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Abstract. Computer models or codes are widespread in science and engineer-
ing. Often, the output y is deterministic, i.e., running the code twice with the
same values for the inputs or explanatory variables, z, would give the same out-
put. To construct a predictor, the deterministic function y(z) can be treated
as a realization from a stochastic process,

Y(z) = §'f(=) + 2(z),

where #' f(z) is a polynomial regression function, and Z(-) is a random function
with mean zero and correlation function R(Z(w), Z(z)) = exp(—0||w —z||?) for
two runs of the code at inputs w and . Given n observations of the computer
code, a best linear unbiased predictor (BLUP) follows. As ¢ — 0, we show that
the asymptotic coefficients in the BLUP are weighted combination of Lagrange
interpolation polynomials. Even if there are no explicit regression terms f(z)
in the model, asymptotically the estimation procedure can implicitly include
a polynomial trend in the inputs. We consider integrated mean squared error
(IMSE) of prediction when there are no regression terms in the model. The
asymptotic IMSE integrated over the design region is expressed as a quadratic
form. This leads to a criterion for numerically optimizing the design.
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1. Introduction

Experimentation via computer models or codes is becoming increasingly
common throughout science and engineering. For example, Sacks, Schiller,
and Welch (1989) presented applications in chemometrics; Currin, Mitchell,
Morris, and Ylvisaker {1991) and Sacks, Welch, Mitchell, and Wynn (1989)
gave examples in the engineering design of electronic circuits; and Chapman,
Welch, Bowman, Sacks, and Walsh (1994) and Gough and Welch (1994)
described sensitivity experiments for environmental models. Other examples
abound.

In these applications the output y from the computer code is often de-
terministic, i.e., running the code twice with the same values for the inputs
or explanatory variables, ¢, would give the same output. To provide a basis
for constructing a predictor the deterministic function y(z) is regarded as if
it were a realization from a stochastic process,

Y(z) = f'f(z) + Z(2), (L.1)

where (' f(z) is a polynomial regression function and Z(-) is a random func-
tion with mean zero and variance o2,

The correlation properties of Z(-) are crucial to the construction and per-
formance of a predictor. One choice, widely used in the above applications,
is

Corr(Z(w), Z(z)) = R(Z(w), Z(z)) = exp(~ Y b;w; — z; ),
where w; and z; are the values for the jth input variable for two runs at w
and z, and 6; > 0 and 0 < p; < 2. For simplicity in the derivations below,
we assume that the 6;’s are the same for all inputs. We also take p; = 2,
a value arising often in applications when the parameters are estimated by
maximum likelihood. Thus, the correlation function simplifies to

R(Z(w), Z(z)) = exp(—0]|w — =|]?). (1.2)

Model (1.1) leads to a best linear unbiased predictor (BLUP), based on
n observations of the computer code (see Section 2). This predictor respects
the deterministic nature of the computer code as it interpolates the observed
output values. .

Working with model (1.1) in various applications has suggested that the
BLUP has some special asymptotic properties as § — 0in (1.2). In their sec-
ond chemometrics application, Sacks, Schiller, and Welch (1989) fitted (1.1)
with regression functions #'f(z) of degrees 0, 1, and 2. They found that
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maximum likelihood estimation chose very different values of @ in the three
cases. The regression of degree 0 (which gave the best prediction accuracy)
had a very small estimated 6. Lucas (1996) gave an artificial example where
the deterministic “output” from five input variables was a sum of bilinear
interaction terms, i.e., a polynomial. In their rejoinder, Welch et al. (1996)
showed that this polynomial could be predicted almost exactly if § in (1.2)
was small. Furthermore, given 32 runs, maximum likelihood estimation
clearly chose small 6.

These examples suggest that the stochastic-process component, Z(), in
model (1.1) can compensate for omission of polynomial terms by making 4
smaller when analysing the results of a computer experiment.

Consideration of asymptotic properties as § — 0 may also have implica-
tions for design, i.e., choosing input vectors at which to run the computer
model. Choosing a design to make the BLUP from model (1.1) have small
integrated mean squared error (IMSE), say, is difficult in practice because
8 is unknown at the design stage and hence the IMSE cannot be computed.
Sacks, Schiller, and Welch (1989) carried out several robustness studies.
They compared designs from different assumed values of # and looked at
their performances for various true values. The study showed that designs
from small values of § tended to do well. Robustness studies of this type
are laborious to carry out, even more so if regression polynomial functions
of various degrees are also considered.

