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Abstract

Cai (1996b) proposed a wavelet method, BlockShrink, for estimating regression func-
tions of unknown smoothness from noisy data by thresholding empirical wavelet coefficients
in groups rather than individually. The BlockShrink utilizes the information about neigh-
boring wavelet coeflicients and this increases the estimation of accuracy of the wavelet
coefficients.

In the present paper, we offer insights into the BlockShrink procedure and show that
the minimax optimality of the BlockShrink estimators holds broadly over a wide range of
Besov classes By q(M ). We prove that the BlockShrink estimators attain the exact optimal
rate of convergence over a wide interval of Besov classes with p > 2; and the BlockShrink
estimators achieves the optimal convergence rate within a logarithmic factor over the Besov
classes with p < 2. We also show that the BlockShrink estimators enjoys a smoothness
property: if the underlying function is the zero function, then, with high probability, the
BlockShrink is also the zero function. Thus the BlockShrink procedure removes pure noise
completely.



On Adaptivity Of BlockShrink Wavelet Estimator Over
Besov Spaces

T. Tony Cai
Department of Statistics
Purdue University

Abstract

Cai(1996b) proposed a wavelet method, BlockShrink, for estimating regression func-
tions of unknown smoothness from noisy data by thresholding empirical wavelet co-
efficients in groups rather than individually. The BlockShrink utilizes the information
about neighboring wavelet coefficients and thus increases the estimation accuracy of
the wavelet coeflicients.

In the present paper, we offer insights into the BlockShrink procedure and show that
the minimax optimality of the BlockShrink estimators holds broadly over a wide
range of Besov classes By (M). We prove that the BlockShrink estimators attain
the exact optimal rate of convergence over a wide interval of Besov classes with
p > 2; and the BlockShrink estimators achieves the optimal convergence rate within
a logarithmic factor over the Besov classes with p < 2. We also show that the
BlockShrink estimators enjoys a smoothness property: if the underlying function
is the zero function, then, with high probability, the BlockShrink is also the zero
function. Thus the BlockShrink procedure removes pure noise completely.

Keywords: Minimax Estimation; Nonparametric Regression; Adaptivity; Wavelet; Block
Thresholding; Besov Space.
AMS 1991 Subject Classification: Primary 62G07, Secondary 62G20.

Acknowledgements. The author would like to thank Mary Ellen Bock for helpful com-
ments.



1 Introduction

Suppose we observe a noisy sampled function f:
yi=f(t:) +ex, 1=1,2,---,n (1)

with ¢; = ¢/n, n =27 and 2 i.i.d. N(0,1). The noise level ¢ is assumed to be known. We
are interested in recovering the unknown function f. The quality of recovery is measured
by the mean squared error:

R(f,f) = E|f - flI3.

Wavelet methods have demonstrated unprecedented successes in nonparametric regres-
sion in terms of asymptotical optimality, spatial adaptivity and computational efficiency.
In contrast to the traditional linear procedures, wavelet methods enjoy excellent mean
squared error properties when used to estimate functions that are spatially inhomogeneous
and have near optimal convergence rates over large function classes.

Wavelet methods achieve their unusual adaptivity through thresholding of the empirical
wavelet coefficients. Standard wavelet shrinkage procedures estimate wavelet coefficients
term by term. There, each individual empirical wavelet coefficient is compared with a
predetermined threshold. The wavelet coeflicient is retained if its magnitude is above the
threshold level and is discarded otherwise. The widely used VisuShrink of Donoho and
Johnstone ([10]) is one example of the term-by-term thresholding procedures.

VisuShrink achieves a degree of tradeoff between variance and bias contributions to
the mean squared error. However, the tradeoff is not optimal. VisuShrink favors reducing
variance over bias. The squared bias is of higher order of magnitude than the variance.

Cai (1996b) proposed a wavelet method which thresholds the wavelet coeflicients in
groups rather than individually. Simultaneous decisions are made to retain or to discard all
the coeflicients within a block. The procedure, BlockShrink, increases estimation accuracy
by utilizing information about neighboring wavelet coefficients. The BlockShrink enjoys a
higher degree of spatial adaptivity than the standard term-by-term thresholding methods.

The BlockShrink procedure has the following ingredients:
1. Transform the noisy data via the discrete wavelet transform: © = W - Y.

