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Abstract

Multivariate density estimation is well known to be a tremendously difficult problem
due to the occurrence of phenomena variously known as the corner effect and the curse of
dimensionality. Specifically, histogram density estimation in high dimensions is plagued
by the consequence that sampled observations tend to reside with high probability in low
density regions of the sample space. In this article we attempt to quantify two central
things: in how many dimensions, one starts to really feel the curse of dimensionality, and
what sort of sample sizes are needed to do any kind of a reasonable inference in various
dimensions. These questions cannot be formulated in a unique way. So the attempt is to
derive a broad spectrum of results, which are then illustrated by extensive computation. A
number of results may be of independent interest in combinatorics and applied probability.
Our subjective conclusion after these extensive computations is that in 3 dimensions one
often sees the most drastic effect relative to just one less dimension; in 5 dimensions one
feels the curse of high dimensions rather strongly; in 10 dimensions, the feasibility of
inference with realistic sample sizes basically vanishes. We also give a subjective minimum
sample size recommendation based on the number of dimensions. These calculations are

different in character from Epanechnikov(1969).

1. Introduction

Nonparametric density estimation has been a very active area of theoretical research
for over forty years, starting with the striking result of Rosenblatt (1956) that a UMVUE
of the density at a point does not exist. Silverman (1986), Devroye and Gyorfi (1984),
Nadaraya (1983), Izenman (1992) and Scott (1992) describe various aspects and methods

of density estimation, including the modern kernel estimation methods; one should also
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see the lucid review articles Wertz (1978) and Scott and Wand (1991).

Multivariate density estimation, despite an existing theory, is generally a very difficult
exercise and plagued by a phenomenon commonly known as the corner effect or curse
of dimensionality; see Scott (1992). The intrinsic problem is that sampled observations
in high dimensions almost exclusively reside in the far corners or low density regions of the
sample space and it is indeed difficult to catch any subtle features of the underlying density
function except when one has the luxury of taking a huge number of observations. See
Epanechnikov (1969) and Table 3.7 in Scott (1992). For some elegant probabilistic calcu-
lations on the phenomenon of corner effect, one may see Silverman (1986), Wegman (1990)
and Section 1.5 in Scott (1992). The general goal of this article is to provide theoretical
results on this phenomenon in greater generality (i.e., with less structural assumptions),
to investigate the issues of how many dimensions does it take to feel the curse of dimen-
sionality and to give some absolutely minimal sample size recommendations. There can
be no unique answers to the questions we address and so the intention is to give theo-
retical calculations on various different formulations and try to see if there is a common
thread in these calculations. The flavor is a bit more probabilistic than statistical, although

statistical examples are given as well.

In Section 2, we demonstrate the phenomenon of corner effect in some generality by
two results and an example. One result says that under a local Lipschitz condition on
the least radial majorants of a sequence of densities f,(z) in n-space, the probability of a
fixed neighborhood goes to zero; this general result is then illustrated by two examples. A
second result calculates the amount of a cube occupied by the inscribed L, ball in n-space
for a general p > 0, and examines the smallest dimension at which 90% or more of the
cube is outside of the inscribed L, ball. These are not new phenomena, but generalize the

known cases quite well.

In Section 3, we build on the results of Section 2 by presenting an interesting question.
The question is this: if £ observations are taken from the unit cube in n-space, and we
plant a “random set” in the cube, what is the probability that this set is entirely unvisited
by the k observations? We take the set to be a random L, ball, appropriately defined. For
a general theory of random sets, one may consult Kendall (1974) and Matheron (1975),



among many references. The mathematical formulae are then illustrated by computation
and we again examine the smallest dimension at which the random set remains unvisited
with a probability of 90% or more. We also examine the smallest sample size which
will ensure that a random sphere gets visited with a probability of 50% or more. In
this calculation, we find the astonishing fact that in 4 dimensions, we require 145,000

observations for this purpose! These calculations are new.

Having shown in Sections 2 and 3 that with a near certainty, sampled observations in
a high dimensional space will not be visible in fixed neighborhoods, in Section 4 we try to
further quantify the sample sizes that will be necessary so a number of fixed neighborhoods
will be visited. Specifically, given observations z1,zz,... from a density f(z) in n-space,
and a partition {Sy,S2,...,Sn} of the sample space, we consider the minimum sample
size N necessary to have each set Sp,..., S, visited at least once. This therefore relates to
the classic coupon collector’s problem (see Holst (1986)). As illustration, we take the sets
51,52,...,8m to be the annuli || X|| <1,....m -2 < ||X]| <m-—1,||X]|]| >m —1, and
study N for the multivariate normal and the multivariate ¢ case. These calculations

are different in character from Epanechnikov (1969).