The rest of the article and its main results are as follows. Section 2 fills in
some details of notation for the BLUP and its mean squared error. Section 3
has the main results on properties of the BLUP as § — 0. We show that the
asymptotic coefficients in the BLUP are weighted combinations of Lagrange
interpolation polynomials. Even if there are no explicit regression terms
f(z)in (1.1), asymptotically the estimation procedure can implicitly include
a polynomial trend in the inputs. Thus, broadly speaking, model (1.1) can
work as well as polynomials when a polynomial approximation is good (and
potentially much better when a low-order polynomial is inadequate).

Section 4 is concerned with design. Taking prediction of the computer
code as the primary objective, we focus on the IMSE of prediction.

In Section 5 we consider design when there are no regression terms in
model (1.1). The asymptotic IMSE criterion for a given design is expressed
as a quadratic form. This leads to an algorithm for numerically optimizing
the design. We give some examples showing that the asymptotic design
performs well even when the true model (1.1) has a moderate value of 8
and polynomial regression terms are present. Thus, an asymptotic design
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with no regression terms may provide a robust way of designing experiments
when little is known. In particular, it is a candidate for the initial design in
a sequential approach.

Section 6 considers design for one-dimensional input. Asymptotically,
the IMSE does not depend on the linear model f(z). It is shown that
the design points minimizing the asymptotic IMSE are roots of orthogonal
polynomials.

The proofs of all the theorems are given in an appendix.

2. The Best Linear Unbiased Predictor

Define a fixed design of » points (sets of d-dimensional inputs) by t1,...,1%,,
with corresponding observations Yi,...,Y,. Thus, t; = (¢;1,...,%4) is a de-
sign point, whereas ¢ = (%y,...,24) will represent an input at which we
wish to predict the unknown output Y (z). Let

Y=W,...Yh)Y, F=(f(t),...,f(ta)),

1 exp(—8|Jts — tf®) ... exp(=0]|t: —t.l}*)
Ry = . : )
sym. exp(—0lta-1 — t.]|%)
1

and
ro(z) = (exp(—0|ty — z||?),...,exp(—0][t. — =|I?)).

Consider the best linear unbiased predictor (BLUP), ¥ (z) = ¢;(z)Y, where
co(z) = (cd(z),...,c(x)) is the solution of

0 F -A [ fl=) ]
[F Ro] [ co(%) ] h [ ro(z) |’ (2-1)
(For details, see Sacks, Schiller and Welch 1989). Then, from Model (1.2),
the MSE of the BLUP at z is

J, = E[Y(z) - Y(z)]* = 1 + co(z) Roco(x) — 2co(2) 79(2). (2.2)

Here we set o = 1.
For given 8, apart from numerical ill-conditioning of Ry, it is straight-
forward to calculate ¢4(z) from (2.1) and the corresponding minimal J,.

3. Asymptotic Properties of the BLUP




Let

d d d !
. m m:
o= ITeb, lt1= 3k 2= TTH and B)=F 6o

=1

where & = (21,...,24), and £ = (l;,...,1;) denotes the monomials of degree
||. Further, let

N(d,m) = (d :;Zm) (3.2)

and i1
dp = (m+m‘ ) = N(d,m)— N(d,m—1).

We order the set of monomials z* first on the degree |¢| and then any partic-
ular order within the degrees. This is the same as ordering the polynomials
in d variables as

1, L1, %2y vy Ty i”'%"“’x"zj"‘L etc.

g =0 ES! 1t =2

(3.3)

It is well known that the number of monomials of exact degree m is d,, and
the number of monomials of degree at most m is N(d, m).

