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Abstract

Let X (t) be a real valued Gaussian process and F a given absolutely continuous CDF
on the time interval [0,1]. Suppose the process is observed at n random times ¢; < t; <
... < tn, which are the order statistics of n samples from the CDF F. We give a formula
for the expected number of sign-changes among the values X (¢;) for every fixed n. For the
case when X (t) is the standard Brownian motion starting at zero and F is the uniform
distribution, the expected number of sign - changes reduces to a neat expression giving
a mysterious exact connection to the simple random walk. The expected value formula
is illustrated by two other cases, the Brownian Bridge and the once integrated Brownian
motion. This is followed by deriving the first order asymptotics of the expected number
of sign - changes.

We also consider the random variable 7', the epoch of the first sign - change. A second
peculiar phenomenon arises for the Brownian motion case if F is again taken to be uniform.
For any given integer ¢, P(T > ) only depends on i, and not on n, as long as n > i. We
then indicate how to derive a more general formula for P(T > i) for the general Markov
- case, not just the Brownian motion.
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1 Introduction

Properties of sample paths of the Brownian motion and more general Gaus-
sian processes have been studied in extensive detail by probabilists and math-
ematicians - see Ito and McKean (1965), Resnick (1992), Ross (1996), among
numerous sources. Relatively less seems to have been explored if a Gaussian
process is observed at discrete random times, say for instance at the times of
realization of an independent Poisson process. Indeed such a situation corre-
sponds to practical problems. In this article, we consider a general mean zero
Gaussian process X (t) which is then observed at times ¢; <ty < ... < t,, the
order statistics of a sample of size n from an absolutely continuous CDF F
on the interval [0,1]. We consider C,, the number of zero crossings among
X(t1), X (t2),..., X (tn) and Ty, the epoch of the first crossing. Among vari-
ous results, we establish a rather peculiar phenomenon which is not otherwise
obvious. This exact connection with the simple symmetric random walk for
every n is rather interesting and may or may not be a mathmatical coinci-
dence. We show that for every n > 2, the expectation of C,,, when X(t) is
the standard Brownian motion and F' is u[0, 1], equals % times the expected
number of returns to the origin of the simple symmetric random walk till
time 2n — 2.

Section 2 gives a general formula for F(C,,) for a general X (¢) and a gen-
eral absolutely continuous F'. The standard Brownian motion, the Brownian
bridge, and the integrated standard Brownian motion are used as examples to
illustrate the general formula. Asymptotics of E(C),) are considered in Sec-
tion 3. In Section 4, we consider Ty, the epoch of the first crossing. Under
the added assumption of X (¢) being a Markov process, we show how to give
a formula for P(T, > ¢) and then we present another peculiar phenomenon:
if X (t) is the standard Brownian motion and F' is u[0, 1], then P(T, > 9)
is a fixed number depending only on %, but not on n, as long as n > ¢. We
then give the exact values of P(T,, > i) for certain values of 5. In particular,
P(T, >2) =3 forall n > 2 and P(T, > 3) = £ for all n > 3. For larger
i, P(T,, > 1) can be accurately approximated by Monte Carlo approximation
of our exact formula.



2 Expected Number of Sign-Changes

In this section, we present a general formula for the number of zero crossings
of a general mean zero Gaussian process observed at discrete random times.
Thus, let F' be a CDF with density f on [0,1] and let for n > 2,8, < i3 <
, .-, < tp be the order statistics of a random sample of size n from F. X (t)
is a mean zero Gaussian process on [0, 1] with covariance kernel C(s,t) and
let C,, denote the number of sign changes among X (¢1), X (¢2), ..., X (tn).

Theorem 1
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Proof: Note that C, = > (X ()X (ti41) < 0)
i=1
n—1
Therefore E(Cn) = Z P(X(tz)X(tH_l) < 0)
i=1
n—1
= n—1-Y P(X(t)X(ti1) > 0)
i=1
n—1
= n—1-2) P(X()>0,X(ti+1)>0) (2
i=1

Now note that if (X,Y) has a bivariate normal distribution with means

zero and correlation p, then P(X > 0,Y > 0) = 1 — ;=cos™! p (see Tong

(1990). Since &;,t;,; are the order statistics of a sample of size n from F' and

therefore have the joint density (2_1—"'—— F(t) =F (i) f () f(ti31),0 <

Y(n 1)
t; <tiy1 <1, (1) now follows from (2).