The article closes in Section 5 with some results on the interesting random variable
T =T(k,m,n) = # elements of a partition {S1,S2,...,Sm} that remain unvisited after k
sample observations z1,%2,...,z; from a density of f(z) in n-space. We study P(T > 0)
and the distribution of 7. When the elements of the partition have equal probability ;11—,
the distribution of T follows from consideration of Stirling’s second numbers. In addition,
we present some simulations on how T is affected if the members of the partition are not
equally likely; the illustrative computing is for the multivariate normal case with the sets

S; being annuli.
In summary, the main results are therefore the following:

a. We give some general results on the presence of corner effect and the curse of dimen-
sionality by making less structural assumptions. Here we can have the density f,(z)
to depend on the dimension and even have the coordinates of X collapse to zero at

appropriate rates;

b. We give some results on the probability with which a random set placed in a cube



stays unvisited;

We try to quantify the sample sizes necessary so fixed neighborhoods do get visited.

i

This is illustrated by the case of the multivariate ¢ distributions when the neighbor-
hoods are the spherical annuli || X|| <1, || X]|| < 2,..., || X]|| > m;

8-

We also study the number of unvisited members of a partition of the sample space

after a fixed number of observations;

i®

In these results, we investigate how many dimensions it takes to feel the curse of

dimensionality, by extensive computing;

f. We give some minimal sample size recommendations for various dimensions; these are

subjective.
2. Two Illustra‘tive Results

2.1. Corner Effect. It is well known that the amount of a cube occupied by a sphere
in n-space goes to zero as n — co. We first give a result that helps answer the following
more general question: if B is a general inscribed L, ball, p > 0, how many dimensions

does it take for the fraction of the cube occupied by B to be less than a given €?

Proposition 1. Let C be the unit n-dimensional cube C' = {z: max|z;| < 1} and for
)

p > 0, By the inscribed L, ball B, = {z:3_|z;|" < 1}. Let a = a(p) = (%)F r (:—) + 1)
and b = b(p) = %f? for any given ¢ > 0. Then e(n,p) = %l(f—é; < € if logn >

1 b 1
P <log a— —5—°n — J—°2nn).

Proof: For any p > 0, the volume of the unit L, ball in n dimensions equals

/2 n,(r(%))n I (F(%+1)>n
o= (2) () T(zer) W

- (F(}% + 1))n
e(n,p) = W. (2)
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Using the fact that [(z + 1) > e~%2*+2+/2x, from (2) one has

<e (3)

if <;"%—> ﬁ < 1, which simplifies to log n > p(log a — lo—%é — lﬁgn—n)
Remark. Table 1 lists, for p = .5,1,2,3 and 4, the threshold value n at which the ratio
e(n,p) < .1.

Table 1

Minimum # dimensions at which 90%
of a cube is outside of an L, ball

p
. D 1 2 3 4
n (dimensions) 3 4 5 7 11

So perhaps one can say that the phenomenon of corner effect manifests itself strongly in 5

or more dimensions.

2.2 Curse of Dimensionality. The next result says that with very little structural
assumptions on a sequence of n-dimensional densities f,, sample observations will tend to
reside in low density regions of the sample space. This generalizes previous calculations in

Silverman (1986), Scott (1992) and Wegman (1990). We first give a definition.

Definition. Let f(z) be a given function on R™. The least radial majorant of f is the

function ¢(||z||) =  sup
y: yl=lzli

Theorem 1. Let f,(z) be a sequence of densities in R™ and g¢,(||z||) the corresponding
sequence of least radial majorants. Let My, = sup|gn(r) — gn(1)|/|r — 1| (We define 0/0 to
r>0

be 1). Suppose g, satisfies the following two conditions:

P Mo _ (4)

=V



i Yo — o(1). (5)
Then for any fixed k£ > 0, Py, (|| X]|| < k) — 0.

Before giving the proof of Theorem 1, we give the following corollary. It says that for
a multivariate normal distribution, probabilities of fixed neighborhoods go to zero even if
the covariance matrix is allowed to depend on the dimension and collapses to zero at an

appropriate rate.

