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Abstract

Standard wavelet shrinkage procedures for nonparametric regression are restricted
to equispaced samples. There, data are transformed into empirical wavelet coefficients
and threshold rules are applied to the coefficients. The estimators are obtained via the
inverse transform of the denoised wavelet coefficients. In many applications, however,
the samples are nonequispaced. It can be shown that these procedures would produce
suboptimal estimators if they were applied directly to nonequispaced samples.

We propose a wavelet shrinkage procedure for nonequispaced samples. We show
that the estimate is adaptive and near optimal. For global estimation, the estimate
is within a logarithmic factor of the minimax risk over a wide range of piecewise
Holder classes, indeed with a number of discontinuities that grows polynomially fast
with the sample size. For estimating a target function at a point, the estimate is
optimally adaptive to unknown degree of smoothness within a constant. In addition,
the estimate enjoys a smoothness property: if the target function is the zero function,
then with probability tends to 1 the estimate is also the zero function.

Keywords: wavelets, multiresolution analysis, wavelet approximation, nonparametric re-
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gression, minimax, adaptivity, piecewise Holder class.
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1 Introduction

Suppose we are given data:

yi = f(ti) + ez (1)

i=1,2,..,0,0<t <ty <..<t, =1, and 2z are independently and identically
distributed as N(0, 1).

The function f is an unknown function of interest. We wish to estimate the function f
globally or to estimate f at a point. In the case of recovering the entire function f on [0,
1], one can measure the performance of an estimate f , for example, by the global squared
L4y norm risk:

R = B [ ()~ f@)2

The goal is to construct estimates that have “small” risk. In order to have some mean-
ingful estimate according to this criterion, one must assume certain regularity conditions
on the unknown function f, such as f belongs to some Holder classes, Sobolev classes, or
Besov classes, etc.

The more traditional approaches to nonparametric regression include fixed-bandwidth
kernel methods, orthogonal series methods, and linear spline smoothers. These methods
are not adaptive. That is, the estimators based on these methods may achieve substan-
tially slower rate of convergence if the smoothness of the underlying regression functions
is misspecified. In recent years, more efforts have been made to develop adaptive proce-
dures. A variety of adaptive methods have been proposed, such as variable-bandwidth
kernel methods and variable-knot spline smoothers.

The recent development of wavelet bases based on the multiresolution analyses suggests
new techniques for non-parametric function estimation. Wavelets offer a degree of local-
ization both in space and in frequency. This gives great advantage over the traditional
Fourier basis. In the recent few years, wavelet theory has been widely applied to the fields
of signal and image processing, as well as statistical estimation.

The application of wavelet theory to the field of statistical function estimation was
pioneered by David Donoho and Iain Johnstone. In a series of important papers ([11],
[12], [14]), Donoho and Johnstone and co-authors present a coherent set of procedures that
are spatially adaptive and near optimal over a range of function spaces of inhomogeneous
smoothness. . Wavelet procedures achieve adaptivity through thresholding of the empirical
wavelet coefficients. They enjoy excellent mean squared error properties when used to
estimate functions that are only piecewise smooth and have near optimal convergence rates
over large function classes. In contrast, traditional linear estimators typically achieve good
performance only for relatively smooth functions.

Despite their considerable advantages, however, standard wavelet procedures have limi-
tations. One serious limitation is the requirement of equispaced samples. Standard wavelet



procedures are restricted to equispaced samples, i.e. t; in (1) are equally spaced on [0, 1]. In
practice, however, there are many interesting applications in statistics that the samples are
not equispaced. In some wavelet software packages, non-equispaced samples are currently
treated same as equispaced. As we shall explain later, non-equispaced samples should not
in general be treated as equispaced. Otherwise the convergence rate could be far below
the optimal rate. Different treatments are needed. So how to apply the wavelet shrinkage
method to non-equispaced samples is of practical interest.

We formulate nonequispaced regression model as follows:

yi = f(ti) + ez (2)

withi=1,2,...,n,n =27, ¢;, = H7(i/n) for some cumulative density function H on [0,
1], and 2z “ N(0, 1).

