuracy of estimation of z,,.

3.2. Gaussian Noise. Hypothesis 1 is quite a bit more stringent than one would like.
However, if the errors are unbounded, even gaussian, then it is impossible to consistently
reconstruct the signal z,, or even a part of it, from a long stretch of the time series y,. In
fact, it is impossible to infer even a single value zq of the signal from the entire two-sided
time series y, = =, + e,.

Hypothesis 2. Conditional on the sequence {z,} (equivalently, conditional on zo) the
random vectors ey, are independent and Gaussian with mean vector 0 and nonsingular co-
variance matriz 3.

Theorem 3. Assume that zo is chosen at random from a Gibbs state u, supported by an
Aziom A basic set A. If the errors e, satisfy Hypothesis 2 then there is no measurable

function & = &u({Yn}nez) such that
(1'7) zo = & with probability 1.

The proof , which will be given in section 4 below, will show that orbit reconstruction
is impossible even if the macroscopic features of the dynamics (the diffeomorphism F, the
attractor A, and the SRB measure y.) are known a priori. Furthermore, it should be clear
from the proof that the result extends to a large class of error distributions. We shall refrain,
however, from trying to state and prove an extremely general form of the result.

Although it is not possible to consistently recover the signal {z,} from the time series
Yn when the noise e, is gaussian, it is nevertheless possible to consistently estimate impor-
tant features of the dynamics provided the covariance matrix ¥ is known. In particular,
Birkhoff’s ergodic theorem implies that for every polynomial g(z) in d variables,

1 &
(18) Jim 3 0w = [, 6+ O dua(Eens(c)dd
where o » is the gaussian density with parameters 0,%. This implies that the moments
of p. can be consistently estimated; since u, has compact support, it is determined by
its moments, and so p, can be consistently estimated. Similarly, the joint distribution of
(X, F(X)), where X ~ p,, may also be consistently estimated. Since the support of this
latter distribution is the graph of F|A, this too may be consistently estimated.

Unfortunately, proving the existence of consistent estimators is not the same as the
construction of good or useful estimators. The substantial problem of inference about the
dynamics of F" from time series data y, = z, + e, when the noise e, is gaussian will be left
to another paper.

4. ProoF oF THEOREM 3

Proof. The proof that there is no such &, uses the existence of homoclinic pairs — see section
7.4 in the appendix below. By Proposition 2 of the appendix, on some probability space are
defined random vectors zo and z(, each with marginal distribution y., such that (a) with
positive probability, zj # zo; and (b) with probability one zq and z constitute a homoclinic
pair, i.e., for some a > 0,

(19) lim (14 )z, -2/ | =0,

In|—roo

where z, = F"(zo) and z;, = F™(z;). We may assume that the probability space also
accomodates a sequence e, of gaussian random vectors that are jointly independent of zg
and z5. Define y, = @, + e, and ¢}, = 2/ + e,; then conditional on the values of zo and
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z( the sequences y = {y, }nez and y’ = {y/, }nez have gaussian distributions with the same
autocovariance, and mean vector sequences {Z,}nez, {2} }nez satisfying (19). Since (19)
implies that 3", o |2, — 2}|? < 00, a theorem of Kakutani (see, for instance, [6], section I1.2,
Theorem 2.1 and Example 3) implies that the conditional distributions of the sequences y
and y’, given o and z{, are mutually absolutely continuous. Consequently, for any Borel
measurable function &, : (RY)% — R, the conditional distributions of the random vectors
&.(y) and &.(y'), given zo and zf, are also mutually absolutely continuous. If there were
a function £, = &.(y) such that ¢ = £.(y) almost surely, then it would also be the case
that 2{ = &.(y’) almost surely, and so the mutual absolute continuity of the conditional
distributions would then imply that z{ = 2o almost surely, a contradiction.

O

5. Proor oF THEOREM 1

In essence, the proof of Theorem 1 consists of showing (1) that the sets A, are large (so
that averaging over A, will get rid of the errors); (2) that the sets A,, contain only indices v
such that |z, —z,| is small; and (3) that although the sets A, and the error random vectors
e, are not a prior: independent (since the sets A, are defined using the values y,), the
dependence may be circumvented in the averaging. It is only for task (2) that hyperbolicity
of the invariant set A is needed.

Lemma 1. There ezists a constant C > 0 such that if v € A,, then
(20) |2 — 2] < exp{—Km/C +2/C}.