Corollary 1. Let X, ~ Ny,(0,%,). If nAyin(Xn) — oo and liminf {/Amax(En) > 0,
then P(||X,|| < k) — 0 for any fixed k£ (here Ayin and Apax denote the minimum and
the maximum eigenvalues of ¥,,). In particular, if £, = 021,, then P(||X,|] < k) — 0 if

02 — 0 at any rate slower than 1, i.e., if no2 — oo.
n n

_lgpiy-t
Proof of Corollary 1: Here f,(z) = (_2)—£1|2—|_l R % and hence
) 2 nl2
]. - 1 ,’_2
gn(’]") = [ 2Amax(Zn) . (6)

(27.(-)71/2 l2n|1/2

gn — 1 /2
( ) / Al'Il{I'l( n)

\"/gn(1)< 1 1
\/ﬁ B \/ﬂ V n/\min(zn)

— 0 by hypothesis.

=

Secondly,
M — sup 192(7) = 9n(1)
r>0 ]7" — 1|

< sup |gn(s)]
>0

1 s 1 2
— . .o Tmax(Eny ?
20 C) S 2 Apan(Tm) ©

B

<
B (27)n/2|2n[1/2\/ Amax(Zn)

(here B is a universal constant, as the function

22

ze” 7 is uniformly bounded)

B
<
(2m) "2 A2 (20)/ Aman(Bm)
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From (7),

S

§§

1 1
S \/2—7T - \/n)‘min(zn) . VAmax(En)

— 0 by hypothesis.

Thus the hypotheses of Theorem 1 are satisfied and so the corollary follows.
Proof of Theorem 1:
Step 1.

P (I1X1] < )

- / ful2)dz
[T} <k

< 2(lz|Ddz

—Ag”sﬁ (lz]1)dz

= C(n)/o gn(r)r"1dr, | (8)

where C(n) = lfgr 2) is the surface area of the n-dimensional unit sphere.

Step 2.

k
/gn(r)r"_ldr
0
1 [* \
= _/ gn(z™)dz
0

n
gn(1)E™ 1/’“" 1
< Im\r 2 ) _
<208 L L [ jga(eh) - a1
(k™ M, [*
< (DR / 2% —1]dz
n
:gn(l M/ |z — 1]z" 1de
k
gn(l) + M, / "da:—}—/ m"—ldm}
n 0 0
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n n+1 n
<g_n(1)—k+Mn<k _|_k_>

- 7 n+1 7

gn(1)k™  2M k"
< 9
- n + n+1 ( )

(as we may assume without loss of generality that £ > 1 and hence & > 2t for all large n).

Step 3. By an application of Stirling’s approximation,

Step 4. Hence,

Step 5.

ool ()

n Vn Vn
_0 (i (—"V gn(1) k\/2—7r_e> )

C(n)gn(1)k"™ —-0 (gn(l) . (lﬁ/iﬁ) ")

VANC

— 0 by hypothesis i of Theorem 1.

n+1

Cr)Mak™ _ (Mn _ (k\/2Te) n)

vno\ Vn
=o(i-<m-k\/27e>n)

vno \ Vn

— 0 by hypothesis ii of Theorem 1.

Combining Steps 1, 2, 4, and 5, the proof is now complete.

2.3. An Example. We will give a brief example which illustrates the collapse to zero of

probabilities of fixed spheres by using multivariate t distributions, a popular alternative

to the normal. The formula we give for probabilities of fixed spheres under ¢ distributions

could be of some independent use.

Example 1. Suppose X has the n-dimensional spherically symmetric ¢ distribution with

a degrees of freedom (a > 0), i.e., X has the density

G L
9= Geming) ay EE

(10)
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then the probability of a fixed sphere {z: ||z|| < k} is

PIXII<B)
cor(e)
- Ty b T (”)

where C(n) = 12?2) is the surface area of the unit n-sphere. From (11), on transforming
2
2

P(IX]| < k)
r (=) /% 2l
= Trenrrey T e 4%
M3 Jo 1+ 2)F
T(etn 2\ 7 (2 2
:_g 22 (k_> n(zn) .2F1(°‘+n,ﬁ;ﬁ+1;_k_)
PTG N e/ 30(3) 2 7272 a
(See pp. 284 in Gradshteyn and Ryzhik (1980))
2k™ a+n nn k?
=— = LRty 12
na?B(%, %) 2P 2 2 2+ a) (12)

Table 2 uses formula (12) for £k = 1, with @ = 1,3,5,00 and various n. The case
a = oo is given as a basis for comparison (as it corresponds to the normal). From Table 2,

it appears that the curse of dimensionality manifests itself in 5 or more dimensions.

