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ABSTRACT. The growth profile V(s) of a weakly supercritical contact process on a ho-
mogeneous tree of degree d + 1 is defined by V(s) = limp—.oo n ! log P{z, € An;}. Here
A, denotes the set of infected sites at time ¢, =, is any vertex at distance n from the root
e, and Ag = {e}. Properties of V are related to the values of 7 = lim; .o, P{e € A;}*/*
and 8 =limy—.co P{Zn € Urs0A:}/™. It was shown in [7] that in the weakly supercritical
phase it is always the case that § < 1/\/:2 Here it is shown that if 8§ < 1/\/2 then 7 < 1,
but that if § = 1/\/3 then n = 1. The function V is shown to be concave and bounded
above by log 8, and to have asymptotic slope lim;—c V(s)/s =logn. Itis also shown that
if Na(t) is the number of vertices ¢ € A, at distance n from e that are infected at time ¢
then almost surely on the event of non-extinction,

lim —71;log Nrn(ns) = max(0,V(s) +log d).

Finally, the function V is related to a function ¢ introduced in [10], and this relation is
used to prove that if # < 1/ v/d then there exists a spherically symmetric invariant measure
for the contact process whose density decays exponentially at co.

1. INTRODUCTION

This paper is a sequel to [7], in which the weakly supercritical phase of an isotropic contact
process on an infinite homogeneous tree was studied. Briefly, an isotropic contact process
on the homogeneous tree 7 = 7; of degree d + 1 is a continuous time Markov process A;
on the set of finite subsets of 7 (henceforth, 7 will be identified with the vertex set of the
tree) that evolves as follows. Infected sites (members of A;) recover at rate 1 and upon
recovery are removed from A;; healthy sites (members of A¢) become infected at rate p
times the number of infected neighbors, and upon infection are added to A;. Under the
default probability measure P, the initial state A is the singleton set {e} (where € is a
distinguished element of 7 called the “root”). See [8] and [3] for general information on the
contact process, and [7], especially sections 1 and 2, for background information concerning
the contact process on a homogeneous tree. Some of the arguments of this paper (see the
proofs of Proposition 9 and Theorem 3 below) are borrowed from [7].

It was discovered by Pemantle [12] for trees of degree greater than 3 and by Liggett
[11] (see also Stacey [14] for a relatively simple argument) for the tree of degree 3 that the
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contact process described above has (at least) 3 essentially different “phases”: (i) eztinction,
(i) weak survival, and (iii) strong survival. In phase (i), A; = 0 eventually, with probability
1; in phase (ii), |A¢] — oo with positive probability but for every finite subset Bof 7,
A; N B = { eventually, with probability 1; and in phase (iii), with positive probability
e € A; for arbitrarily large values of . There exist critical constants 0 < p1 < p2 < oo such
that p < p; implies ultimate extinction; p; < p < py implies weak survival; and p > pg
implies strong survival. The phase of interest here is weak survival (we also refer to the
contact process in this phase as weakly supercritical). This phase is of interest, among other
reasons, because it does not occur for the contact process on Euclidean lattices (e.g., on
Zd). Henceforth we shall discuss only this case. Thus, we make the standing assumption
that

p € (p1,p2]-

1.1. Growth Profile and Other Characteristics. The main results of this paper con-
cern a function V(s) which we shall call the growth profile of the contact process. Two
other parameters also enter into the statements of these results: 8 = §(p), which deter-
mines the size of the “limit set” of the contact process on the event of its survival (see [7]),
and 7 = 7n(p), the exponential rate of decay of P{e € A;}. The definitions are as follows:
(1) = lim (P{z € A; for some t})";

n=d(z,e)—oco

(2) = lim (P{e € A:})"/%
(3) V(s) = log nzd(];iggqoo(P{x € Aps Y™

The existence of these limits follows from simple subadditivity arguments (see below for 7
and V(s), and see [7] for B). The main result of [7] is that for all values of p € (p1, p2),

1
(4) g < 7a

Theorem 1. The growth profile V(s) is a concave, continuous function of s > 0 that is
bounded above by log f and satisfies

) Jim V(s) = o0,
(6) lim V(s)/s = log .

Theorem 1 will be proved in section 2 below — see Propositions 1-4.
Theorem 2. If 8 < 1/v/d thenn < 1. If 8 = 1/+/d then n = 0.

The first statement of this theorem, that 8 < 1v/d implies n < 1, is the main technical
result of the paper. Sections 3 4, and 5 below are devoted to its proof. This statement
is also the key to the proof of Theorem 4 below. The second statement, that § = 1/ Vd
implies n = 1, follows by an argument similar to the “backscattering” argument in section
4 of [7]. This argument is sketched in section 6 below. Theorem 2, together with Theorem
1, implies that if § < 1/+/d then V(s) — —oo as s — oo, but that if 8 = 1/+/d then V(s)
is nondecreasing in s (since it is concave).

The function V(s) proscribes the shape and size of the set A; of infected sites at large
times t. Define r; and R; to be the smallest and largest distances d(z, e) among the infected
sites ¢ € A;. Also, for any integer n and any s > 0 define N,(ns) to be the number of
vertices € A, at distance n from e that are infected at time ns.
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Theorem 3. Suppose that § < 1/\/3 Then there exist smallest and largest solutions
0 < s1 <83 <00 0f V(s) = —logd. Almost surely on the event of survival,

(7) t]irgo reft = 1/s9, and
(8) t]irgo Rift = 1/s;.

