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Abstract. A parameterized family of financial market models is presented. These
models have jumps intrinsic to the price processes yet have strict completeness, equivalent
martingale measures, and no arbitrage. For each value of the parameter 8(—2 < 8 < 0)
the model is just as rich as the standard model using white noise (Brownian motion)
and a drift; moreover as 3 increases to zero the model converges weakly to the standard
model. A hedging result, analogous to the Karatzas-Ocone-Li theorem, is also presented.

Keywords: Market completeness, arbitrage, stochastic calculus, Azéma martingales,
equivalent martingale measure, weak convergence, hedging strategies, Malliavin calcu-
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1 Introduction

The standard model for continuous time capital asset pricing models assumes that
asset prices follow diffusion processes with continuous sample paths (see, for example,
[5]). An important consequence of this is that markets are “complete”: that is, a
contingent claim that is measurable with respect to the filtration generated by the
stock price process is a redundant claim. (This means that there will always exist a, self-
financing trading strategy that replicates the contingent claim.) However as has been
long known (see for example [16] or [9]), empirical studies show that stock prices often
have jumps (that is, are not continuous). An interesting recent example concerning
the term structure of interest rates and monetary policy, where jumps clearly occur, is
given in [1].

Various models incorporating discontinuities have been proposed. The most com-
mon is the “jump diffusion” model, where Poisson jumps have been added to Brownian
(or “white”) noise, modeled by a Wiener process. This has many advantages: the noise
process W; + N, is still a Lévy process (a process with stationary and independent in-
crements) and thus can be justified by central limit type arguments; the solution of
the corresponding stochastic differential equation (the stock price process) is a strong
Markov process. These models are useful to model stock prices whose jumps arise
from exogenous events (such as natural disasters, interest rate announcements, etc.;
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see [16], [1], or [10]), rather than to model those for which the jumps are intrinsic to
the “trading noise”. However they do not have unique equivalent martingale measures,
and thus do not naturally give a unique option price.

In attempts to allow for more general models, recent work has been devoted to
studying what can be done when a model does not have completeness, and what
adjustments can be made in those cases. See, for example, [15], [19], [20], [3].

In this paper we show that one can indeed have models that have market com-
pleteness and jumps that are intrinsic to the stock price with a unique equivalent
martingale measure. To emphasize the intrinsic nature of the discontinuities in our
model, we define two types of market completeness. Let Y; be the stock price process,
and let F; = o(Y;; s < t) be its natural filtration, made right continuous and complete.

Definition 1.1 A model has strict market completeness if for any contingent claim
H € L'(Fr) there exists a predictable process £# such that

T
H=a+ [ ¢fay,
0
where Y is the asset price process.

Definition 1.2 A model has relazed market completeness if for any contingent claim
H € L'(Fr) there exist predictable processes (£,...,£&"), some n, and semimartingales
MY, ..., M" such that 37, M{ =Y; and

n T . .
H=a+z/0 £d M,
i=1

where Y is the asset price process.

It is known (see [2, p.235] or [8, p.353]) that the only Lévy processes that have
strict market completeness are Brownian motion alone and the Poisson process alone.
Jeanblanc-Picqué and Pontier [10] treat the case where Y is the sum of a Wiener
process and a Poisson process by using relaxed market completeness.

In this article, however, we produce a family of distinct semimartingales, indexed
by a parameter f(—2 < § < 0), that give rise to strict market completeness. The
case 3 = 0 corresponds to the standard model of noise process W; (a Wiener process)
and a drift (“dt”); the case —2 < 8 < 0 gives rise to noises coming from compensated
jump processes, plus drifts. The case § = 0 (the standard model) has noise processes
that are Lévy of course; for the case —2 < B < 0 the noise processes no longer
have independent increments (and thus are not Lévy), but nevertheless are strong
Markov processes under the equivalent martingale measure. The freedom of choice of
coeflicients for the stochastic differential equation giving rise to the stock price process
means that for each 8 we have a model as rich as the standard model. Moreover we
show in Section 3 that these models converge to the standard model as 3 increases to
0. Consequently for very small § the sample paths will look as if they are Brownian,
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although occasional jumps will be noticeable; this seems to correspond to empirical
observations.

In Section 2 we present our model, proving for it the existence of a unique equivalent
martingale measure (and hence no arbitrage) and market completeness. In Section 3
we show the aforementioned weak convergence to the standard model. In Section 4 we
calculate (at least in theory) a hedging strategy along the lines of Karatzas-Ocone-Li,
who extended the Clark-Hausmann formula in the standard model case.