We develop an adaptive wavelet threshold procedure for non-equispaced model based
on multiresolution analysis and projection as well as nonlinear thresholding. The algorithm

for implementing the procedure has the following ingredients:
1. Precondition the data by a matrix;
2. Transform the preconditioned data by the discrete wavelet transform:;

3. Denoise the noisy wavelet coefficients;

The function with the denoised wavelet coefficients is our estimate of the function f
that we intend to recover. If one is interested in estimating the function at the sample
points, two more steps are needed:

4. Apply the inverse wavelet transform to the denoised coefficients;
5. Postcondition the data by a matrix to get the estimate at the sample points.

Both preconditioning and postconditioning matrices are sparse matrices containing
O(n) nonzero entries. Comparing with Donoho and Johnstone’s VisuShrink, this pro-
cedure has two additional steps, preconditioning and postconditioning, to account for the
irregular spacing of the sample points. The procedure agrees with the VisuShrink when
the sample is in fact equispaced.

The procedure is adaptive and near optimal. We investigate the adaptivity of the esti-
mators over a wide range of piecewise Holder classes, indeed with a number of discontinuities
that increases polynomially fast with the sample size. We show in Section 4 that the rate
of convergence for estimating regression function f globally over the function classes is a
logarithmic factor away from the minimax risk. Furthermore, for estimating a target func-
tion at a point, the estimate is optimally adaptive to unknown degree of smoothness within
a constant factor. The estimate also enjoys a smoothness property. If the target function
is the zero function, then the estimate will also be the zero function with probability tends
to 1. Therefore, the procedure removes pure noise completely with high probability.

The rest of the paper is organized as follows. Section 2 describes wavelet basis, mul-
tiresolution analysis and wavelet approximation. Section 3 introduces the nonequispaced
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procedure. Optimality of the estimators will be presented in Section 4. Further discussion
about the procedure and related topics are given in Section 5. Section 6 contains proofs of
the main results.

2 Wavelets And Wavelet Approximation

We summarize in this section the basics on wavelets and multiresolution analysis that will
be needed in later sections. Further details on wavelet theory can be found in Daubechies

[10] and Meyer [20].

An orthonormal wavelet basis is generated from dilation and translation of two basic
functions, a “father” wavelet ¢ and a “mother” wavelet ¢». The functions ¢ and ) are
assumed to be compactly supported. Assume that supp(4) = supp(y) = [0, N]. Also we
assume that ¢ satisfies [ ¢ = 1. We call a wavelet 9 r-regular if ¢ has r vanishing moments
and r continuous derivatives.

Let
Gin(t) = 2212¢(27t — k), hx(t) = 27/%9(27¢ — k)

And denote the periodized wavelets

P =Dt —1), vh(t) = ¢u(t—1), fortel0,1]

leZ lez

For simplicity in exposition, we use the periodized wavelet bases on [0, 1] in the present
paper. The collection {¢},,k = 1,...,2%;9%,5 > jo,k = 1,...,2’} constitutes such an
orthonormal basis of L,[0,1]. Note that the basis functions are periodized at the boundary.

The superscript “p” will be suppressed from the notations for convenience.

An wavelet basis has an associated multiresolution analysis on [0,1]. Let V; and W;
be the closed linear subspaces generated by {¢;r,k = 1,...,2} and {¢j, kb = 1,...,27}
respectively. Then

L Vi CViga C -~ CV;Coos
2. U, Vi = La([0,1));

J=Jjo
3. Vin=V; 0 W,

The nested sequence of closed subspaces Vj, C Vjo41 C --- is called a multiresolution
analysis on [0, 1].

An orthonormal wavelet basis has an associated exact orthogonal Discrete Wavelet
Transform (DWT) that transforms sampled data into wavelet coefficient domain. A crucial
point is that the transform is not implemented by matrix multiplication, but by a sequence
of finite-length filtering which produce an order O(n) orthogonal transform. See Daubechies
([10]) and Strang ([21]) for further details about the discrete wavelet transform.
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For a given square-integrable function fon [0, 1], denote

€jk = <fa ¢jk>’ ejk = <f> d)jk>

So the function fcan be expanded into a wavelet series:

f(2) =Y Eiorbior(z) + i > Oirthin(z) (3)
k=1 7=jo k=1

Wavelet transform decomposes a function into different resolution components. In (3),
;or are the coefficients at the coarsest level. They represent the gross structure of the
function f. And 8, are the wavelet coefficients. They represent finer and finer structures
of the function f as the resolution level j increases.