2. At each resolution level, group the noisy wavelet coeflicients into blocks of length
L = [logn]. A block (jb) is deemed to contain significant information about the
function fif the energy in the block 3¢y 512,9 > 5L€? and then all the coefficients
in the block are retained; otherwise the block is deemed insignificant and all the
coefficients in the block are discarded.

3. Obtain the estimate of function f(z) at the sample points by the inverse discrete
wavelet transform of the denoised wavelet coefficients.



It is shown in Cai (1996b) that the BlockShrink estimators achieve true optimality in
terms of convergence rates over some nontraditional function classes of inhomogeneous
smoothness. It also attains the adaptive minimax rates over Holder classes when it is used
to estimate functions at a point.

Moreover, empirical results (Cai (1996c)) showed that the BlockShrink estimators uni-
formly outperform the VisuShrink estimators in terms of the mean squared error, even
when the signal-to-noise ratio is high in which case the VisuShrink is known to perform
very well. In many cases, the improvement is substantial. For instance, from Table 1 in
Cai (1996b), the BlockShrink estimator of Doppler, Bumps and Blocks, functions with sig-
nificant spatial inhomogeneity, achieves better performance with samples of size n than the
VisuShrink estimator with samples of size 2 - n. Different block thresholding rule has been
studied by Hall, Kerkyacharian and Picard [13]. The approach is based on a near-unbiased
estimate of the L, block energy of the underlying functions. Their choices of block length
and threshold level are different from those used in BlockShrink. Their simulation shows
no advantage of the method over the VisuShrink when the signal-to-noise ratio is high. See
Hall, Penev, Kerkyacharian and Picard [14].

In the present paper, we offer insights into the BlockShrink procedure based on the data
compression and localization properties of wavelets and the classical multivariate normal
decision theory. Section 2.2 and 2.3 explain that the BlockShrink procedure is a natural
product of the wavelet theory and the classical normal decision theory. We then study
the adaptivity of the BlockShrink procedure and show that the minimax optimality of
the BlockShrink estimators is available substantially more generally across a wide range
of Besov classes. Specifically, we prove that the BlockShrink estimators simultaneously
attain the exact optimal rate of convergence over a wide interval of the Besov classes with
p > 2 without prior knowledge of the smoothness of the underlying functions. Over the
Besov classes with p < 2, the BlockShrink estimators simultaneously achieves the optimal
convergence rate within a logarithmic factor.

The BlockShrink estimators are not only quantitatively appealing but visually appealing
as well. The reconstruction jumps where the target function jumps; the reconstruction is
smooth where the target function is smooth. They do not contain spurious fine-scale
structure that are contained in some other wavelet estimators. The BlockShrink adapts
well to the subtle changes of the underlying functions. For instance, simulation shows
that the BlockShrink estimators reach to the peaks deeper than the VisuShrink estimators.
We also show in Section 2.4 that the BlockShrink has a similar smoothness property as
the VisuShrink: if the underlying function is zero function, then, with high probability,
the BlockShrink is also zero function. In other words, the BlockShrink removes pure noise
completely.

The paper is organized as follows. Section 2 introduces the motivation and the ingre-
dients of BlockShrink procedure. We show that the procedure is a natural extension in
wavelet setting of a particular shrinkage estimator of multivariate normal mean vectors in
decision theory. Section 3 presents the optimality results of the procedure. We discuss



convergence rates uniformly over a wide scale of the Besov classes. And Section 4 contains
certain proofs.

2 The BlockShrink Procedure

2.1 Wavelets

Wavelet bases are a special type of orthonormal basis in L, space. They offer a degree
of localization both in space and in frequency. Wavelet series provide a simpler and more
efficient way to analyze functions that have been traditionally studied by means of Fourier
series.

An orthonormal wavelet basis is generated from dilation and translation of two basic
functions, a “father” wavelet ¢ and a “mother” wavelet 1. The functions ¢ and ¢ are
assumed to be compactly supported. Also we assume that ¢ satisfies f¢ = 1. We call a
wavelet ¢ r-regular if ¢ has r vanishing moments and r continuous derivatives.

Let
$ir(t) = 2724(27¢ — k), i(t) = 20/%p(27¢ — k)

And denote the periodized wavelets

) =2 it —10), 95 =Y éu(t—10), fortelo,1]

lez lez

For simplicity in exposition, we use the periodized wavelet bases on [0, 1] in the present
paper. The collection {¢%,,k =1,...,2%, 9% . j > jo <0,k =1,...,27} constitutes such an
orthonormal basis of L3[0,1]. Note that the basis functions are periodized at the boundary.