For unexplained stochastic calculus terms and notation we refer the reader to [18].

2 The Model

In the usual framework, a stock price is modelled as “geometric Brownian motion”:
that is, the unique solution of

t ¢
Yt:1+/aY;dW3+/msts (2.1)
0 0
where W is a standard Wiener process. The process Y has a closed form expression:

1
Y, =exp (aVVt +mt — Eazt) .

Now let X be a semimartingale and suppose
Y,=1+ /Ot oY, dX,. (2.2)
Then Y again has a closed form expression (cf, eg, [18, p.77]):
Y, = exp (aXt - %o—i’[x, X]g) I (1+AX,)e 8%,
0<s<t

where AX, = X, — X;_ denotes the jump at time s. Note that when X, = W, + 21,
(2.2) reduces to (2.1).

We are interested in conditions on X that lead to a complete market model on
[0, 7], T a fixed time.

Theorem 2.1 For each 3, —2 < 3 < 0, there ezists a semimartingale X = X7,
satisfying

(i) X =L+ fy Jyds where L is an L*-martingale and E{fT J2d[X, X],} < oo;
(ii) (X, X)e =t + B f§ X,_dX,;

£

(iii) furthermore X may be chosen so that for some e > 0 and ¢ < T

(a) 1+ ,BXt_Jt >E> 0,
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(b) |Xt_Jt| <e.

For such an X there exists a unique equivalent martingale measure P* making X a
bounded martingale. Moreover if Y given in (2.2) is the security price, then the finan-
cial market model is complete: that is, every bounded contingent claim H € (2, F(X)1)
admils a representation

T
H=H0+/0 A4y,

Proof: First suppose there exists an X satisfying (i), (ii) with ¢ as in the statement
of the theorem. Define 7
s

Ky=——2*
1+ BX,_J,

From (i) we have [X, X]; = [L, L], so

E{(/OthdLs>2} - E/Oth d[L, L],

t J?
= F| —FF—=d[X,X],
/0(1+X3_Js)2 X, X]

t
< Elz/ J2d[X, X], < 00
& 0

by (i). Therefore f§ K,d L, is well defined.
Next define

i
Qt =1 +/0 Qs—Ks dLs

and
dP* = QrdP.

We need to show P* defines a true probability measure. By (i) we have AL; = AX;,
and by (ii) we have (AL;)? = (AX;)? = BX;_AX;, whence AL; = AX; = $X;_. Thus
AfKdL, = K;AL; = (1+—;3_)}]tt7t)ﬂXt—’ and in absolute value this is less than or equal
to Ble < 1 by ().

We also need to verify that E{Q7} = 1. To do this it suffices to show that (L, L)
is bounded a.s. (see, eg, [15, p.158]). Since [L, L] = [X, X], we have

t t t
L, L], =t+ﬁ/ X,_dX, :t+ﬁ/ Xs_dLs+ﬁ/ X,_J,ds
0 0 0
which implies that if
t
N, =t+ﬂ/0 X, J.ds,

then [L, L]; — N; is a martingale, and if N is nondecreasing, then N = (L, L). However

N =1+ BX;-J; >¢€>0,s0 N = (L, L); that is,

t
(L, L) =t+f /O X,_Jyds.
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Since | X_J| < ¢, we have that (L, L) is bounded a.s. on [0, 7.

Thus P* is a true probability measure.

It remains to show that X is a bounded martingale under P*. By Girsanov’s
theorem (see [4, p.238]) we have that L is a local martingale under P*, where '

B =Li- [ g-d@ D).

¢

=L QK d(L, L),
; 8

:Lt—/0 K1+ X,_J,) ds

t
=Lt+/ Jsds

0
=Xt.

Moreover, we have that X satisfies (ii) under P* as well, since (ii) holds path by
path a.s. (dP), and P and P* are equivalent. Emery [6] has shown that for each S,
—2 < B <0, there is a unique local martingale solution of (ii), which he has called
the Azéma martingales. The uniqueness of this solution implies the uniqueness of P*.
Moreover such a solution X is bounded and thus a true martingale. Finally, Emery
has further shown that such an X has the martingale representation property and we
use that fact to establish market completeness.

Next consider the stock price Y, and let H be a bounded contingent claim, Fr-
measurable. Then we know there exists a predictable process ¢ such that

T
H = E*(H) +/ 05 dX,.
0
For & = @; 73—, and then we have

T T
=B (H)+ | (goaj,) @Y, =B (H) + [ &av,

which means that H is a redundant claim, &; is a self-financing strategy that replicates
the claim H, and the fair (Black-Scholes type) price of H is E*(H) = E(HQr).