Proof. This is a consequence of the orbit separation property, which in turn follows from
the hyperbolicity of A. By hypothesis, 5§ < A, where A is a separation threshold for the
attractor (see equation (6)), and by Hypothesis 1, |e,| < §. Consequently, if v € A, (ie.e,
if inequality(12) holds), then

max |Zpt; — Tuyj| < 56 < A.

li|<km
But this cannot hold unless (20) is true, by the orbit separation property (6) (the constant
C being the same as the constant C in (6)). Thus, v € A, implies (20). O
Lemma 2. For every ¢ > 0,
1 m
21 lim — Y 1{|4,| < m'™¢} = 0.
(21) Jm, 3 1] i)

Proof. This follows from the hypothesis (11) that &, = o(logm) as m — o0, by a routine
counting argument. Since A is compact, it has a finite subset B that is §/2—dense. Since
km = o(logm), the cardinality Ny, of the set B?*m*1 of length-(2k,, + 1) sequences with
entries in B satisfies

(22) N, = o(m®) as m — 00

for every € > 0. If B is §/2—dense in A, then for every = € A, there is at least one element
£ = (b0,&1...,8,y,) of B+ that §/2—shadows the orbit segment {F™(z)}_y..<n<nm,
i.e., such that

(23) | F™(z) — €p—rpn|l < 6/2 VY |n| < &p.

For each ¢ € B#*m+! define B,,(£) to be the set of all indices v € {0,1,2,...,m} such that
(23) holds with # = z,. Every index v is contained in at least one of the sets B, (£). If
two indices n,v both lie in the same set Bp,({), then by (23) and the triangle inequality,
|ntj — 4] < 6 and hence |yn4j — Yptj| < 36 for all |j| < ky; thus, v € A,. Therefore, to
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prove (21) it suffices to show that for large m most of the indices v lie in sets B,,(£) with
at least m!~¢ elements. But by (22),

(24) > 1Bu(OI1{|Bn(€)] < \/m/Nu} < V/mN, = o(m?+e)
3

Consequently, all but at most o(m%"'“:) of the indices v € {0,1,2,...,m} lie in sets By, (§)
with at least m!~¢ elements. O

Proof of Theorem 1. The estimate &, is obtained by averaging the vectors g, over the in-
dices v € A,, (equation (13)). Since y, = z,, + €., we have

(25) & = Z e, + Z (z, — T4).
uEA VEA

Lemma 1 implies that the latter average converges to zero uniformly for £, < 7 < m — Kk,
as m — oo. Thus, it suffices to show that for most of the indices n the average of the
errors e, for v € A, is small, with probability approaching 1 as m — oo. If the random
vectors e, were independent of the index sets A,, then in view of Lemma 2 the result would
follow immediately from the Chebyshev inequality. However, the random vectors e, are not
independent of the index sets A,; thus, some delicacy is required.

For each index n, define A}, to be the set of all indices v such that v € A, and |[n—v| < K3
note that |A%| is no larger than 2k,, + 1 = o(logm), so on the event that |A,| > m3/* the
indices v € A;, have a negligible effect on the average Y-, 4 €,/|An|. For each index n and
each integer i € [1, 2k,, + 1], define A! to be the set of all indices v ¢ A% such that v € A4,
and v = 1 mod 2k, + 1. Obviously, the sets A%, AL, A2 ... Afm are pairwise disjoint, and

2Km+1
(26) A, = AL U (U A’)

For each i the set A’ is independent of the collection of random vectors {e, } indexed by
integers ¥ = ¢ mod 2x,, + 1. To see this, consider an integer v = ¢ mod 2k,, + 1. The event
v € A% is completely determined by the values of yn4; and y,4; for [j| < kp; furthermore,
no other event ' € A%, where v/ # v, is influenced by the values of y,4; for || < &, (this
is the point of partitioning the indices v into blocks of size 2k, + 1). Moreover, the event
v € Al is not affected by the value of e,, because if |y,+; — Ynt;| < 36 for all 1 < || < K,
then by the same argument as in the proof of Lemma 1, |2, — z,| < 6§/2 (provided m is
large) and so |y, — y,| < 36 regardless of the values of e, and e,. Thus, the composition of
the set A% can be determined without reference to the values of the random vectors {e,}
indexed by integers v = ¢ mod 2k, + 1.

For each index 7, the sets A%, may be partitioned as ZU J, where Z consists of the special
index * and those indices i for which |AY| < v/m, and J consists of the remaining indices.
For each 7 € J, Chebyshev’s inequality implies that for any € > 0,

(27) P (I > e/l > e

veEAL

Ai) < 8%/14]e? < 8% /(Vme?),

since the random vectors e, indexed by v € A% are independent of Ail,_by the preceding
paragraph. Since there are no more than 2x,, + 2 elements of Z, and |A4%| < /m for each

ieT,
10> el < (26 +2)v/mé.