Example 1. Suppose X (t) is the Standard Brownian motion (SBM) on
[0,1] and F' is the u[0,1] CDF. Then, by Theorem 1,
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Since fy cos™! z-z%¥ldz = ér,(%m, (Gradshteyn and Ryzhik (1980), pp 607)
it follows on simplification from (3) that

o ()

One therefore has the following mysterious corollary:

Corollary 1 For every n > 2,E(C,) = 5 - E (Number of returns to the
origin of the simple symmetric random walk in 2n — 2 steps).

The fact that Corollary 1 holds as an identify for every n is an interesting
and quite remarkable fact.

Example 2. Suppose X (t) is the Standard Brownian Bridge (SBB) on
[0,1] and F is the u[0,1] CDF. Then,

| n—1

n!
BC) = T il
(Cn T = z—l)n—z—l
1—-1) ., .
cos ! ?1( — 3)3: s7H1 — )" ds dt (5)
Making the substitution z = fillT;t and on using the representation

ot —t)» (1 —at)tdt = B(i+1,n—i+ )FGE + 1,5+ 1;n+2,0),
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whereF (-, -, -, -) denotes the o F; hypergeometric function, it follows from (5)
on using Fubini’s theorem that

2 n—1
E(Ch) = —/—— (n — 1
1
/ ¥ Heos P o) F(i+ 1,i+ 1;n+2;1 — 2%)dx (6)
0

It does not seem possible to simplify (6) further to a closed form. However,
it is possible to approximate E(C,) asymptotically, as n — oo.

Example 3. Suppose X (¢) is the once integrated Brownian motion (ISBM),
X(t) = [ £(u)du, where £(u) is the SBM on [0, 1]. Then, on application of
Theorem 1, one gets

9 n—1 1 ) 1
E(C,)=1+= ) ia;, where a; = / ¥ 'cos™! (ﬁx — —:1:3) dz. (7)
T 3 0 2 2

Again, although, as in (6), simplification to a closed form does not seem
possible, expressions (6) and (7) are useful in investigating the asymptotics
of E(C,) as n — oco. The following table gives values of E(C,) for some
selected values of n and the three processes discussed in the above examples.
We report Table 1 for illustrative purposes.

Table 1
n E(Cy)

SBM SBB ISBM

2 .25 33333 1.17301
3 4375 .6 1.27853
4 59375  .82857  1.35461

5 .73047 1.03174 1.41414
10 1.26197 1.83772 1.60111
20 2.00741 2.98814 1.79003



3 Asymptotics of E(C),)

There is some intrinsic interest in knowing the rate of growth of E(C,) as
the number of points n — oco. Since the sample paths of the ISBM are
more smooth than those of the SBM, one would expect that in that case
E(C,) might grow slower than for the SBM. This is apparent in the numbers
presented in Table 1 as well. We have the following result.

Theorem 2 E(C,) ~ Y2 for the SBM and the SBB

~14 ? logn for the ISBM
n

Proof: For the SBM, we have the closed form expression (4): E(Cy) = 3 -

21
n—1 ( 2 )
= 22¢
The SBB case can be derived from the SBM case.
For the ISBM, from (7),

from which the result follows immediately by standard arguments.

2 n—1
E(Cy)=1+=>" ia;,
™ i=1

where .

Ly 3 z
21, .1
;= Sr— ) de.
a /0:1: Ccos (2:1: 2) z

Now note that cosz ~ /1 —22 as 2z — 0, i.e.,, cosly ~ /1 —yZasy — 1.
Thus, as x — 1,




it follows that i 1a; ~ ? logn and the
=1

1=

Since f; 2%1(1 — z%)dz = ST
stated result of the Theorem follows.

The following table illustrates the usefulness of the asymptotic rate pre-
sented in Theorem 2.