Finally it remains to show that for each 8, —2 < 8 < 0, such an X as specified in
the hypotheses actually exists(!). Note that for § = 0, we can take L = W, the Wiener
process and J = m/o > 0, the constant process. Otherwise, as was noted above, there
exists a (weakly) unique solution of

[M,M], =t +f /0 ‘M,_dm, (2.3)

where —2 < 8 < 0 and M is required to be a local martingale. Emery [6] calls this the
structure equation, and has in fact shown existence and (weak) uniqueness of solutions
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for all 8. Moreover (for —2 < 8 < 0), he has shown that [M, M]¢ = 0 and that M is
bounded:
-2
M? < Mg+ —-t.
Y
It is clear that (M, M); =t, as well.
Let X denote the solution of (2.3) under a Probability law we will call P*. Let J

be predictable such that f(f J2?ds < ¢ < 00 a.s., and further require that JJAX, > —1;

that is, AX; > 5, when |AX,| > 0. (Note that since X7 < X§ + ;t, we have
AX,| < 2,/X3 + -%4t, so any J; such that |J;| < ——~——— suffices.) Then if R is the
|AX:]| < 0T 3b Y Ji | 4| 2 /X242t )

unique solution of

t
R =1 +/0 R, J.dX,,

we have that R is a positive uniformly integrable martingale (because [ J2ds is bounded),
and thus dP = Rrd P* is a true probability law. Girsanov’s theorem yields

t
L= X, —/0 L u(R, X).

R

is a P-martingale. But
t 1 t
Li=X; — / Ry Jyd(X, X)s = X; — / J,ds,
0o R,_ 0

whence X; = L; + f(f Jsds is the sought after semimartingale. Since X satisfies (2.3),
we have that X satisfies (i) and (ii) under P.
Note that since |X,| < /X3 + 5, if we take [J;| 3 ——2—, and also

2
Xg-!—_—ﬁt

t-
sign(J;) = —sign(L;_ +/0 Jsds) = —sign(X;_),

then we have both |X;_J;| < cand 1+ 8X;_J, 7 0. In fact we have 1 + 8X; J; > 1,

0 <t < Ty, and so we can take € = 1, and c any constant less than 1/|3]. Any such J,
even a deterministic one except for the requirement on the sign, gives a solution of (i),
(ii), and (iii) for each 8, -2 < 3 < 0. [

Comment: A consequence of Theorem 2.1 is that these models have no arbitrage
opportunities. Indeed under P*, X is a bounded martingale. Therefore Y is a local
martingale. However since (X, X); = t, we know that Y is a true martingale (see, e.g.,
[17, p.158]). It is then a standard result (e.g., [13, p.6]) that there are no arbitrage
opportunities.
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3 Convergence to the Standard Model

In Section 2 we showed that for each 8, —2 < 8 < 0, there exists a non-Poissonian
complete market model with jumps. Let P; denote the equivalent martingale measure
for a process X?, satisfying the conditions of Theorem 2.1. Then Ej (H) is the price of a
contingent clalm As (3 increases to 0, the process X? has more and more compensated
jumps, and the paths converge to the paths of the standard model (with Brownian,
or Wiener, market noise). In this section we make sense of the intuitive notion that
13%1 E3(H) = Ew(H), where Ey denotes expectation under the Wiener measure.

Let M = MP? be the unique martingale solution of
¢
[M, M]; = t + ﬂ/o M,_d M,

for —2 < § < 0. (Uniqueness is in distribution.)

Theorem 3.1 MP? converges weakly to W, the standard Wiener process, as (8 increases
to 0.

Proof: We need only to verify sufficient conditions of a martingale central limit
theorem. Writing M for M”, first note that

(AMt)Z = A[M, M]t = ﬂMt_AMt,

thus

E{sup(AMt)4} = E sup[ﬁMt_AMtl} (3.1)

E / ﬂMs_dM)z}
- E{ | (ﬂMs_)zd[M,M]s}
~ BE /)T(Ms_)zds

T
= 8 [ B(ML)ds
= [ B((M, M)} ds

AN

| 2
— E{supA BM,_ dM) }
{

which converges to 0 as § tends to 0.
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Also, we have

E{([Mﬂ,Mﬂ]t—t)z} - E{(/OtﬂMf_de)z} (3.2)
— BE /Oth_d[M,M]s
= ﬂzE/th_ds
a8 BT

which also tends to 0 as 3 tends to 0. Combining (3.1) and (3.2) we have that M?
satisfies condition (a), p. 340, in [7], of the Martingale Central Limit Theorem. |

In Section 2 we introduced the security price process Y:
t
Yi=1+ [ oY, dX,
0

where X = MP? under P*. More generally, we can let
dY{ = f(t,YL)dX]

with f continuous such that the solution Y is unique. Typically a contingent claim is
of the form H? = g(Y), or more generally

HP = G(YY),

where G is a functional on the space of paths which are right continuous with left limits
on [0, 7.