The superscript “p” will be suppressed from the notations for convenience.

An orthonormal wavelet basis has an associated exact orthogonal Discrete Wavelet
Trasnform (DWT) that transforms sampled data into wavelet coefficient domain. A crucial
point is that the transform is not implemented by matrix multiplication, but by a sequence
of finite-length filtering which produce an order O(n) transform. See Daubechies ([7]) and
Strang ([18]) for further details about the wavelets and the discrete wavelet transform.

For a given square-integrable function fon [0, 1], denote

ik = (f, B, 05k = (f, k)

So the function fcan be expanded into a wavelet series:

() = 3 Eordion(@) + 30 3 istbin(e) @)
k=1 J=jo k=1

Wayvelet transform decomposes a function into different resolution components. In (2),
&ior are the coefficients at the coarsest level. They represent the gross structure of the
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function f. And 8;; are the wavelet coefficients. They represent finer and finer structures
of the function f as the resolution level j increases.

We note that the DWT is an orthogonal transform, so it transforms i.i.d. Gaussian
noise to i.i.d. Gaussian noise and it is norm-preserving. This important property of DWT
allows us to transform the problem in the function domain into a problem in the sequence
domain of the wavelet coefficients with isometry of risks.

2.2 Data Compression And Localization

The BlockShrink procedure is a natural product of the modern wavelet theory and the
classical multivariate normal decision theory. We now introduce some motivations for
the BlockShrink procedure. Let us begin with the data compression and the localization
properties of the wavelets.

Wavelet bases have distinguished data compression and localization properties. A re-
markable fact about wavelets is that full wavelet series (those having plenty of nonzero co-
efficients) represent really pathological functions, whereas “normal” functions have sparse
wavelet series. In contrast, Fourier series of normal functions are full, whereas lacunary
Fourier series represent pathological functions. (see Meyer (1992) pp. 113). Wavelet trans-
form can compact the energy of a normal function into very few number of large wavelet
coefficients.

Wavelet bases are well localized, i.e., local regularity properties of a function are de-
termined by its local wavelet coefficients. In particular, a function is smooth at a point if
and only if its local wavelet coefficients decay fast enough. The large wavelet coeflicients of
a function cluster around the discontinuities and other irregularities of the function. The
wavelet coefficients at high resolution levels are small where the function is smooth. See

Meyer ([17]).

To quantify the data compression property of the wavelet transform, let us define the
energy compression function of a vector 8 = (6;) by

EkZ’I‘ I9|%k)
() ==

where 0|y is the k-th largest absolute value in the vector 6. The rate of decay of the
energy function e(r) determines the data compression property. The faster the decay, the
better the compression.

The following example depicts the data compression and the localization properties
of the wavelet transform. Let us consider a function called JumpSine which is a sine
function with three discontinuous jumps. We begin with a sampled function of length 1024
(figure 1(a)), then transform the data into wavelet domain via DWT. We use Daubechies’
Symmelet 8 wavelet in the example. On the wavelet coefficients plot (figure 1(b)), there are
only a very small number of large coefficients among all the 1024 coefficients and the large



coefficients at high resolution level occur only around the three jump points. The energy
plot shows the striking contrast between the energy functions of the original data and the
transformed data. The energy function of the wavelet coefficients decays exponentially fast,
whereas the energy of the original data decays slowly (figure 1(c)). The information about
the function is concentrated in a very small number of wavelet coefficients. In fact, we have
almost perfect reconstruction with only 50 largest coefficients (figure 1(d)).
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Based on these data compression and localization heuristics, one can intuitively envision
that all but only a small number of wavelet coefficients of a normal function are negligible
and large coeflicients at high resolution levels cluster around irregularities of the function.

2.3 A Classical Problem

As a motivation for the BlockShrink procedure, let us now consider the classical problem
of estimating a multivariate normal mean vector. Suppose one observes z ~ N(u,€?l,,)
where € is the known noise level, I, is an m x m identity matrix. The mean vector g = (;)
is the object of interest. Assume that the dimension m is at least 3. We wish to estimate
(p;) with small I, risk:

R(f,p) = EY (i — i)’
=1



The multivariate normal decision theory shows that in order to do well according to this risk
measure, some form of shrinkage is necessary (see, e.g. Lehmann [16]). And a particular
class of shrinkage estimators may be obtained by the following consideration.