Lagrange interpolating polynomials or functions will be used extensively
in the following. For a given set of n points t,...,t, € R% and n func-
tions uy(x),...,un(z) the corresponding Lagrange interpolating functions
are given by

La(m) Li(x;uh"wun)
D Ugyee oy Uiy Uiy Uig150 045 Un )

il

tl,"°3ti—17$ati+1,"'7tn

Ui1yeeaylUp
D
( tla"';tn )
(3.4)

Uy +vey Up
D 3.5
(tl, cen t,.) (3.5)
denotes the determinant of the matrix with elements u;(¢;) foré,j = 1,...,n.
If the denominator determinant is zero we formally define L;(z) = 0. Note
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that L;(t;) = 1if ¢ = j and 0 otherwise. Also, for any given function h(z)
the linear combination of u,,...,u, given by

bae) = 3 bt L) (3.6)

interpolates the function h at £ = f; for ¢ = 1,...,n. In the following we
will always be interpolating at the same set of design points t;,...,1,; the
functions #,...,u, used will vary considerably.

We will assume that the polynomial part 8’ f(z) in (1.1) is an arbitrary
polynomial of degree s, so the number of functions is r = N(d, s). We further
define m and »,, such that

Ndm-1)<n<N(d,m) and rp=n—-N(dm-1). (3.7)
Clearly, s < m — 1. Let
e"”””zf(:v),z“,.. ., zh (3.8)
denote n functions, where ¢ = n — r and {;,...,£, are arbitrary and let
Li(z; 4y,.. ., 4,) (3.9)

be the corresponding Lagrange functions using %,,...,t, and the functions
in (3.8).

The corresponding determinant in (3.5) appearing in the denominator
of the Lagrange function in (3.9) will be denoted simply as Dg(l4,...,1,)

Theorem 3.1 The coefficient vector ¢j(z) = (¢i(z),-..,ci(z)) of the
BLUP for the model (1.1) is given by

c(z) = LU= N> gy, 6) L5 by ey y),  (3.10)
£1<...<£q

where
(20)*1-

w9(£17"'7£q)0( Dg(lla q)H (311)

and

Z W9(—e1,...,-eq)=1.

l;(...(tq




Here the infinite summation is over all possible combinations of selecting
g monomial terms of any degree. For example, when we have a first degree
linear regression model with n = 9 observations in d = 2 input variables,
then 7 = N(2,1) = 3, and ¢ = n—r = 6. Theorem 1 says that the coefficient
c!(z) is expressed as a weighted combination of the Lagrange interpolator
in e"”””a(l,xl,wz) and any 6 monomials. Note that Theorem 3.1 says that
co(z)Y is equivalent to interpolating the data with the functions in (3.8)
for a given set £,,...,¢, and weighting or averaging these with the weights
given in (3.11).

The limiting behavior of ¢/(z) as § — 0 can be obtained from Theo-
rem 3.1. It can be seen that the limit of wy in (3.11) is possibly positive
only when z%,...,2% are chosen in such a way that the functions in (3.8)
for # = 0 consist of all monomials of degree up to m — 1 and choices of
T, monomials from those of degree m. Thus, in the case r,, = 0, i.e.,
n = N(d,m — 1), the limiting coefficients c}(z) = limy..o c/(z) are the La-
grange interpolators of degree m — 1 at ¢; for ¢ = 1,...,n regardless of the
linear model f(z).

Taking a limit in (3.10) is complicated by the fact that 6 is involved
in the determinants Dy(4y,...,£,) using the functions in (3.8). For the no
linear model case, when r = 0 the limit ¢f(z) is nearly immediate. Recalling
(8.7), let g, denote the vector of monomials of degree up to m — 1. Also, let
£1,...,4., besuch that |{;] =mfori=1,...,r,, whereupon

Li(w;gheh soe ﬂqrm)
is the Lagrange interpolator using g, and z%,...,z%=.

Corollary 3.2 If the linear model 8’ f(x) is absent, then the limiting
¢; (z) are given by

ci(z) = Wy, le Y Li(25 91,8150y b,
=z, vk Milz g ) (3.12)
6] = m
where .
w(£17"'7erm)0(D2(gl7'e17"'7£7'm)H[Z?] (3.13)
i=1 ’
and
Z w(fl,...,frm) =1.
£1<...<erm
||l = m




The limiting ¢} (z) is a weighted combination of the Lagrange interpola-
tors using all the monomials of degree up to m—1 and, if necessary, all possi-
ble choices of 7, monomials from those of degree m. The weights depend on
Tm and €,...,£. . Thus, even for the no linear model case, asymptotically
the optimal estimation procedure implicity includes a deterministic polyno-
mial trend in z. We are tacitly assuming that the design points ¢;,...,%,
are such that at least one of the determinants D(gy,41,...,4,, ) is nonzero
so that the weights w(¢y,...,4, ) in (3.13) are not all zero. When the lin-
ear polynomial regression model 8 f(z) is present the expression for the
limiting ¢ () is still of the form (3.12); however the weights are more com-
plicated than those given in (3.13). Examples 3.1 and 3.2 below illustrate
the additional complications.