We note that the DWT is an orthogonal transform, so it transforms i.i.d. Gaussian
noise to i.i.d. Gaussian noise and it is norm-preserving. This important property of DWT
allows us to transform the problem in the function domain into a problem in the sequence
domain of the wavelet coeflicients with isometry of risks.

Wavelets provide smoothness characterization of function spaces. Many traditional
smoothness spaces, for example Holder spaces, Sobolev spaces and Besov spaces, can be
completely characterized by wavelet coefficients. See Meyer [20]. In the present paper, we
consider the estimation problem over a range of piecewise Holder classes. Therefore, we are
interested in the properties of wavelet coefficients of functions in piecewise Holder classes.

Definition 1 A piecewise Holder class A*(M, B,m) on [0, 1] with at most m discontinuous
Jumps consists of functions f satisfying the following conditions:

1. f is bounded by B, i.e. |f| < B;

2. There exist | < m points 0 < a3 < -+ < a; < 1 such that for all a; < z, ¥y < a;41,
1 =0,1,---,1 (with apo =0 and a;41 = 1),

(@).  |f(z)=fy) < M|z -yl iflaél;
(i).  |fUlD(@) = D) < Mz —y|* and |f'(z)]| <B  ifa>1

where |« is the largest integer less than o and o/ = a — |a].

In words, the function class A*(M, B, m) consists of functions that are piecewise Holder
with the number of discontinuities bounded by m. In our main results, the maximum
number of jump points, m, is allowed to grow polynomially fast with the sample size.
This enables the function classes A%(M, B,m) to model functions of significant spatial
inhomogeneity. The following are the upper bounds of wavelet coefficients of functions in
a piecewise Holder classes A®(M, B,m). Throughout, C' denotes a generic constant not
depending on function f and sample size n and the standard notation ( , ) denotes inner
product in L, space.



Lemma 1 Let f € A*(M, B, m) and let the wavelet function ¢ is r-regular with r > a.
Then
(i). If supp(ep;x) does not contain any jump points of f, then

Oi = [(f, i) < C - 2790/24e) (4)
(it). If supp(tji) contains at least one jump point of f, then
bir = [{f, )| < C - 2772 (5)

Now suppose we have a dyadically sampled function {f(k/n)}7_, with n = 27. We
can utilize a wavelet basis and the associated multiresolution analysis to get a good ap-
proximation of the entire function f. Let us begin with the following result. The proof is
straightforward.

Lemma 2 Suppose that f € A*(M, B,m) and let {5, = (f, dx), then
(i). If supp(dsx) does not contain any jump points of f, then

=2 f(k/n) — €k < C - n~1/34) (6)
(it). If supp(¢sr) contains jump points of the function f, then
[n2 f(k/n) —én]| < C -7t/ (7)

According to this result, we may use n~'/2 f(k/n) as an approximation of &5, = (f, ¢sx). It
means that if a dyadically sampled function is given, we may use a multiresolution analysis
to get an approximation of the projection of the function f onto subspace V; because £y
are the coefficients of the projection. This in turn provides a good approximation of the
entire function f. More specifically, we may use f,(t) = Sr_, n Y2 f(k/n)ds(t) as an
approximation of f. Based on Lemma 1 and Lemma 2, simple calculation shows that the
approximation error || f, — f||2 is in the order of n~2 for functions in the piecewise Holder

class A*(M, B,m) with fixed o, M, B and m.