Suppose one has reasons to think, although one is not certain, that the mean vector u
is zero, i.e. y; =0, ¢ =1,---,m. Then it is natural first to test the hypothesis

Hy P1=fo="""= iy =10

and to estimate p by 0 when the hypothesis Hy is not rejected and otherwise by z. The
classical multivariate normal decision theory on hypothesis testing also shows that the best
rejection region is of the form 3" z? > T, where T is a constant (see Lehmann [16], pp.
295). Hence the shrinkage estimator becomes

p=o-I(Tat > 1)

Now let us turn attention to the function estimation problem and imagine that u is the
wavelet coeflicients of a normal function. Then according to the data compression and
localization properties of wavelets, it is certainly reasonable to believe that most of the
wavelet coefficients are negligible. But on the other hand, it is also reasonable to think
that not all the coefficients are small. Large coefficients cluster around irregularities of the
function. In order to localize the problem, it is thus natural to group the coefficients into
blocks and to test the hypothesis Hy locally on each small block. It is intuitively clear that
this approach has advantage over testing Hy globally or testing Hy on each resolution level.
And it is more efficient than testing Hp coordinate by coordinate. The optimality results
in Section 3 show that this is in fact true.

With these motivations, we are now ready to formally describe the BlockShrink proce-
dure.

2.4 The Procedure

Suppose we observe the data Y = {y;} as in (1). Let ® = W - n"Y/2Y be the discrete
wavelet transform of n=1/2Y. Write

A & & 0 n n T
0= (é.joh e 7§j02f070j01a e 79j02j0’ U )9J—1,1a Tt aeJ—1,2J‘1)

Here fjo r are the gross structure terms at the lowest resolution level, and the coefficients
b j=1,---,J—1,k=1,---,27) are fine structure wavelet terms. One may write

éjk = 0jk + n_l/zezjk (3)

where 01 is the true wavelet coefficients of f, and z;;’s are the transform of the z;’s and so

are i.i.d. N(0,1).



At each resolution level j, the empirical wavelet coefficients 0~jk are grouped into nonover-
lapping blocks of length L = [logn]. Denote (jb) the indices of the coeflicients in the -th
block at level j, i.e.

(78) = {(,B) s (b= )L +1 < k < bL}

Let é(ﬂ,) =3 éfk denote the L, energy of the noisy signal in block (58). For each block
(jb), we first test the hypothesis

Hy: 6;,=0, forall jk € (5b)
The multivariate normal decision theory tells us that the best statistical test is of the form
I(Bgsy > T). (4)

We choose the threshold T' = 5Ln~'€? in (4). Thus, a block (jb) is deemed to contain
significant information about the function fif Hy is rejected, i.e. B;, > 5Ln~1€?, and then
all the coefficients in the block are retained; otherwise the block is considered negligible
and all the coefficients in the block are discarded. So for jk € (3b),

éjk = éjkI(ij > 5Ln_1€2)

And the whole function fis estimated by

. 200 J-1 29
Fa(@) =D Eordior(z) + D D Ointbjn(z)
k=1 J=jo k=1

If one is interested in estimating f at the sample points, then the fast Inverse Discrete
Wavelet Transform (IDWT) is employed. And {f(z;) : ¢ = 1,---,n} is estimated by

f={fz):i=1,--,n} with
]?:W—1_n1/2(:)

The procedure is called BlockShrink.

Remark 1: A key step of the procedure is to localize the estimation problem by
grouping the empirical wavelet coefficients into blocks. It is blocking and thresholding that
give the estimators broad spatial adaptivity. Term-by-term thresholding can also be viewed
as a special block thresholding procedure with block length L = 1.

Remark 2: The threshold T = 5Ln~'€? is chosen by the consideration of balancing
the variance and the squared bias. With the given threshold T, the BlockShrink estimators
enjoy asymptotic optimality that we will show in the next section.

Remark 3: The BlockShrink may also be regarded as an automatic model selection
procedure, which selects a set of important variables (wavelet coefficients) by omitting
insignificant ones and fits to the data by least squares a model consisting of only the
important variables. The distinctive feature of the BlockShrink is that it retains or deletes
variables group-by-group rather than one-by-one.
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The BlockShrink procedure is simple and easy to implement. The computational cost
for implementing the procedure is of the order O(n). The BlockShrink reconstruction is
appealing both quantitatively and qualitatively. The estimators automatically adapt to the
smoothness of the target functions. In particular, the BlockShrink, with high probability,
removes pure noise completely.