Example 3.1 Let » = 4 and d = 2. Since N(2,1) < 4 < N(2,2), then
m = 2 and r,, = 1. Suppose we assume that no linear model is present.
Then the leading term (in #) in the weight function in (3.11) is 6* when

|£1| =0, 6| = I‘eSl =1, and |€y} = 2;

i.e., when we have the polynomials 1, z;,z, of degree at most one, and one
of the quadratic terms z?, z,2,, z3. Let

Dy = D(1,z1,23,23), Dy = D(1, 2, 23,23), and D3 = D(1,2,,%3,%1%3)

denote the determinants in (3.5) with the indicated functions evaluated at
the four two-dimensional design points ¢;,,,s,%4. Recalling (3.1) we have

[(2?0)] =b [(0,22)] =1 and [(1?1)] =2.

Thus the limiting ¢}(z) is a weighted combination of the polynomial inter-
polators using three sets of functions and is given by
2

* T S A 2
ci(w) - D%-I-D%-{-QD% L,(z,l,zl,wz,ml)

Dj . )
Dr+ D3 +2p3 LT
2D}

DT By 2p Lmh e ).
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Example 3.2 Let n = 4 and d = 2 as in Example 3.1. Now, however,
assume that §’f(z) is the constant model of degree s = 0. In this case the
number of functions in f(z)is r =1 and ¢ = n — r = 3. Noting that

D1 g8 gt 28) = D(1,2%, 5%, 2%)
+0D(J|z|?, 2%, z%, 2%) + O(6%),

the leading term in (3.11) is now when |l;] = |l5] = 1 and |I3] = 2 or when
[l1] = iz} = 1 and |l5| = 0. In the latter case, the weight is proportional to

DMl 31, 2,,1)(26)(26) = 226°D%(||z|%, 21, 22, 1) + O(6°)
= 2%0*(D, + D,)’ + O(6°).
Thus '
ci(z)= S YDiLi(z;1,24,20,22) + DiLi(;1,2:,%2,23)

+ 2D3Li(z;1, 21,22, 2122) + §D+—2D2ﬁl},~(a:; 1,21, 20,22 + 22)} (3.14)

where § is the sum of the four coefficients of the L; terms.

Note that the last interpolator is

L,(II); 17 Z1, (Dz,z’? + $§)
= (D1 + Dz)—l(D1Li($; 1,2y, wz,wf) + DzLi(J"; 1,21, w%)),

so that (3.14) can be written as as weighted combination of the first three
interpolators as in the no model case; however the weights will change. The
weight for L;(z; 1,2y, %5, 22) is

D} + 525-3(Dy + D,)?

D} + D3 +2D3 4 L(D; + Dy)*

4. Asymptotic Design for Minimizing Integrated Mean Squared
Error of Prediction




The MSE of prediction, J,, at £ can be written explicitly as a weighted
sum of squares of residuals of weighted interpolators to each monomial of
any degree.

Let Wy(z,4;44,. . .,4,) denote the interpolator (see (3.6)) of z* using the
functions in (3.8) and the design points %;,...,%,.

Theorem 4.1 The MSE of the BLUP for the model (1.1) is
Il
— =8ll=]}? (26) 11 (o7 Y AL
J.=e % T | e {Wo(z;£) - z*} (4.1)

where

Wz )= >, wolly,.. o £)Wo(z, 85y, ...,4,).
t1<<£q

JFrom Theorem 4.1, the MSE of prediction, for the no model case, can
be described as § — 0. We now let W*(z;{) denote the interpolator to the
function z¢, using the limiting ¢}(z).

Theorem 4.2 For the no model case,
m 2m m * 2 m
J.=8 {m“; [z ] (W* (23€) — a7} + O(8™+).