3 The Nonequispaced Procedure

3.1 The Estimator

Suppose now that we observe the data {y;} as in (2) and we wish to recover the regression
function f. Our estimation method is based on multiresolution analysis and projection
method. The motivation of the method will be given in Section 3.2 from the approximation
point of view. Let §(¢) = n—1/2 1Yi¢si(t) and let

. 270 J-1 2

Fa(t) = Projv,g(H(t)) = n 3" Erdion(t) + 3. D Osuthju(t)
k=1

J=jo k=1
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where . .
£ =n 12 > yi{dsio H, di), ;0 = 02> yi{si o H, vje) (8)
=1 =1
We can regard 5}0 r and éjk as noisy observations of the true wavelet coefficients ;o5 and
0;r. Indeed, we estimate 6;; by thresholding ;5. Let

Eiok = Eiok 55 = sgn(03) (1058 — Nj)+ 9)

be estimate of the wavelet coefficients of f where the threshold Ajx is derived in Section
3.3. Then a soft-thresholded wavelet estimator of f is given as follows:

270 J-1 29

fr@t) = z_:éjok¢jok(t) + 30 3 Db (t) (10)

J=jo k=1
Similarly, a hard-thresholded estimator can be obtained by setting the coeflicients in
(10) as ) i ) ) )
Eiok = Eiok  Oik = Ok (|0jx] > i) (11)
with the same threshold Ajx as in (9).

The coefficients éjo % contain gross structure of function f and we do not threshold these
coefficients. The risk of the estimate (10) can be decomposed as approximation error and
estimation error. From Theorem 1, it is easy to see that the dominant term is the estimation
error. We will show in Section 4 that the estimation error is comparable to the equispaced
samples and the estimate enjoys the same convergence rate as the Donoho-Johnstone’s
VisuShrink estimate in the equispaced case.

Remark: We consider here the case of fixed design variables ;. The method can be
extended to random designs. The case of random designs have also been studied by Hall
and Turlach (1996). Their methods are based on linear interpolation.

3.2 Approximation

Let us see why the estimation method makes sense. We first consider the problem of
approximating a whole function based a noiseless nonequispaced sample. Denote A'(h) the
collection of Lipshitz functions f satisfying

[f(z) = f(y)l < hlz —yl, for z, y € [0,1]

Suppose we are given a sampled function {f(t;),s = 1,2,---,n(= 27)} with t; =
H-'(i/n) where H is a strictly increasing cumulative density function on [0, 1] and H™' €
Al(h) for some constant A. How to approximate the function f via multiresolution analysis
0

If t; are equispaced, it follows from Lemmas 1 and 2 that f,(t) = 7, n™ Y2 f(tr) b (t)
is a good approximation. When ¢; are nonequispaced, an approximation using a multires-
olution analysis can be derived by the following consideration. One can first approximate
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FHTL(2) by §n(t) = S5, n Y2 f(t1)dk(t), then use the projection of §,(H(t)) onto mul-
tiresolution space V; as the approximation of f. To be more specific, let

& =2 F(tk) (bax 0 H, ¢3) (12)
k=1

and let
2]
falt) = Z_: £r:90i(1) (13)

be an approximation of the function f. Note that f, is in the multiresolution approximation
space V. An upper bound for the approximation error is shown in the following result.

Theorem 1 Suppose that a sampled function {f(%;),: = 1,2,---,n(= 27)} is given with
t; = H™'(i/n) where H is a strictly increasing cumulative density function on [0, 1] with
H=' € A*(h) Let the wavelet function ¢ be r-regular with r > «. Let &%, and f, be given
as in (12) and (13) respectively. Then the approzimation error ||f, — f||3 satisfies

sup || fa — S5 = o(n72e/(422)) (14)
fEA*(M,B,m)

where the mazimum number of jump discontinuities m = Cn" with constants C > 0 and

0<y<1/(1+2a).

Theorem 1 shows that the approximation error over function class A*(M, B,m) is of
higher order than n=2%/(1+29) even when the number of jump points increases polynomially
with the sample size. Because the optimal convergence rate for estimating f over uniform
Holder class A%(M, B,0) under the model (2) is n=2¢/(1+2%) the approximation error is

smaller in order than the minimax risk for statistical estimation.

3.3 The Threshold

Approximation result (14) implies that ;, and ;; in (8) have the ”correct” means. In
order to make thresholding work, we need to know the noise level of each coefficient 6,y.