Table 2

E(C,) ~ Asymptotic expression
SBM SBB ISBM SBM SBB ISBM

20 2.007 2.988 1.79003 2.52313 2.52313 1.826
30 2.57735 3.75332 1.90106 3.09019 3.09019 1.93759
50 3.47946 * 2.041 3.98942 3.98942 2.078
100 5.13485 * 2.232 5.6419 5.6419 2.269
For n > 50, exact evaluation of E(C,) for the SBB became numerically
difficult, thereby making the asymptotic expression even more valuable.

4 Epoch of First Crossing

In this section, we present a second quite remarkable phenomenon. Let T,
denote the time at which the first zero crossing happens, i.e.,

It would be interesting to know the distribution of T,,. We assume the
same structure as before, i.e., {7 < 2 < ... < ¢, are the order statistics
of a random sample from an absolutely continuous CDF F' on [0,1] and
{X(¢)} is a zero mean Gaussian process on [0, 1]. With the added condition
that {X(t)} is Markov, one can give a general formula for P(T > i) for
¢ = 2,...,n. We present the case when F is the u[0,1] CDF and {X(¢)}
is the SBM and present a nice phenomenon. In the following theorem, a

product ﬁ a; is defined to be 1 if m > n.
i=m

Theorem 3 Let {X(t)} be the SBM on [0,1] and let t; < t; < ... < t,
be the order statistics of a random sample from the uniform distribution

on [0,1]. Let T = T, denote the epoch of the first sign-change among
X(t1), X(t2),...,X(tz). Then for any i < n,
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j=1
where
i~2
_]:[1 {1 — 5= (cos“1 U5+ cos™t fuiig + cosTh /ujuj+1)}
gi () == : (11)

i—2
I {1 — Lcost \/u_]}
j=2

In particular, for any given ¢, P(T > %) depends only on 7 and not on n.

Proof: We use the notation Y; = I(X ()X (t;+1) < 0). Then,

P(T>i) = P(Y;=0,...,Y;_,=0)
- EP(Y}_:O,...,Y;_l:Oltl,...,ti), (12)

where E(-) means expectation with respect to the joint distribution of (¢4, . .., ;).
Now, given the times ¢y, ..., t;, due to the Markov property of SBM, one has
the identity

P(Y;=0,...,Y;, = 0t)
P(Y1=0,Y,=0}t) P(Ya=0,Y; =0}t --- P(Y;_5 = 0,¥;;, = 0]¢)
P(Ya=0[t) - P(Y;i—2 = 0[t)

(13)

(13) is obtained by induction on ¢ and by using the fact that for a Markov
process, given the present, the future and the past are independent.
Now, in (13), use the following probability expressions:

P(Y;=0t) = 2P(X(t) >0, X(tj41) > O[¢)
= 1- = cos™! b (14)
T tj+1
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and

P (Y; =0,Yp =0)
= 2P (X (t;) > 0,X (t41) > 0, X ( tg+2) olt)

- 2fLs 41W<sm1¢:+sm w2 )}

(see pp190inTong (1990))

1 t;
= 1-— <cos_1 —— + cos™! + cos” 1/ > (15)
2w tj+1

If we now write —J—l = u;, then substitution of (14) and (??) into (13), leads
to

P(T > 1) = Egi(u) (16)

where g;(-) is as it is defined in (11). Finally use the fact that the ratios
uj, 1 < j < 1—1, of the successive order statistics of the uniform distribution
have the property that they are independent with u; having the marginal
B(j,i — j) density (see, e.g., Reiss(1989)). Formula (10) then follows imme-
diately.

Remark. Formula (10) can be evaluated exactly to give P(T > 2) = 2 and

P(T > 3) = 2. For larger ¢, P(T' > 3) can be approximated from formula
(10) by Monte Carlo simulation; i.e., for a specified simulation size N, one
may simulate N uniform vectors from the (¢ — 1)-dimensional unit cube and
form an average of the entire integrand in (10) and divide by the constant

H B(j,i — j). We report some values (we used N = the simulation size

= 7500)
Table 3

1 2 3 4 ) 6

P(T >14) .750 .625 .546 .350/.003
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