When the polynomial model part is present the coefficient of §™ in J, in
Theorem 4.2 is considerably more complicated and will not be given here.

We use the integrated MSE (IMSE) of prediction as a design criterion for
the prediction problem. Integrating is over the region of interest and may
be weighted. The IMSE criterion would then seek the design that minimizes

JimsE =/Jz¢(m)d$7
where ¢(z) is a suitable weight function. Since 6 is unknown we may write
Jiuse = h(t, ..., 1,)0™ + O(8™)

by integrating the asymptotic expression for J, in Theorem 4.2. The re-
sulting problem is then to minimize h(,,...,%,) with respect to the design
points £1,...,%,.
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5. Asymptotic Design with No Regression Terms

In the case of no linear model, the following theorem shows that the
limiting ¢*(2) is the same as the solution of a constrained minimization
problem and provides a basis for a numerical algorithm for comstructing
asymptotic optimal designs. Recall from Corollary 3.2 that g,(z) is the
vector of monomials of degree at most m — 1. Let g,(z) denote the vector
of d,, monomials of exact degree m. Also define

G} = (91(t1), . .+, 91(tn)) and G = (g2(t1)s -+, 92(1n))-
Further denote by D, the d,, x d,, diagonal matrix with diagonal elements

[TZ] , as £ ranges over |£| = m.

Theorem 5.1 For the no model case the limiting ¢*(z) is the same as
the solution from the following constrained minimization problem:

min (Ge(e) — 92(2)) Da( Ghe(z) - 9a(s))

subject to Gic(z) = gi(z), (5.1)

and the leading term h(z;t,,...,t,) of J, except for the factor fn—": is given
by

h{z;t1,. .., 1) = (Goc™(z) — g2(@)) Do Gy () — galz)). (5.2)
Use of Lagrange multipliers produces the equations
GzDgG’zc*(JO - G2D2g2(m) - GlA((I)) =0 (5.3)

1(2) - g1(0) = 0

8 oSl 29 )-[ o3l ] o
G1 ‘ GzDzG’z C*(.'E) G2D2g2(m)
Premultiplying c*(z) in the first equation of (5.3), and then noting ¢,(z) =
Gic*(z), we get

¢ (2) G2 D,Ghe*(2) = ¢ (2) G2 Daga(2z) + g1(2) Mz). (5.5)
Substituting (5.5) into (5.2), we get
h(@:11, ..., 80) = 92(2) D2g2(2) + 91(2) M) — 92(2) D2G3¢" ()

or
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= go(2) D2g2(2) — [g1(2z) g2(z) D2GY) [cgl ngiag]_l [ngz(;z)(w)]'

Therefore, the leading term [h(z : ty,...,%,)¢(z)dz of Jrymsk is expressed
as a quadratic form

[(G5e @) - 9x(@)Y DG (2) - a(e))la)da

=T7~D2M22—Tr[0 G ]_I[I 0 ]M[I 0 ] (5.6)

G G.D,G,, 0 G.D, 0 D,G,
where
Mll M12]
M =
[MZI M22

Jai(z)gi(z) (z)dz 91($)gz(z)’¢(m)dm]
J 92(2)g:(2) $(z)dz [ ga()ga(e) $(2)de

is the moment matrix of the degree m polynomial model w.r.t. the weight
function ¢(z). Thus the design problem reduces to finding 7™ = {¢},...,%:}
which minimizes (5.6).

Noting that [ g;(z)g;(z) ¢(z)dz is a moment matrix of the weight func-

tion ¢(z), it may be a patterned matrix. For the uniform ¢(z) over [-1,1]4,

272
all the odd moments are zero.

In summary, the algorithm for an asymptotic optimal design is as follows;
Step_1. Find m such that N(d,m — 1) < n < N(d,m).

and its inverse.

Step 3. Generate the moment matrix M for the degree m polynomial model
w.r.t. the weight function ¢(z).

Step 4. Calculate

- v aoa] Lo oo
h(tl,.__,tﬂ)_trace(DgMzz)_tra'ce(I:Gl GzDzGlz] 0 G2D2 M

12

0

0 D,GY

)




Linear model 1 10
Constant 99.6 96.1
First order 94.6 96.3

Table 1: Percent efficiences of the asymptotic design relative to the optimal
design for various linear models and values of 6.