The function H~! is strictly increasing, so H~! is differentiable almost everywhere.

Denote A(t) the derivative of H~'(t). Then
0<h(t)<h, for almost all ¢ € [0, 1]

It is easy to see from (8) that
ol = var(f;;) = n~te > ((dgi o H, i) < n_162/¢]2-k(t)7z(t)dt = ul, (15)
=1

Note that the inequality in (15) is asymptotically sharp, o5 — u;x, as n — co. We set
the threshold
)\jk = Ujk (2 10g n)1/2 (16)
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Remark: This procedure generalizes the Donoho and Johnstone’s VisuShrink for eq-
uispaced samples. When the samples are in fact equispaced, i.e., when H is identity func-
tion and thus A = 1, then &,; and 8;; are discrete wavelet transform of {n~'/2y;} and
Ajk = €(2n~tlogn)H/2, 2, Therefore the procedure agrees with the VisuShrink when the sam-
ple is equispaced.

4 Optimality Results

In this section, we discuss the properties of the wavelet estimate (10) given in Section 3.1.
We begin by showing that the estimate enjoys a smoothness property. If the target function
is the zero function, then the estimate is also the zero function with high probability.
Specifically we have

Theorem 2 If the regression function is the zero function f = 0, then there exist a se-
quence of constants P, such that

P(ff=0>P, -1, as n— oo (17)

Therefore, with high probability, the estimate remove pure noise completely. We then prove
below that the estimate enjoys near-minimaxity for global estimation and the estimate
optimally adapts to unknown degree of local smoothness within a constant factor when
used for estimating a function at a point.

4.1 Global Estimation

We investigate the adaptivity of the wavelet estimate constructed in Section 3.1 over a range
of piecewise Holder classes A*(M, B, m), where the maximum number of jump disconti-
nuities is allowed to increase polynomially with the sample size. This enhances the power
of the function classes A*(M, B, m) for modeling spatially inhomogeneous functions. We
show that the estimate (10) is near optimal. The convergence rate is within a logarithmic
factor of the minimax rate over a range of function classes A%(M, B, m).

Theorem 3 Suppose we observe {y;, 1 = 1,2,---n(=27)} as in (2). Let f; be either the
soft-thresholded or hard-thresholded wavelet estimator of f given in (10). Suppose that the
wavelet function ¢ is r-regular. Then the estimator f} is near-optimal:

sup B || f5 = fll; < C - (logn/n)**/C+)(1 + o(1)) (18)
feA*(M,B,m)

for all 0 < a <r and all m < Cn” with constants C > 0 and 0 < v < 1/(1 + 2a).



4.2 Estimation At A Point

Theorem 3 gives the convergence rate of global estimation. Now we turn our attention to
local estimation. The adaptive estimation in this case is similar to global estimation, but
with a very interesting distinction. The adaptive minimax rate for estimation at a point is
different from that for estimation of a whole function.

By the results of Brown and Low [5] and Lepski [19], an estimator adaptive to unknown
smoothness without loss of efficiency is impossible for pointwise estimation, even when the
function is known to belong to one of two Holder classes. Therefore, local adaptation can
not be achieved “for free”. The minimum loss of efficiency is a (logn)?*/(1+22) factor for
estimating a function of unknown degree of local Holder smoothness at a point. See Brown
and Low [5] and Lepski [19]. We call (log n/n)?*/(1+2%) adaptive minimax rate. Donoho and
Johnstone ([13]) discuss pointwise performance of wavelet estimate for equispaced samples.
They show that the VisuShrink estimate attains adaptive minimax rate for estimating
functions at a point. see [13] for details.

We show below that the estimator given in Theorem 3 attains the exact adaptive min-
imax rate for estimating a function in a Holder class at a fixed point. Therefore, the
estimator is optimally adaptive to unknown degree of smoothness within a constant factor.
To be more precise, we have the following:

Theorem 4 For any fized to € [0,1], let f;(t) be given as in (10). Suppose the wavelet 3
is r-reqular. Then

sup  E(fi(to) — f(to))* < C - (logn/n)**/0+2)(1 4 o(1)) (19)
fEA2(M,B,0)

forall0 < a<r.