Table 2
P(IXI < 1)

a (d.f)
n (dimensions) 1 3 5 00
1 5 .6090 .6368 .6822
2 2929 .3505 .3661 .3932
3 1817 1955 1974 .1988
) .0756 0877 .0510 0377
6 .0498 .0308 .0249 0145
7 .0331 .0163 .0119 .0053
10 .0101 .0024 .0012 .0002



3. Visit Probabilities of Random Sets

Suppose k observations have been sampled at random from the n-dimensional cube.
Will any of these points be visible if we restrict attention to a set planted randomly within
the cube? For large n, the phenomenon of the curse of dimensionality suggests that in fact
the points will probably not be caught inside a randomly placed set. Of course, one has
to give a meaning to a set being placed at random within a cube. We look at L, balls.
In our result, we take a random L, ball by first choosing the center of the ball at random
within the cube, and then choosing the radius at random in the admissible interval (to be

made precise below).

3.1. Random Balls. We first give our definition of a random L, ball; there is, of course,

a rich theory of random sets.

Definition. Let y,x1 be chosen according to the uniform distribution in the n dimensional

unit cube [—1,1]™ and let r be distributed uniformly in [0, ] where ¢t = 1 — max |pei|. For
tsn

given p > 0, the L, ball B = {z:||z — y||, < r} will be called a Random L, Ball in the
Unit Cube.

1 n
Theorem 2. Let ¢(n,p) = % Let X1,X9,...,X% be k& uniformly distributed
P

points in the unit cube [-1,1]". Let B be a random L, ball in the unit cube. Then

P(B does not contain any X;)

e (B) & p)D(ng £ 1)
i er Bt 13)

Proof: (13) follows on lengthy and somewhat tedious calculations on using the facts that

n 1\)\7
the volume of an L, ball of radius r is { 2 (F(;)) = (2r)"¢(n, p) and that if g is chosen
P P L(z+1) ~

uniformly in [—1,1]", then the density of ¢ = 1 — max |y;| is nt"™, 0 < t < 1. The case
?

k =1 is theoretically interesting; we state the following corollary.

Corollary 2. The probability that a random L, ball fails to contain a uniformly dis-

(nh)?
(n+1)(2n)!

ks 7r2 .
1 — 55 »and 1 — 5555 for n = 1,2, 3,4 respectively.

tributed point in the unit cube equals 1 — ¢(n,p). In particular, for p = 2, this

iy

probability is %, 11—,
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Remark. The numerical values of 1 — %, 1 — ;2= and 1 — % are .9564, .9935 and
.9991. Thus the most drastic effect occurs at two dimensions for a single observation. Of
course, this should not be interpreted as an occurrence of the curse of dimensionality in

two dimensions, as the case of a single observation is only intellectually interesting.

The following table gives the probability that a random sphere will remain unvisited
after k observations; it is obtained from (13) by taking p = 2. From Table 3, we see

that a random sphere in 4 dimensions remains unvisited with 95% probability after 100

observations!
Table 3
P (Random Sphere is unvisited)
k (# observations)

n (dimensions) 1 5 20 50 100
1 75 4083 1736 .0886 .0515
2 .9564 .8437 6679 8379 4447
3 9935 9713 9176 .8580 .8019
4 9991 9958 9854 9701 9520
5 .9999 .9995 .9980 9953 9916
6 1 .9999 9998 9994 9989
7 1 1 1 9999 9999
10 1 1 1 1 1

Table 4
Minimum sample size to have
P (Random Sphere is visited) > .5
n 2 3 4 )
Minimum sample size 70 2400 145,000 1.2x107

Table 4 is quite astonishing and calls into question the feasibility of multivariate density

estimation beyond 4 dimensions.
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4. Sample Sizes Necessary for Full Occupancy

From the results of the preceding sections, one would anticipate that a huge number
of observations will be necessary if we desire at least one observation in each member of
a partition of a sample space in high dimensions. In this section, we attempt to quantify
these sample sizes. These will also be useful for understanding how many dimensions are
needed to feel the curse of high dimensions (of course, this is subject to interpretation

and cannot be uniquely defined). Note the formal connection to the coupon collector’s

problem; see Holst (1986) and Kolchin et al (1978).