Step 5. Apply an optimization algorithm to find T* = {¢},...,t;,} which
“minimizes h(ty,...,%,).

To illustrate the qualitative features of asymptotic optimal designs, Fig-
ure 1 shows the design constructed by the above algorithm for two explana-
tory variables and nine design points. It can be seen that the design is
space-filling. Compared with the minimax or maximin designs produced by
Johnson, Moore, and Ylvisaker (1990), however, it is slightly concentrated
around the edges of the design space, to reduce the MSE of prediction where
it is largest.

We also investigated the efficiency of the optimal asymptotic design for
a larger example with four explanatory variables and 18 runs. The optimal
designs for model (1.1) were constructed for constant (fo) or first-order
linear models and # = 1 or 10, i.e., moderately large values. Under each of
these four scenarios, the IMSE for the asymptotic design can be compared
with the optimal IMSE. Table 1 gives the efficiencies of the asymptotic
design. Efficiency remains high when 6 is not small. Moreover, although the
asymptotic design is independent of the linear model, efficiency is maintained
when a first-order linear model should be included.

In constrast, the designs optimal for large @ have very poor efficiency
when @ is small. Compared with the value of the criterion in Step 4 for the
optimal asymptotic design, the designs for § = 10 have efficiencies of 0.3%
for the constant model and 0.1% for the first-order model.

6. Asymptotic Design for One Dimensional Input

Let W, () denote the interpolator of z” using the n functions 1, z,...,z"!
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and the n design points ¢;,...,%,. When d = 1 the integrated mean squared
error is given asymptotically by

A / [Wa(z) - e $(z)dz + O(6™+D), (6.1)

regardless of the polynomial part 8’ f(z) in (1.1). The design problem then
is to choose ti,...,%, such that

[ Wal@) - =" Po(e)as

is minimized. It is well-known that this is minimized when P, (z) = W,(z)—
z™ is proportional to the polynomial of degree n orthogonal with respect to
¢(z). Since W, interpolates z™ at t;, we have P,(#;) = 0 implying that
t1,...,1, must be the zeros of the orthogonal polynomial of degree n with
respect to ¢(z).

Suppose ¢(z) is proportional to (3 — z)*(3 + &)°. It is well known that
the Jacobi polynomials P{*?)(z) are orthogonal on [—1,1] with respect to
é(z) (e.g., Ghizzetti and Ossicini 1970). When ¢(z) is uniform (a = b = 0),
then P,(z) = P{®°)(z) is the Legendre polynomial of degree n, recursively
defined by

Pyz)=1
Py(z) =2z

aP,(8) = (24 - 1)20P,-1(2) - (- DPa(z) (g2 2).
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Appendix .
Proof of Theorem 3.1: Recalling (2.1), ¢o(z) is the solution of

r el = ) (A

r 0 f(t) e f(t,)
f'(s1)

Let

A=
Ro(si,tj)

Lf"(sn)
which is simply the matrix on the left-hand side of (A.1) where we have

designated the design points by s;,..., s, in the rows to facilitate notation
below. The coefficients cq(z) are obtained using Cramer’s Rule so that

o) = Bl
C,-( )_IA[’

where B is obtained from A by replacing the appropriate column in A by
the right-hand side of (A.1).
Theorem 3.1 will follow by showing that

n n
-8 Isil*-0 ol 2

Al=e = = (-1 x (A2)
. —_(20)'5‘_1 ]'e*I fﬂ ((D), mllv R ] z.t,, f@(x)7 $£17 ceny (l)e"
e1<.z..:<eqi]'—=‘|z:_ |€:]! [!Z,- ]D( 31 tn )D( 81 Sn )’

where f5(z) = ellFll* f(z).
To obtain ¢/(z) in Theorem 3.1, we replace #; by = in |A| and then divide
and multiply each term by D (f agf)’ a.ct.l.’ v :s,n:czv
To show (A.2) we first write
Ro(s,1) = e~MIP=alF Q9 (5 1),

where

Qa(spt) — eZG(s,t)




26)'“ e
= Z(M)' [lﬁl]st, (A.3)