Theorem 1 If the target function is the zero function f = 0, then with probability tends
to 1 that the BlockShrink estimator is also the zero function, i.e., there exist universal
constanits P, such that X

P(fr=0>P,—1, as n— o0 (5)

Here is one example of the BlockShrink in action. We begin with sampled noisy observations
of the function JumpSine with sample size 1024 and signal-to-noise ratio 7. Again we use
Daubechies’ Symmelet 8 wavelet. The BlockShrink procedure is applied to the data and it
can be seen from figure 2(c) that the wavelet coefficients are retained or discarded block
by block. It is clear from figure 2(d) that the estimator captures both the smooth and
the jump features of the function very well. The reconstruction jumps where the target
function jumps; the reconstruction is smooth where the target function is smooth. For
better comparison, the true function, JumpSine, is superimposed on the estimator as a
dotted line. For more simulation results, see Cai (1996b and 1996c).
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3 Optimality Of The BlockShrink Procedure

3.1 Main Results

In this section, we investigate the adaptivity of the BlockShrink Procedure across the Besov
classes. The reason for studying adaptivity over Besov spaces is that they are very rich
function spaces. They contain many traditional smoothness spaces such as Holder and
Sobolev Spaces. They also include function classes of significant spatial inhomogeneity
such as the Bump Algebra and the Bounded Variation Classes.

Testing adaptivity over the Besov classes is now becoming a standard procedure for
wavelet methods. The BlockShrink enjoys excellent adaptivity across a wide range of Besov
classes. Before we state the results, we must first define the Besov spaces.

Let AR f(t) = f(t) and
ATFYF() = ALF(E+R) = ALF(t), r=1,2,---

The L,[0,1]-modulus of smoothness is defined as

wr(f3 ) = ||ALf ||lzeo,1-ra1-

Given a > 0, 0 < p < 00 and 0 < ¢ < 00, choose r > a. Then the Besov seminorm of
index (a,p, q) is defined as

flsg, = ([Bb=own(f; h)]q%)l/q

with usual change to a supremum when ¢ = co. The Besov Space norm is

IfllBg, = Ifllo + 1B,
And the Besov spaces By, is the set of functions f : [0,1] — IR satisfying | f|[sg, < oo.
See DeVore and Popov [8].

For a given r-regular mother wavelet ¢ with » > «, define the sequence seminorm of
the wavelet coeflicients of a function f by

|9|gg,q = (i(?s(z |9jk|p)1/p)q)1/q

Jj=jo k

where s = a + % — %. The wavelet basis provides smoothness characterization of the Besov

spaces. It is an important fact that the Besov function norm ||f| g, is equivalent to the
sequence norm of the wavelet coefficients of f. See Meyer ([17]).

| fllBg, = [[€oklls + 1‘9|Sg_q'

We will always use the equivalent sequence norm in our calculations with || f||5g, -
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The BlockShrink utilizes information about neighboring wavelet coefficients. The block
length increases slowly as the sample size increases. As a result, the amount of information
available from the data to estimate the energy of the function within a block, and making
a decision about keeping or omitting all the coeflicients in the block, would be more than
in the case of the term-by-term threshold rule. The BlockShrink increases the estimation
accuracy of the wavelet coeflicients and so it allows convergence rates to be improved.

In the section, we show that this is in fact true. We investigate the adaptivity of the
BlockShrink procedure over Besov classes.

Denote the minimax risk over a function class F by
R(F,n) = inf sup E| f. — fII3
fn F

The minimax risk over Besov classes has been studied by Donoho and Johnstone (see [9]).

They showed that the minimax risk over a Besov class Bf (M) is of the order n™" with
2c

R(BS,(M),n) Xn T, n— oo

.. . . ot .
And the minimax linear rate of convergence is n™" as n — oo with

_ o+ ({/p-—1/p)
a+1/24(1/p-—1/p)’
Therefore the traditional linear methods such as kernel, spline and orthogonal series esti-
mates are suboptimal for estimation over the Besov Bodies with p < 2.
We show in the following theorem that the simple block thresholding rule attain the
exact optimal convergence rate over a wide range of the Besov scales.

where p_ = maz(p,2) (6)

Theorem 2 Suppose the wavelet 1 is r-reqular. Then the BlockShrink estimators satisfy
sup B||f; ~ fI* < On~wa (14 o(1)) (7)
feBg (M)
for all M € (0,00),a € (0,7),q € [1,00] and p € [2,00].
Thus, the BlockShrink estimator, without knowing the a priori degree or amount of

smoothness of the underlying function, attains the true optimal convergence rate that one
could achieve by knowing the regularity.

sup E||fr — fI* < R(By,(M),n),  forp>2
feBg (M)
Theorem 3 Assume that the wavelet ¢ is r-regular. Then the BlockShrink estimators are
simultaneously within a logarithmic factor from minimaz for p < 2:
sup B[ — fII* < Cn~ ¥ (log m) Y5 (14 o(1)) ®)
fEBZ (M)

for all M € (0,00),a € (0,7),q € [1,00] and p € [1,2).