4.1. One in Each Cell. If the requirement is at least one in each cell, then one has
the classic coupon collector’s problem. Given n cells with cell probabilities py,. .., pm, we

have the following result. We will use the notation

m k
P 1
— . ; 14
9(p) = ;1 ; .l:ij+-'-+pm T — (14)
= 1=2
Ny r = # samples necessary to have > r observations in each cell. (15)
Theorem 3. Let X;,X,... be observations from a distribution and suppose the sample

space {0 is partitioned into Sy, ..., S, with probabilities py,...,pm. Then,
E(Nm1) =14 g(rmp), (16)
where 7,,p denotes a generic permutation of p = (p1,...,Pm)-

Proof: Write Ny = 1+ ws + -+ + wp, where w; denotes the waiting time to fill the
ith new cell. Suppose the cells are filled in the natural order. Then having filled cells

1,2,...,k —1, the expected waiting time to fill cell % is #}E

Now,

E(Nmi)=Y E(Nm:

Tm

the cells get filled in the order of m,,p)-

P(the cells get filled in the order of ,,p) (17)

and so, (17) follows from (16).

12



Example 2. We will use formula (12) in Section 2.3 to obtain E(N,, ;) if the observations
are from a multivariate ¢ distribution. For the partition of the sample space we take the
annuli S; = {z:a,—1 < ||z]|2 < @i}, where a9 = 0, ap, = o0, and a; = ¢ for 0 < 7 < m.

Thus, using formula (12), for ¢ < m,

2 _ a+n nn i2 .
i= —w oyt 2 F iy Th—— ) =(E-1"
P e B(E, E {’ 2 1( 5 53" ) (i=1)
at+n nn (2 —1)?
F sy =y — + 1, — , 18
2 1( 5 "33t o (18)

and pr, =1— ) pi.

i<m
Substitution of (18) into formula (16) of Theorem 3 leads to the following table. We
take m = 2 and 3.

Table 5

Average sample size necessary
to fill 2 or 3 annuli

a (d.f.)

1 3 00
n (dimensions) m=2 m=3 m=2 m=3 m=2 m=3
2 3.83 5.92 3.40 5.61 3.19 8.30
3 5.73 7.24 536 6.50 5.28 6.92
5 13.31 14.30 17.40 17.88 26.63  26.87
7 30.20 30.94 61.29 61.58 190.73 190.84
10 08.83 99.34 425.25 425.42 5607.95 5608.01

Note the interesting insensitivity to the choice of m!

4.2. Two Cells. The curse of dimensionality, of course, as we see in Table 5, manifests
itself with just two cells as well. It is particularly striking when it is desired to have
sufficiently many observations in each of the two cells. For instance, one may want to
understand certain features of a density within each of two cells and so would like to see a
good number of observations in each cell. The following result gives the expected sample
size necessary to get r or more observations in one cell and s or more in the other for

specified r, s.

13



Proposition 2. Let X, X5,... be independent observations from a density f(z). Let S
be any (measurable) subset of the sample space 2 and suppose S has probability p = 1 —g¢
under f. Let N,, be the minimum number of observations necessary to have r or more

observations within S and s or more observations within S¢. Then,

E(N,,) = :—)+ g ~ Y P(Beta (r,s —~i+1)2p)— Y P(Beta (s,r —i+1) > q) (19)

=1 =1

Corollary 3. The average sample size necessary to have one or more observations within
each § and S° is pl—q — 1 and the average sample size necessary to have two or more

observations within each S and S° is 2(513 —1) — 2pg.