We state here the result in the case of uniform smoothness without jumps for the sake of
simplicity. The wavelet procedure is locally adaptive, the result hold for general piecewise
Holder classes so long as the jump points are away from a fixed neighborhood of 2o.

5 Discussion
5.1 Why not treat nonequispaced samples same as equispaced 7

The nonequispaced model (2) is reduced to equispaced model when H is the identity func-
tion. But for general H, one can still "pretend” the sample as equispaced. Let g = fo H™'.
Then the sample is equispaced in terms of the function g. One can use the standard wavelet
shrinkage procedure to estimate g by § and then use § o H as an estimator of f. This is
what we mean by treating nonequispaced sample as equispaced. Here the estimators do
not depend on the distribution of ¢;.
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This type of estimators do not perform well. This can be shown by a formal calculation
of asymptotic risk as well as by simulation. One can show that in many situations, the
convergence rates of the estimators are suboptimal if nonequispaced samples are simply
treated as equispaced. See Cai (1996) for more details.

5.2 Choice of Threshold

In (16), we set the threshold Ajx = u;jx(2log n)'/? where u;; = (/ pb]zk(t)iz(t)dt)lﬂ. It is clear
that
u?k < n_1€2hjk (20)
where hji, = ess.sup{h(t) : t € [H(277k), H(279(k + N))]}.
We may replace the threshold Ajx by
Xy, = €(2hjpn ™" log n)/2, (21)

The optimality results hold with A}, as the threshold. The threshold A, has computational
advantage over the threshold Ajg.

5.3 Implementation

In this section we address the issue of numerical implementation of the procedure we
propose in Section 3.1.

Let Py = (pr:) be a matrix with entries

pki = (¢si0H, dsi)

In general, it is not easy to calculate the exact value of pg;, because we do not have
the analytic expression for the father wavelet ¢. But based on Lemma 2, we may use
n"12¢ 5 (H(k/n)) = ¢(n H(k/n) —1) as an approximation of py;. The cascade algorithm
(see Daubechies (1992)) can be used to compute ¢. The cascade algorithm converges
exponentially fast.

In practice, H is sometimes unknown. In this case, one can use the piecewise linear
empirical H in place of the "true” H. Here H is the piecewise linear function satisfying

H(t;) =1i/n.

Let W be the discrete wavelet transform and let

0= (éj()l? e ’€j02j0> 0j017 e 70j02j07 te an—l,la e ,9.]__1,2]_1)/
where &;,, and ;; are given as in (8). We can view Py as a preconditioning matrix because
® = W-(Py-n V%)

Our algorithm for implementing the procedure has the following steps:

11



e Step 1: Use the cascade algorithm to compute Py, then preconditioning the data
n~Y2Y by Py, say Y, = Py - n~'/%Y;

e Step 2: Apply discrete wavelet transform to the preconditioned data to get the noisy
wavelet coefficients, let © = W - Y};

e Step 3: Threshold the noisy wavelet coeflicients, denote éjk = WAjk(éjk); where 7, , is
either the hard or soft thresholding function.

Then ; i1
Fal®) = 30 Eiok $iok(t) + 32D Ginhi(2)
k=1 7=j0 k=1

is our estimate of the target function f.

If one is also interested in estimating the function at sample points, then two more steps
are needed to get there:

e Step 4: Apply the inverse wavelet transform to the denoised wavelet coefficients to
get W1.0;

o Step 5: Compute P¥ by using the cascade algorithm, where PH(k,1) = ¢7i(ts), then
apply this postconditioning transform to W' - O to get the estimate of f(%;).

A A

fo=P%. . (W.0) (22)

Note that both the preconditioning matrix Py and the postconditioning matrix PH are
sparse matrices with only O(n) non-zero entries.

6 Proofs

This section contains proofs of the main results. We begin with a brief proof of Theorem
1 by using Lemmas 1 and 2.