Therefore, the BlockShrink achieves advantages over the traditional methods even at the
level of rates.

11



3.2 Asymptotic Equivalence And Approximation

Brown and Low show in [1] an important result on the asymptotic equivalence between
the nonparametric regression and the white noise model. Specifically, they show that,
under conditions, observing the noisy sampled data as in (1) is asymptotically equivalent
to observing the stochastic process Y'(¢), ¢ € [0,1] where the process Y is characterized by

dY (t) = f(t)dt +n~2edW (2) (9)

with W a standard Wiener process. The two experiments cannot be distinguished asymp-
totically by any statistical tests. Furthermore, for any procedure in one experiment, we
can construct an equivalent procedure in another experiment. Because the wavelet bases
we use are orthogonal bases, observing the white-noise-with-drift process (9) is in turn
equivalent to observing an infinite sequence of wavelet coeflicients of f contaminated with
1.i.d. Gaussian noise of noise level n=/2e,

We shall prove Theorem 2 and 3 by using a method of sequence spaces introduced by
Donoho and Johnstone in [9]. A key step is to use the equivalence idea and to approximate
the problem of estimating ffrom the noisy observations in (1) by the problem of estimating
the wavelet coeflicient sequence of f contaminated with i.i.d. Gaussian noise.

The approximation arguments are given in [9]. Donoho and Johnstone show a strong
equivalence result on the white noise model and the nonparametric regression over the
Besov classes By (M). When the wavelet ¢ is r-regular with r > « and p,¢q > 1, then a
simultaneously near-optimal estimator in the sequence estimation problem can be employed
to the empirical wavelet coefficients in the function estimation problem in (1), and will be
a simultaneously near-optimal estimator in the function estimation problem. For further
details about the equivalence and approximation arguments, the readers are referred to
Donoho and Johnstone [9] and [11] and Brown and Low [1]. For approximation results, see
also Chambolle, DeVore, Lee and Lucier [5].

Under the correspondence between the estimation problem in function spaces and the
estimation problem in sequence spaces, it is suffice to solve the sequence estimation problem.

3.3 Estimation in Sequence Space by Block Thresholding
Suppose we observe sequence data:
Yixk = gjk + n_1/262jk7 .7 > 0> k= 1727 e ,Zj (10)

where z;;, are i.i.d. N(0,1). The mean vector 8 is the object that we wish to estimate. The

accuracy of estimation is measured by the expected squared error R(é, 0)=F EM((‘) —0)2.
We assume that 6§ is known to be in some Besov Body ©; (M) = {0 : ||0||ss < M}, where

||‘9||b;;,q = (i(st(Z |0jk|p)1/p)q)1/q

7=0 k

12



The minimax risk of estimating 6 over the Besov Body is defined as
R(0,03,(M)) =inf sup E|6 - 0|3
§ 5 (M)

The minimax rate of estimation over Besov Body has been derived by Donoho and John-
stone in [9]. First let us make the usual calibration s = o + § — %. Donoho and Johnstone
show that the minimax rate of convergence for estimating 6 over the Besov body @3 (M)

T

is n” 7 as n — co where

2cx
"T1¥2 (11)

We now apply a BlockShrink-type procedure to this sequence estimation problem. Let
J = [log, n]. Divide each resolution level jo < j < J into nonoverlapping blocks of length
L = [logn]. Again denote (jb) the b-th block at level j and T' = 5Ln"'¢?. Now estimate §
by 6* with

A Yik for j < j0 ‘
0 for j > J

This estimator enjoys a high degree of adaptivity. Specifically, we have
Theorem 4 Let p > 2. Then

sup E||f* —0]2 < Cn "3 (1 + o(1)), as n— oo (13)
03 4(M)

That is, the estimator attains the exact minimax rate over all the Besov Bodies ©; (M)
with p > 2. For p < 2, we have the following result.