Proof of Corollary 3. The first case corresponds to

1 1

— + — — P(Beta (1,1) > p) — P(Beta (1,1) > q)

p g

1

- _(1-p)—(1-—
o (1P -9
1

- 1

pq

The second case corresponds to

2 2
E(N232) = » + P P(Beta (2,2) > p) — P(Beta (2,1) > p)

EKIVLI)::

— P(Beta (2,2) > q) — P(Beta (2,1) > q)

9 1 1 1 1
:——6/ x(l—a:)dx—2/ :L'd:c—G/ m(l—x)dw—?/ zdz,
yZ) P 4 q q

which simplifies to 2(;—q — 1) — 2pq on easy calculations.
Proof of Proposition 2:

Step 1. Let k£ be any integer > r +s. We will find E(N, ;) asr+s+ >, P(N.s > k).
k=r+s
Step 2.
P(Nys>k)=P(X <rork—X <s|X ~ Bin (k,p))
r—1 s—1
-y ("f)quk—j £y (k) P
=0 J =0 J
(since k > r+s, X <r and k — X < s are disjoint)

14



r—1 - s—1 ;

B pl k! - ¢ k! -

0 D e AR Dt ey i (20)
J=0

=07’

Step 3.
—=4"77 = fY(q), where f(q) = ¢
!
k=r+s (k ]) k=r+s q
Step 4.
r+s r+s r+s

q — 1 q _ —_ _ r+s—1:

l1—q 1—gq + 1—-¢ Z 1
Hence,

) r4+s—j (T' + s — Z)' r4s—i—j 21

Step 5. Substitution of (21) into (20) yields

E(N,;)
r—1 pj . s—1 qj )
=rts+) j—,f(’)(q) +2 50w
=0 J° im0 U
r+s—j

_ Pj 7! (r+s—9)! e i

=1

z{ Z(+) e }
q

10]

r+s min(r—1,r+s—1) (

T S
—r-I—s—I-Z—)-I-E—Z >

r+s— i>qur+s—i—j

i=1 j=0 J
r+s min(s—1,7+s—1)
r+s—1 . i
Sy (e (22)
i=1 j=0 J

(by an interchange in the order of summation in the second terms).

Step 6.

r+s min(r—1,r+3—1) (

2. X

i=1 j=0

P s =i\ i re—ii
J

15



s r—1 . r+s r+s—i .
-3y (r e Z)piqr+s—z‘—j + 3y (T e Z)qur+3_i"j
— J J

i=s+1 j=0

8
:r-}—ZP(Bin(r-l—s—i,p)Sr—l)

=1

:r+zs:P(Beta (r,s—i+1) > p) (23)

(this connection between the Beta and the Binomial distributions is well known).

Similarly, the second double sum in (22) equals

s+ ZT:P(Beta (s,r—i1+1)>q). (24)

=1

Step 7. Substitution of (23) and (24) into (22) yields the Proposition.

Corollary 3 and Proposition 2 are used to compute the average sample size necessary
to get > r observations in each cell || X || < 1 and ||X|| > 1 for multivariate ¢ distributions;

weuser = 1,2,5,10.

Table 6 A
Average sample size necessary
to have > r observations in 2 cells

a (d.f.)
1 0 -

n

(dimensions) r =1 r=2 r=5r=107r=30 r=1r=2 r=5 r=10 r =30
2 3.83 T7.24 17.33 34.24 10243 3.19 591 13.63 26.23 76.60
3 9.73 11.15 27.55 55.04 165.11 5.28 10.24 25.20 50.31 150.91
4 8.74 17.28 43.06 86.12 258.40 11.16 22.17 55.33 110.65 331.86
5 13.31 26.48 66.14 132.28 398.83 26.56 53.06 132.63 265.25 795.76
6 20.12 40.15 100.35 200.70 602.41 68.91 137.80 344.50 688.99 2068.97
7 30.25 60.43 151.06 302.12 906.34 172.42 344.83 862.07 1724.14 5660.38
10 99.02 198.02 495.05 990.10 5000 10000 25000 50000

From Table 6 A, we see that if we want merely 10 observations in each of the two annuli, then
in 7 dimensions we already need more than 1700 samples just on an average. Practically,

by 5 or 6 dimensions, we already start to strongly feel the curse of dimensionality.
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On the basis of these calculations, we give a subjective MINIMUM sample size recom-
mendation in various dimensions. Below these recommended sample sizes, it will likely be
futile to attempt statistical inference in the corresponding dimension. In specific problems,

one can set a goal and give more objective sample sizes.