Proof of Theorem 1: Let g(t) = f(H'(t)). Denote 0 < a3 < a3+ < a@p < 1 the jump
discontinuities of the function f, then 0 < b; < by--+ < b, < 1 are the jump points of g
where b; = H (a;). Let s(a) = min(e, 1), bp = 0 and bpry1 = 1. Then on each interval
[bia bi+1)7 1= Oa 1, T, M,

l9(z) — g(y)| < AM |z — y|*

Therefore, g € A (hM, B, m). Now f,(t) = Projv,g.(H(t)). It follows from Lemma 1
and Lemma 2 that

1fn = 2 1Projv,(gn 0 H — g o H)|[ + || Projv, f — flI3

<
< On—Zs(a) 1 Cmn—l — O(n—Za/(1+2a)) i
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The proof of Theorem 2 is straightforward. For the reason of spaces, we omit the proof
of the theorem. Before we prove Theorem 3 and Theorem 4, let us consider the problem
of estimating a univariate normal mean.

Let y ~ N(0,0%) be a normal variable with known variance o?. We are interested

in estimating the mean 0 with threshold estimator and we wish to assess the risk of the
estimator. Let A = a o with @ > 1. And let § = yI(Jy| > X) be a hard threshold estimator
and let

63 = sgn(y)(lyl — A)+
be a soft threshold estimator of the mean §. We recall the following results on the risk
upper bound of the threshold estimator 6 from Cai (1996).

Lemma 3 Suppose y ~ N(6,0%). Let éf\ and HA’/{ be soft and hard threshold estimator of 0
respectively. Let A = a o with a > 1. Then

().  E0—0)?<(a®+1)0 A (20° + e ¥/%0?) (23)
(i1).  E(@" —0)* < (26* +2)0® A (20° 4 2ae~%/%0?) (24)

The proofs of Theorem 3 and Theorem 4 are given only for soft threshold estimators. The
proofs for hard threshold estimators are similar.

Proof of Theorem 3: We follow the notations in Section 3.1. Let g(¢) = f(H~(t)) and
§(t) = n~Y2 Y yidsi(t) and let f(t) = §(H(t)) Then

) = ”‘I/ZZf Vri(H +n1/2ezz¢h ®))

= f()+A()+T()

where A(t) = n 23", f(t:)ds(H(t)) — f(t) is the approximation error and r(t) =
n"2e5m L 2 (H (t)). Now project f onto multiresolution space Vy and decompose the
orthogonal projection f(t) = Projv,f(t) into three terms:

Fr(t) = £1(8) + As(t) +ra(t) (25)

where f; = Projv,f, Ay = Projy,A and ry = Projy,r respectively. Theorem 1 yields
that

1255 = o(n=22/+2) (26)

Denote 8;; = (f7,%;x). In the same fashion as in (25), we decompose 0,1, into three parts:
éjk=(9jk+djk+’r'jk fOI‘k:l,"',2j, j:jo,"',J—l

where 05 = (f, k) is the true wavelet coefficient of f, d;x = (A, %;x) is the approximation
error and 7;; = (ry, ;i) is the noise. Similarly separate {;x = (fs, ¢jox) into three terms:

éjok:§j0k+d;0k+7‘2-0k fork:l,...)Qjo

13



Let £, and 0;; are given as in (9). Note that

270 J—-1 29
S + D0 D = |A3 = o(n72/(+2)), (27)
k=1 j=j0 k=1

and

ok = wvar(ry) =n"'e€Y ({450 H, i) <n7leh
i=1

(ohp)? = war(ri,) <n 'eh

By the orthonormality of the wavelet basis, we have the isometry between the L, func-
tion norm and the /, wavelet sequence norm.