Theorem 5 Let p <2 and ap > 1. Then

sup E|0* — 6|2 < On~ 5 (logn) T (1 + o(1)), as n — oo (14)
03 (M)
The results of Theorem 2 and 3 follow from these two theorems and the equivalence
and the approximation arguments we mention in Section 3.2.

4 Proofs

4.1 Proof of Theorem 1

The total number of blocks is . the function is estimated by zero if and only if all the
coefficients are estimated by zero. When 8;; = 0, then the probability that a block is

estimated by zero is P(Cre(js) 25 < 5L). Therefore, the probability of f*=01s

P(fr=0=[P(Y 24 <D =[1-P( Y 2 >50)]"" >[(1- 1)"]1” (15)
ke(jb) ke(3b) n

Let P, = [(1 — L)'/~ Since 1 —2)* - et and 1/L — 0,50 P, »1lasn —oo. 1§
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4.2 Preparatory Lemmas

Before we prove Theorems 4 and 5, we note several elementary inequalities as a preparation.
First an inequality on noncentral chi-square variables.

Lemma 1 If W is a noncentral chi-square random variable with L degrees of freedom and
noncentrality parameter A. Then

E(WI(W > 5L)) < (A4 L)(25¢** L A 1) (16)

The following result on the relationship between the [,, and the [,, norm will be useful to
us.

Lemma 2 Let z € IR™, and 0 < p; < py < 0o. Then the following inequalities hold:
I, < lizllyy < mes =55 2]y, (17)

The following inequalities are based on the solutions to some simple optimization prob-
lems. We omit the proof here.

Lemma3 Let S={z € R™:2; >0, Y%, 27 <d} and 0 <p<1. Leta>0, Vi > V.
Then

(¢). sup Z e Al < (1+daP+me™®)Am (18)
T€S ;=1

(12).  sup Z:(:c2 ANa)<a(da™?+1) ' (19)
r€S =1

(13¢).  sup Z[Vl z; > a) + Val(z; < a)] < da™PVi + mV, (20)
€S ;1

4.3 Proof of Theorem 4
Let y and 6* be given as in (10) and (12) respectively. Then,

BN =6l = > 3 B0 - 0x) +ZZE b= 0i)" +

i<jo k Jj=jo k

= S1+5+S5s

gk

=[]
o,
S

o
Il
L.

The first term S; is small.
Sy =200t = o(n” 1+2a) (21)

Denote C a generic constant that varies from place to place. Since § € O3 (M), so
295(S°2_ 10:%[P)/? < M. Tt follows from Lemma 2 that p > 2 implies

27 .

Z |0jk|2 S M22—_72a

k=1

14



Therefore, S3 is also of higher order.
o 2 00 . 2e
= 5230 < 3 M < On = o) )
j=dJ k=1 i=J

Let J; be an integer satisfy 27t = nﬁ.(For simplicity we assume the existence of such an
integer. In general choose J; = [1—4_1—23 log, n].) Divide S; into two parts:

ZZEO;k 0;x) +ZZE9;k = 5o + S22

-—.70 J J1 k
Denote By = ne™? Cjre(iv) 05k B(Zjb) = Yire(in)(n/2€ 7 05% + zj1)?. Then

Z E(é;k — 0jk)2 = n_lﬁzE( Z Z?kI(B?]b) > 5L)) -+ n_1€2ﬂ(2jb)P(B(2jb) S 5L) (23)
Jke(5d) jke(5b)
Let

R(jb) = E( Z JkI( >5L))
ike(5b)

Gy = BiwnP (B < 5L)

We have the following bounds for R(j;) and R;.

Lemma 4 (7).
By < L (24)
(ii). If By < &L, then
Ry = E( Y. 231(B% >5L)) <5Ln”! (25)
jke(jb)
(117). If ,B(Zjb) > 20L, then
P(Byy < 5L) <n™' (26)

The proof of the lemma is similar to the proof of Lemma 3 in Cai (1996b) by using the
triangle inequality and the tail probabilities of the chi-square distributions. For the reason
of spaces, we omit the proof. Now let us consider Sy;.