Table 6B

n (dimension) 2 3 4 5 6 7

Minimum Recommended 110 175 350 800 2100 5700
Sample Size

5. Empty Cells. Due to the phenomenon of the curse of dimensionality, it is expected
that if histogram density estimation is attempted in high dimensions, then there would be
an abundance of empty cells. The fixed sample distribution of the number of empty cells is
in general extremely complex; there is one case, namely the case of equal cell probabilities,
in which it can be written relatively simply. We state it first as a basis for comparison
in the subsequent results. The asymptotic distribution of the number of empty cells in
histogram density estimation will depend on the growth of the number of cells relative to
the sample size and the cells themselves; it is an interesting theoretical question and will
be reported in a forthcoming article (DasGupta (1997)). We will use the notation T ,, for

the number of cells among m remaining empty after k£ observations.

5.1. Equiprobable Cells. The result stated below is distribution free and has nothing
to do directly with curse of dimensionality. It will be used as a standard for comparison

in Table 7. First we give a definition; see Anderson (1989).

Definition. The Stirling number of second kind, S(k,r), is the number of distinct

unordered partitions of a positive integer k into r positive integers z1,z2,..., 2.

Proposition 3. Let X, X5,..., X be k independent observations from a density f(z)
and let 51, 55,...,5, be a partition of the sample space Q such that Ps(S;) = % for each

2. Then
m! S(k,m —r)

7l mk

P(Thm=r)= (25)

Proof: If there are exactly r empty cells, then the & observations get distributed into
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m — r nonempty cells in (m — r)lS(k,m — r) ways and the r empty cells can be chosen in

(':) ways and so the Proposition follows.

5.2. General Cells. We will try to get a qualitative understanding of how the curse of
high dimensions affects the number of empty cells by considering the important multivari-
ate normal case and the cells || X|| < 1,...,. m =2 <||X||<m -1, ||X]|| > m—1 and by
comparing with (25). First we give one theoretical result which will quantify in the most

general case the extreme difficulty of getting all nonempty cells.

Proposition 4. Let X;,X2,..., X be k independent observations from a density f(z)
and let S1,53,...,S5m be a partition of the sample space Q, with P¢(S;) = pi. Then

P(Tim > 1) = 3 (-1 Lo(p, k) (26

where o(p, k, 1) = . > ‘ (Pir +pjs + -+ +p5)".
n<.<ygi

In particular, if m = 3, then
P(Tk,m > 1)

= (p1 +p2)* + (p2 + p3)* + (p1 + ps)* — Pt —p5 — 3 (27)
and if m = 4, then

P(Ty,m > 1)
=pf + ok + Pk 4 pF — (o1 + o)k — (21 + ) — (21 +pa)f
— (P2 +p3)* — (p2 + pa)* — (ps + pa)*

+ (p1 + p2 +p3)k + (p1 + p2 +p4)k + (p1 + p3 -I—P4)Ic + (p2 + p3 +P4)k- (28)

m—1
Proof: Let A; be the event {Tj , = ¢}. Then P(Ty ,m > 1) = P( |J A4i). (26) will follow
i=1

by use of the inclusion-exclusion formula and (27), (28) follow from (26).

Example 3. The result in Proposition 4 is used below to compute the probability that at

least one cell remains empty after £ = 100 observations for the multivariate normal case.
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The sets S1,S52,...,S5m of the partition are annuli as in the previous examples. These

probabilities are in Table 7; the case of equiprobable cells is also given for comparison. In

Table 8 we report the threshold dimension at which the probability of at least one empty

cell is 90% or more.

(dimensions)

n
2
3
)
7

10

Table 7

Probability of one or more empty cells

in the normal case

m (# annuli)

2 3 4
(Equispaced)

0 0 3114

0 0 .0456

.0214 .0214 .0214
5878 5878 5878
9803 9803 9762

Table 8

Minimum # dimensions at which
P (at least one empty cell) > .9

m (# equispaced annuli)

2 3 4
9 9 9

2 3 4
(Equiprobable)
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

Example 4. Finally, we report some simulations on the distribution of T% ., the number

of cells remaining empty after £ observations. For equiprobable cells, the distribution is

given in (25) in closed form and so no simulations were necessary. We use k = 100 and the

cells are annuli again.
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Table 9

Distribution of the # empty cells
in the normal case

m (# equispaced annuli)

2 3 4
P(T=0) P(T=1) P(T=0) P(T=1) P(T=0) P(T=1)

n (dimensions)

2 1 0 1 0 .6886 3114

3 1 0 1 0 .9544 .0456

5 9786 .0214 .0214 .0214 .9786 .0214

7 4122 D878 .5878 5878 4122 .5878

10 .0197 .9803 .9803 .9803 .0238 9721
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