270 J-1 27 oo 27
E\fi=fI? = ZE ik — &) + 32 D B0 — 03)* + > 65
7=j0 k=1 j=J k=1
= 51 + Sz + 53
It is easy to see that
270
§1 < 2on7 g D () = ol 0 (28)

At each resolution level 7, denote
G; = {k : supp(eh;5) = [27k, 27 (N + k)]contains at least one jump point of f}

Then card(G;) < N(m + 2) (counting two end points 0 and 1 as jump points as well).
Lemma 1 yields

C2-it/2e) for k ¢ Gj; (29)
279/ for k € Gj; (30)

10|

<
0;%] <

where C' is a constant not depending on f. Therefore,

> ad o 29
83 = ZZH?HZZG <ZNm-|—2)C22 J+ZZC22 i(1+20)
j=J kG 7=J k¢G,; i=J g Jrt
= o(n~2/(1+22)) (31)

Now we consider S;. First note from (15) that oj; < wjx and X5 = ujk(2logn)*/?, so
a;r = Ajp/ojk > (2logn)t/?, it follows from (23) that

E(0;r — 0;1)% < (4logn + 2)he*n™! A (867, + 2he’n ™) + 10d2, (32)

14



Write

52=ZZE Jk—]k -’rZZ Jk—

J=Jjo k€G; J=Jo k¢G;
= Su+Sn

Since card(G;) < N(m + 2), so it follows from (32) that
J-1
S < 3 N(m+2) - [(4logn + 2)he?n™" + 10d%,] = o(n™2/(1+2%)) (33)
J=jo
Now let J; be an integer satisfying 2711422 = n/logn. (For simplicity we assume the

existence of such an integer. In general, choose J; = [1/(1 4 2a) log,(n/logn)].) From
(32), we have

A

E(f;, —0;1)* < 5€n~'logn + 1043, for jo <3< -1, k¢ G; (34)
E(f;; — 03)* < 8C%790+2) 4 open= 4 10d3, for Jy <j<J—1, k¢ G (35)
Therefore,
Ji— J-1 J-1 29
Soy < Z 25677, 1logn—l—z: Z (8C?2 J(1420) 4 9p 22 —|—1OZX:CZ§,c
j=jo k¢G; i=h k¢G, j=jo k=1
= (C(log n/n)2/(H+29) (1 4 o(1)) (36)

We finish the proof by putting (28),(31), (33) and (36) together.
E||fz = flI3 < C (logn/n)**/0+29)(1 + o(1)) (37)
|

Proof of Theorem 4 : First we recall a simple but useful inequality.

Lemma 4 Let X; be random variables, i =1,---,n. Then
B X < ((EXYY (35)
=1

Now apply the inequality (38), we have

E(f2(to) — F(t0))” = E | Y Eiok — Eiok)biok(t) + 3 D (Bk — ij)%/)jk(to)}
k=1 7=jo k=1
270 . J-1 2J o 27
D (Eok — Eiok)’ ¢]0k‘ to))"/* + Z Y(E 1/)Jk to))M/? + 303 10ikbir(to)
k=1 j=jo k=1 j=J k=1

= (Q1 + Q2+ Qs)?

15
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Now consider the three terms separately. Note that at each resolution level j, there are
at most NV basis functions ;; that are nonvanishing at ¢y, where N is the length of the
support of wavelet functions ¢ and . Therefore,

290 R 230
Q1= D (E(€or — iot))*1$ior(t0)] < C (N @R + 3 (d53)7) /2 = o(n™*/1+2%)  (39)
k=1 k=1

For the third term, it follows from Lemma 1(i) that

o 2

Qs = > 3 [0ikl[ik(to)| < 3 N||9||w2i/2C2710/2) < O~ (40)
j=J

j=J k=1

Now let us consider the term S;. First, note that for function f € A*(M, B,0), the
approximation error A(t) satisfies sup, |A()] < Cn=*(*). This yields that

il = (A, dia)| < Cr27 P05

where the constant C; does not depend on f. Let the integer J; be given as in the proof
of Theorem 3. Apply (34) and (35), then

Ji-1 |
Q2 < N|¥le Z (56271"1 logn + 100122‘Jn—28(a))1/2
Jj=jo
J-1 . |
+ N|$lleo 3 (802279042 4 9pe?n=2 4 100727 n~25())1/2
J=J01

o8y 857 (1 4 o(1) (41)

= C(

Combining (39), (40) and (41), we have
E(f3(to) = f(t0))* < Cllogn/n)?*/(M+2)(1 + o(1)) (42)
|
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