1€Z ve A}
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Consequently, if |4,| > m®/* and m is sufficiently large that (2&,, +2)/m!/% < ¢/ then the
event | 37, ¢4, €v|/|An| > 2¢ is contained in the union over ¢ € J of the events | 3=, ¢ 4: e, >

g] Al ). Tt therefore follows from inequality (27) that

P (| > el/|An] > 2¢

vEAR

|An| > m3/4) < (26 + 1)6%/(V/me?).
Together with Lemma 2, this implies that

(28) S PUY eol/lAnl > 26} = ofm),

n=0 VvEAR

which, in view of Lemma 1, proves (14). O

6. PROOF OF THEOREM 2

The proof of Theorem 2 differs from that of Theorem 1 in two respects: (A) Lemma 2
must be replaced by the stronger statement that the cardinality of A, is large for every
index n between k., and m — Kkp,; and (B) Chebyshev’s inequality must be replaced by an
exponential large deviations probability inequality. The latter change is relatively minor; the
former, however, requires hard results from the ergodic theory of Gibbs states on Axiom A
basic sets. See the appendix below for a resume of the most important definitions and facts,
and [1] for a detailed exposition of the theory.

Assume that A is an Axiom A basic set for F’, that u, is a Gibbs state for F' supported by
A (see section 7.3 below for the definition and basic properties), and that the initial point
zo of the orbit z,, is distributed in A according to pi..

Lemma 3. For every ¢ > 0, all sufficiently large m, and all integers n € (Km, M — K,
(29) P(|An] € m'™*) < exp{-m®}

Proof. The basic set A admits a Markov partition M of diameter less than 6 (see section
7.2 below). Let 2, 25 € A be points with orbits z; = F7(z) and 2} = F7(z}) and itineraries
{i;} and {3}} (relative to the Markov partition M), respectively. If i; = i for all |j| < K,
then |z; — 2i| < § for all |j| < K, since the diameters of the sets G; of M are less than §.
Consequently, if ,, and z, are two points on the orbit of # = 2o with itineraries {i;}, {4}}
that coincide for |j| < &, then |yn4; — Yut;| < 36 for all |j| < Ky, and so v € A,. Thus,
to prove the inequality (29) it suffices to prove that for every finite itinerary i = {4;}|;/<x.,
of length 2k,, + 1, the probability that fewer than m'~* of the points {Zn}1<n<m share the
itinerary 1 is smaller than exp{—\/m}. -

Let I be the (doubly infirite) itinerary of a random point of A with distribution u..
Because p. is a Gibbs state, there exists a constant 8 > 0 and an integer I, both independent
of m, such that the following is true (see inequalities (38) and (39) of the appendix below):
For any infinite itinerary i and any finite itinerary i* of length 2x,, + 1,

(30) P(Ipin =iV 1< 0 < 26 4+ 1] I, =4, Y1 < 0) > prm+L,

Thus, if the random itinerary I is broken up into segments of length L + 2k, + 1, each
segment will provide an opportunity for the letters 1* to occur with success probability at
least 32*m+1. Hence, if N(i*) is the number of times that the finite string i* occurs in the
first m entries of I, then N (i*) stochastically dominates the sum of k = [[m/(L + 2., + 1)]]
1.i.d. Bernoulli random variables with success parameter 3**m*1. Since &,, = o(log m), for
sufficiently large m this success probability is, for any ¢ > 0, eventually larger than m™¢,
and furthermore & > m!'~¢. It follows that the expectation of the sum is larger than m!~2¢,
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Consequently, by a very crude probability inequality for sums of independent Bernoulli
random variables,

(31) PAN(i*) < m1=%} < exp{-m*}.

Lemma 4. With probability one,
1
(32) lim max  ——

m—00 Ky <nm—~Km IA'IL |

Ze,,:O.

VvEAR

Proof. The proof will use the following standard large deviations probability estimate for
sums of independent random variables: If £&1,&s,... are independent random variables (or
vectors) uniformly bounded by a constant § < oo and if E¢; = 0 for every j, then for every
n > 0 there exists 7 = y(7, §) > 0 such that for all sufficiently large n,

(3) PLEIS 6l > 1) < expl-my).