¢
and then . .
~0 Y lsllZ=0 3 [l
|Al =€ : ICl,
where
0 filt) e Jolta)
C- fé(.sl)
: Q(si,5)
fo(sn)

We first expand the (n + 7) X (n + 7) determinant |C| by a Laplace
expansion using the last n columns. Since the r X r upper left block is all
zeros, the first 7 rows must be selected and hence

Jo(t1) oo Jo(tn) i £i(s8)
i1y L1 . i19 b rdei)4) 1
ICl - Z Q9(s:11t ) Qa(s i ) (_1) T - .

i1<...<iq

M ?
" 1 { ¥
Qusi1) - Qolsierte) falsi)
(A4)
where {s},...,s; } is the complementary set to {s;,,...,s;,} and ¢} is the
row position of sj.
Using the expansion for (J4(s,¢) in (A.3) and a slight extension of the
Basic Composition Formula (see Karlin 1968, page 17) we may write

fo(ty) o fo(tn)
Qo(8i,,61) .- -Qo(8iyytn)

Qo(si,111) - Qo(55,110)
Jot) . fota)] | 6 g0
I

" .8 .
= > h Do ' ﬁ(ge)l | [lz"l‘ (A.5)
6<<lq 3y 3‘-2‘; .;.z_,, el 121 LI R
... th I
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The expression in (A.5) is substituted in (A.4) and the summations are
interchanged. The inner sum, now over i; < ... < %, can be summed using
a Laplace expansion to give (A.2).

Corollary 3.2 follows from Theorem 3.1 by noting that in (3.10) and
(3.11) the functions eIl f(z) do not appear in L!(z;£y,...,4,) nor
Dg(4y,...,4,) and that ¢ = n.

Proof of Theorem 4.1: Recalling (A.3), we may write
Ry = D7) pe(&)memy) D
)

and ,
ro(z) = eI D=1 > po(O)meat,
2

where

14
ne@ = S0 W], m =

and D is a diagonal matrix with elements el for ¢ = 1,...,n. ;From
(3.10)

co(z) = el D > welly,. .. 8)Le(ws b, .. .0 Ly), (A7)

6<...<L,
where
Ly(z3 81,00 bg) = (L5(23 81y v 1 4g), - s (w3 a0 0 4y))-
Then ¢j(z)r(z)

e~ 20l=ll? Zug(f)z‘» Z we(ly, ..., 8w Lo(z54y,.. ., 4;)

_ 2 H<<ly
e-—201|==||2 Z“o(e):ct [Wg(:c;f)}

?

e—29”-’lo'||2 Zﬂo(f)ml [’W_a(w,‘e) _ zl + wt]

= 1+ e"”“:”z > (@)t [Wo(z;0) - o], (A.8)
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and

GRico = e Sy (0)[Woe; )] (4.9)
£
e~ 201=l1° Z“"(f) [Wg(:z:;ﬂ) —zt + m‘]2
£
1+ 2e~ 2117 3™ g ()2t [Wo(w; £) - w‘]
£

+ e () [W,,(m;z) _ we] ?

it

Combining (A.8), (A.9) and (2.2) the result follows.

Proof of Theorem 4.2: The result in Theorem 4.2 is nearly immediate
from the expression for J, in Theorem 4.1.

Proof of Theorem 5.1: It is easily seen that the expression in (5.1)
with ¢(z) = ¢*(z) is equal to the coefficient of §™ in Theorem 4.2 except for
the factor 2™ /m!. Therefore it suffices to show that the solution to (5.1)
gives the correct ¢*(z) which is given in (3.12). This result follows from (5.4)
and arguments analogous to those used in the proof of Theorem 3.1. That
is, from the proof of Theorem 3.1,

[C(*')i ngiG'z ]

4

= (-1 ﬁ [Z] D (gl(f”)vxl"""“’zrm> D (gl(z),wll,...,x‘rm> '

8<. <Ly, i=1 [ZERRRTE 81y:4438n

As in the proof of Theorem 3.1 we have indexed the last rows by s1,...,5n
and denoted the number of columns of G by ny = N(d, m—1). The solution
for ¢*(z) follows as in the proof of Theorem 3.1.
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Figure 1: Asymptotic optimal design for two explanatory variables and nine
design points.
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