Sy = ZZE

J=jo k
J1 1
— Y YRy S S By [I(Bls) > 20L) + (B < 20L)]
j=jo b j=jo b

15



Apply Lemma, 4(i) to the first term, and apply Lemma 4(iii) to the second term, we have
Sa1 = Cn~ 434 (1 + o(1)) (27)
The term S5, can be bounded as follows.
J-1 R J-1 . J-1
Sp o= 3 2 Bl — 6 <23 Y E(03)+23. .05
=N k i=h k =k

J-1
< 2n7le ZJ ;E(ﬂ?jb)l(ﬁ?jb) > 5L)) + Cn~T+2e
J=J1

Now, B?jb) has noncentral chi-square distribution with degrees of freedom L and noncen-

trality Bf;). Use the fact that 3, Bl < M 2pe=22792* Then Lemma 1 and Lemma 3 (i)
yield

J-1 ) i It - 2
Z ZE(ﬁ(Zjb)I(ﬁ?jb) >5L)) < Z 25(2]'1,) +25L Z Z(ezﬁjb_L A1)

j=J1 b j=J; b j=J1 b
J-1 J-1 ) .
< Y Bhy +25L Y (2MPneT?2 7 LT 41+ 27 L7 eE)
j=J1 b j=Jd
= Cn 5= (1 + o(1))
Therefore,
Sys = Cn~ 24 (1 4 o(1)) (28)
Combining (21) — (28), we have
E|l§" - 0l < Cn™ 145 (1 + o(1) (29)

4.4 Proof of Theorem 5

We shall follow the notations and basic ideas in the proof of Theorem 4. Again separate
E||6* — 6]|3 into three parts:

J-1 %
Ellf -0 = 3 S B —0)+ X Y EG — )+ > 6%
i<io k i=do k =Tk
= 81 + 52 + 53
Now, S is small.
Sy =27l = O(n_ﬁ) (30)

16



Since § € ©2 (M), so 27°(2y |0,17)1/? < M. Tt follows from Lemma 2 that

Zlgjk|2 S M22—j2s
k

Since ap > 1, so S3 is of higher order.

S5 =336 < 3 M2 < On e tH/p = o(n”TikR) (31)

Now consider S,. Use the same notations as in the proof of Theorem 4, we first write S as

J-1
S = @S S B(Y B> 50) 0 S X By Py <L)

J'-J'o b Jke(4b) i=jo b
= n7t¢ Z ZRub) +nle Z ZR(Jb)
—]0 J JO

' 1 2/p=1 . . ..
Let J' be an integer satisfying 27 = ni¥a [, 147a . (Again, for simplicity, we assume the
existence of such an integer. In general, choose J' similar to J; in the proof of Theorem 4)
Divide S, further into four parts:

Sz = ”ZZRub)+n ¢ ZZRan ¢ ZZR@)M ¢ ZZR'm

J=jo b g=J! J=Jo j=J!
= So1 + S22+ Saz + Saa
We bound each of the four terms separately. Apply Lemma 4(i), S21 is bounded by

I
2/p-1

Sy <n7té Z Y L=Cn~ Tita [ T2 (32)
=5 b
For S,, separate the terms into two groups, one with ﬂ(;b) L and another group

with B2, < & L. Lemma 4 (i) is a bound for those terms with ﬂ(]b) < g5L. Note that
Eb(ﬂ( b))p/2 < Cnp/22 s? and p/2 < 1. Apply Lemma 3 (iii), we can bound Sa2 by

_ 1 1
522 = n ! 2 Z ZR(Jb) ﬁ(]b) )+ I(IB(]b) < OL)]

JJ’

~ _ 1
j=J" b
J-1
nteé (CnPl2Q=isp [1=P/2 § 5n=107)
j=h

— Cn LT (14 o1) (33)

IA

IA

17



For Sa3, it follows from Lemma 4 (iii) that

J'-1
Sz = nte Y Y Riy[I(Bly > 20L) 4 (B < 20L)]

Jj=jo b
J—1

n~1€2 Z Z(,B(zjb)n_l + 20_[/)
J=jo b

< CnEELEE (14 01) (34)

IA

We bound Sy4 as follows by using Lemma 4 (iii) and Lemma 3 (ii) with the fact that
zb(ﬁ(Zjb))pﬂ < Onp/29-95P,

J-1

j=J" b

J-1
< ple? z; Zb:[ﬂfjb)n'l + ﬂ(zjb) A20L]
‘7= i

J-1 J-1
< n7le S CnP227 Pt 4 nTle Y ST [OnP/?2795P (20 L)1 7P/% + 20L]
j=J j=J b

< Cn~iHs LT (14 o(1)) (35)
Putting all together, we have

E|6* — ]} < Cn~ 5 L= (1 4+ o(1)) (36)
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