As in the proof of Theorem 1, the set A, may be decomposed as the disjoint union of the
sets A% and A%, — see equation (26). Recall that for each i the set A% is independent of
the collection of random vectors {e, } indexed by integers v = i mod 2k, + 1. Recall also
that the indices *,7 may be partitioned as 7 U J, where 7 consists of the special index =
and those indices i for which |A!| < v/m, and J consists of the remaining indices. For each
i € J, the probability inequality (33) implies that for any ¢ > 0 and all sufficiently large m,

1
(34) P (@ Y e

vEAL
for a constant ¥ > 0 depending on ¢ and § but not on m. Now for sufficiently large m,

>¢€

Ai) < exp{—7|4L|} < exp{—7v/m}

(35) {20 el > 2elAnl} C {lA4] < m**} U (U{I D el> 6|A§;I}) -

VEAR €T veai

Consequently, by Lemma 3 and inequality (34), for all large m and &, < 7 < M — K1y,

(36) P (ﬁ d e

vEAY,
Since the series 3, me™®™" is summable for any values of a > 0 and « > 0, the result (32)
follows from the Borel-Cantelli Lemma. a

> 2¢ ) < (26m + 1) exp{—yv/m} + exp{—m?*/16},

am

7. APPENDIX: MARKOV PARTITIONS FOR AXIOM A Basic SETS

7.1. Example: Smale’s Solenoid. In this example there is a simple Markov partition,
and the resulting “symbolic dynamics” is relatively transparent. Partition the attractor A
(or its basin of attraction Q) into two sets

Go={(0,2z):0<0< 7}

Gi1={(6,2): 7 <0< 2r}
(This isn’t really a partition in the usual sense of the word, since the sets have nonempty
intersection, nor would Markov understand why his name is attached, but it is called a
Markov partition anyway.) For any point = € A, define an itinerary of = to be a doubly

infinite sequence i = {i, }nez of O0s and 1s such that F™(z) € G;, for each integer n. Observe
that if i is an itinerary of = (8, 2) then igiyi3 ... is a binary expansion of §/27; moreover,
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if z € Ag for some particular cross-sectional slice A then the value of i_; indicates which of
the two “first generation” circles (see Figure 2) contains z, and ¢_,%_,41 ...7_; determines
which of the 2" “nth generation” circles contains z . With this in mind, it is not difficult
to see that (a) every infinite sequence of Os and 1s is an itinerary of a unique z € A; and
(b) for p.—a.e.  there is only one itinerary. The projection from sequence space to A
(semi-)conjugates the forward shift operator on sequence space to the solenoid mapping F,.
(In fact, Smale invented the solenoid mapping for just this reason.) See [2], chapter 2, for
further details concerning this example.

7.2. Markov Partitions and Symbolic Dynamics. Every Axiom A basic set admits
Markov partitions of arbitrarily small diameter, but in general neither the partitions nor
their construction are simply described. See [1], chapter 3, or [10], chapter 10 for the
precise definition and construction. A Markov partition M consists of finitely many closed
sets GG1,Ga,...,G, whose union contains A, and such that for p,—a.e. z, every point
zn = F™(2p) in the orbit of zg lies in only one of the sets G;. The diameter of the partition
is the maximum of the diameters of its constituent sets. For any point zg € A, define an
itinerary of zg to be a two-sided sequence ...i_y%g?; ... such that for each n, z, € G;_; note
that for p.—a.e. zg, there is only one itinerary. If the diameter of M is sufficiently small
then no two distinct points z,z’ € A may share the same itinerary, since this would entail
a violation of the orbit separation property mentioned in section 2.3 above.

Let ¥ be the space of all doubly infinite itineraries, and let ¢ be the forward shift operator
on ¥. Since distinct points of A may not share the same itinerary, there is a projection
m : ¥ — A that maps each itinerary i to the unique point z € A with itinerary i. It is
not difficult to see that 7 is continuous (and even Hoélder continuous with respect to the
appropriate metric on X - see [1] or [10]). Clearly, For = moo, and so ¢ is a homeomorphism
of ¥, since F is a homeomorphism of A. Not every sequence i need be an element of 3;
however, the Markov property of the partition M implies that the space ¥ of all doubly
infinite itineraries, together with the forward shift operator o, is a topologically mixing shift
of finite type (see [1], Lemma 1.3 and Proposition 3.19). A shift (£, 0) is of finite type if
there exists a finite set F of finite words from the alphabet A = {1,2,...,7} such that for
any doubly infinite sequence i with entries in 4, i is an element of ¥ if and only if i contains
none of the words in F. The shift (X,0) is topologically mizing if there exists an integer
M < oo such that for every pair w,w’ € ¥ there exists a finite word w of length M such
that the concatenation

e W oW _1WwWotiwy. .. ’waiwé v

is an element of .