The next corollary shows that the price of the contingent claim for 8 < 0 tends to
the price of the contingent claim of the standard models as § tends to 0. If 3 is close
to zero, and thus the stock price process has sample paths that look as though they
are Brownian with occasional jumps, then the price of the contingent claim under the
model proposed here will be close to the price for the standard model.

Corollary 3.1 If the contingent claim H is of the form H? = g(Yﬁ ) where g is con-
tinuous, or of the form HP = G(YF) where G is continuous in the uniform norm,
then 1[}%1 E3(H) = Ey(H), where Py, is the Wiener measure and thus H = g(Y7) or

respectively H = G(Y,)), and

dY, = f(t,Y;)dW..
Proof: Since sup E{[M?, MP|r} = T < oo, we have that (M?)_scp<o trivially
satisfies UCV (z;szflﬁioned, eg, in [12, p.23]) and hence Y? converges weakly to Y by

Theorem 3.1 combined with, e.g., Theorem 3.6 of [12, p.33]. Since g is continuous and
G is continuous in the uniform norm, the result follows. [ |
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4 The Hedging Strategy

In the standard model, if the claim H is of the form H = g(Yr), one is able to
use the Markov property of Y along with known properties and distributions related
to Brownian motion to calculate explicitly a hedging strategy. In the case of more
complicated contingent claims, as when H is a functional of the Brownian paths known
as look-back options, one cannot in general find an explicit formula for the hedging
strategy. In some special cases, such as the maximum option, closed form solutions
exist, but these depend heavily on the rich structure of Brownian motion. Indeed, the
general result is as follows: if the contingent claim has the form H = F(W), under
technical hypotheses on F' one has

H=E"(H)+ /0 " B (D, F(W) | F.}dW, (4.1)

where D;F (W) denotes the Malliavin derivative process of F(WW) (see [11] for details).
It is this formula (4.1) due to Karatzas, Ocone, and Li that we will extend here.

Let us fix 3, —2 < 8 < 0. Emery [6] has shown that the Azéma martingale M = M?
has the Chaos Representation Property (CRP). Let ¥, be the increasing simplex on
R,

o ={(t,...,ta) ERL:0<t; < ... < tp}
and extend f defined on X, by making f symmetric on IR}. Define

L(f) = n!/E Fltry. . tn)dMs, ... dM; .

Let H, = {I.(f); f € L*(Z,)}, where L? is under Lebesgue measure. We define

D, = {H =Y L(f.) : ) nnl|fy|2 < oo} .

n=0 n=0

o0
For H € Dy, define D.H = > nl,_1(f+(-,t)). We need the following from [14,
n=0

Theorem 4.5]:
Theorem 4.1 Let H € L2(dP) and also H € ID; 5. Then

H=E(H)+ /0 '2(D,H) dM,,

where P(D;H) denotes the predictable projection of the process (DyH ). (The reader
may consult [14] for more details on Chaos Representation.)

Comment: We could have written E{D,H | F;} for the predictable projection ?(D;H)
to emphasize the analogy with the Karatzas-Ocone-Li theorem, but this would be a
little sloppy in our framework for technical reasons: such a notation could easily be
interpreted as the optional projection rather than the predictable projection, and it is
the latter that we need. (In the Brownian case the optional and predictable projections
coincide, but they are different in general for martingales with jumps.)
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Theorem 4.2 For -2 < 8 < 0, let X = X? be a semimartingale satisfying the
t
conditions of Theorem 2.1. LetY; = 1+ / oY;_dX; be the security price process.

0
Let H be a contingent claim such that H € ID15 under P*, the equivalent martingale

measure. Then
1

oY,_

H=E(H)+ | ——?(D,H)dY; (42)

that is, -3—P(D;H) is the hedging strategy.

T
Proof: Under P* we have, by Theorem 4.1, that H = E*(H) +/ P(DsH)dX,, and
0
thus (4.2) follows trivially (P*). Since P is equivalent to P*, it holds for P as well. W
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with Hyungsok Ahn and Glen Swindle.
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