7.3. Gibbs States. A Gibbs state u. on A is defined to be an invariant probability measure
whose pullback to a shift-invariant probability measure fi, on the sequence space ¥ has the
Gribbs property described in [1], chapter 1 (see [1], chapter 4 for the proof). In particular,
[ix must satisfy a system of inequalities

fx{W €Lt w;=4;,V0< 7 < n}
37 Cr < :
(37) L S VR P ¢

valid for all itineraries i and all integers = > 0, for constants 0 < C7 < Cy < co independent
of n and of the itinerary i. Here ¢ is a real-valued, Hélder continuous function on the space
of all doubly infinite sequences i, o is the forward shift operator, and A € R is a constant
called the pressure. See [1], section 1.4, for details. Note that (37) implies that there exists
a constant # > 0 such that for any finite itinerary i115...17,,

(38) pefweX tw; =4;V1<j<n}>p"

S 02,
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The SRB measure p, for an Axiom A attractor is a Gibbs state — see [1], chapter 4 for
a proof. For Smale’s solenoid mapping F, the measure fi, is the product Bernoulli-1/2
measure, i.e., the measure that makes the coordinate random variables i.i.d. Bernoulli-1/2.
In general, Gibbs states enjoy very strong mixing properties, among which the following,
concerning the conditional distribution of the future given the past, is perhaps the most
useful.

Proposition 1. There exist constants pi > 0 satisfying limg_o pr, = 1 and such that for

every infinite itinerary i = ...i_yipé1--- € ¥ and every finite itinerary i* = iJi5...4% (of
any positive length),
(39) fx(Wjtnmr = 5V 1<j<n|w;=14;¥j<0)

2 pril{w; =3V 1 <5 <n}.

See [8] for a proof.

Equations (38)-(39) have the following consequence: there is a constant 8 > 0 such that
for any finite itinerary i* = i745...4% (of any positive length), the conditional probability,
given the past, that the next M + n steps of the itinerary will end in }4%...3} is at least

g

7.4. Homoclinic Pairs. One of the important features of Axiom A (and, more generally,
hyperbolic) systems is the existence of homoclinic pairs. Two distinct points z and z’ are
said to be a homoclinic pair if for some £ > 0,
(40) lim (1+ )| F(a) - F*(a")] = 0
[n|—oco0

in words, z,z’ are distinct but their orbits approach each other exponentially fast both
forwards and backwards in time. In Axiom A systems, homoclinic pairs are dense: in
particular, for any points £,£’ € A and any § > 0 there exists a homoclinic pair of points
such that |z — £| < § and |2’ — €| < 6.

This may be proved using the existence of Markov partitions of small diameter. Let i and
i’ be itineraries of ¢ and &', respectively. By the separation of orbits property, there exists
an integer k such that if the itinerary i of a point z € A satisfies i = i; for all |j] <k,
then |z — ¢| < 6, and similarly, if i =} for all |j| < k, then |z — ¢'| < §. But topological
mixing (see section 7.2 above) guarantees that itineraries may be spliced together to obtain
itineraries i* and i** so that (a) &7 = ¢; for all |j| < k; (b) 45* = ¢} for all |j| < k; and
(c) if = ¢7* for all |j| > M + k. If = and 2’ have itineraries i* and i**, respectively, then
|z —§| < 6 and |2’ — £'| < 6, by (a) and (b), and z,z’ are a homoclinic pair, by (c) and the
orbit separation property.

The foregoing argument may be adapted to prove the following proposition, which is the
key to Theorem 3 above.

Proposition 2. On some probability there exist random vectors X', X" valued in A such
that

(a) each of X' and X" has marginal distribution u.;

(b) with probability 1, X' and X" are a homoclinic pair; and

(c) with positive probability, X' # X".

Proof. The probability space should be large enough to accomodate a random vector X
with distribution u, and several independent uniform-(0,1) random variables. Let I =
«..d_1Igly ... be the itinerary of X. Construct new itineraries I',I” as follows: For some
large integer k, set I} = I} = I; for all || > k; and choose the random vectors (I’ ,...,I})
and (I”;,...,I}) independently from the conditional distribution of (I_g,...,I}) given
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{Ij}|j|>k. (This is possible if the underlying probability space supports uniform random
variables independent of 1.) By construction, each of I’ and I” will be an itinerary. Define
X' and X" to be the unique points with itineraries I’ and I”, respectively. Clearly, each
of X’ and X" has the same marginal distribution as X. Moreover, since the itineraries
of X’ and X" coincide except in finitely many entries, X’ and X” must be a homoclinic
pair. Finally, Proposition 1 implies that if & is large then the joint distribution of (X', X")
approximates the product measure pi. X fi,. Since under p, X py there is positive probability
that the coordinates are not equal, the same is true for the joint distribution of (X', X”). O
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