Moreover, for any s > 0 such that V(s) + logd > 0,

(9) Jim %log Np(ns) = V(s)+logd

See section 8 for the proof. This theorem explains the use of the term “growth profile”.
The function V(s) effectively determines how the contact process “spreads out” in space-
time, and determines roughly how many vertices at each distance from e are infected at
any large time t. Together with Theorem 2, it also implies that A; recedes linearly from
the root vertex e if and only if 8 < 1//d.

1.2. Invariant Measures for the Contact Process. The set of invariant measures in
the phase of strong survival has a relatively simple structure: every such measure is a
mixture of the point mass at () and the “upper invariant measure” (see Zhang [15]). For
weakly supercritical contact processes the set of invariant measures seems in general to be
much more complex. Durrett and Schinazi [1] proved that it has infinitely many extreme
points. Liggett [10] showed that, at least for p > p; sufficiently close to pi, there are
invariant measures v that are spherically symmetric (about the root vertex e) and have
exponentially receding densities, i.e., are such that for all z € 7,

(10) Crlzd(a:,e) < I/{A = A} < C2zd(a:,e),

where 0 < C; < C3 < o0 are constants independent of z and d(z,e) denotes the distance
from z to e in 7. Liggett also conjectured that such invariant measures exist for all p €
(p1,p2), and gave a sufficient condition for their existence. This condition involves the
-function

(11) () = t]ingo (E Z zL(’J)) t ,

TEA:

where L(z) is the level of the vertex z in the tree (see [10] or section 3 below for the
definition). Liggett proved that if there exists a solution z € (1/+/d,1) of the equation

(12) p(z) =1,
then there exists a spherically symmetric invariant measure for the contact process that
satisfles the exponential decay law (10).

Our results on the growth profile shed some light on Liggett’s conjecture. The function
©(z) is intimately related to the growth profile V(s), as the next theorem shows.

Theorem 4. If B < 1/+/d then for every z > 1/+/d,
V(s)+ log(dz)>

1 =
(13) ¢(2) = max eXP( .

The proof will be given in section 7, along with the proof of the following corollary.

Corollary 1. If 8 < 1/+/d, then o(1/dB) = 1.
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Thus, in view of Liggett’s results, this implies that spherically symmetric invariant mea-
sures satisfying equation (10), with z = 1/dB, exist whenever 8 < 1/+/d. It is natural to
make the following conjectures:

Conjecture 1. If 8(p) = 1/v/d then p = p,.
Conjecture 2. § = ((p) is strictly increasing for p € (p1, p2].

Both conjectures are highly plausible. The truth of Conjecture 1, together with Corollary
1, would imply Liggett’s conjecture, as it would then be the case that 8 < 1/+/d for
all p < pg. Conjecture 2 is stronger than Conjecture 1, but is no less believable. It is
not unlikely that Conjecture 2 will ultimately be proved by a suitable continuous-time
adaptation of the techniques in Chapter 3 of [2].

2. GrowTH PROFILE: BAsic PROPERTIES

By the isotropy of the contact process, the probability that the set A; of sites infected at
time ¢ contains a particular vertex z € 7 depends only on ¢ and |z|. Thus, we may define

un(t) = Pz € A;},

where z is any vertex at distance n from the root e. The Markov and monotonicity properties
of the contact process imply that for all nonnegative integers m,n and all times s, > 0,

(14) Umgn (8 + 1) > U (s)un(t).

Consequently, by the basic subadditivity lemma, for every s > 0 the limit
(15) Jim un(ns)% 2 U(s) 8¢V

exists, and for every s > 0 and every integer n > 0,

(16) up(ns) < U(s)".

Proposition 1. V(s) <logp

Proof. 1t is clear that u,(ns) < u, for any n € N and any s > 0. Taking nth roots on both
sides of this inequality and letting n — oo, one obtains the desired result. O

Proposition 2. V(s) is a concave and, therefore, continuous function of s > 0.

Proof. According to the fundamental inequality (14), for all 0 < s < t < 0o and all nonneg-
ative integers m, n,

U (MS)Un(Nt) < Umtn(ms + nt).

Taking the (m+ n)thh root of both sides and letting m,n — oo in such a way that the ratio
m/(m + n) converges to a € (0,1), one gets

U(s)U@R)"* < U(s+1),
which implies that V is concave. O

Proposition 3. lim, o4 V(s) = —c0.
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Proof. This is equivalent to showing that lim,_,o4 U(s) = 0. Recall that
U(s) = Jim un(ns)'/™,

and that u,(ns) is the probability that a particular vertex z at distance n from e will be
infected at time ns. Let zg, 21, 29, ..., 2, be the successive vertices on the geodesic segment
from e = zg to z = z,, and for each 1 < m < n define 7,,, to be the elapsed time between
the first infection of z,,_; and the first infection of m. In order that z,, be infected at time
ns, it must be the case that at least half of the times 7, are no greater than 2s. But the
distribution of 7,,,, conditional on the history of the contact process up to the time of first
infection of z,,_1, is stochastically larger than an exponential random variable with mean
1/p, so the conditional probability that 7,, < 2s is no larger than 1 — e¢72?*. Thus, the
probability that at least half of the random variables 7,,,, 1 < m < n, are < 2s is no larger
than

n

Z (Z)(l _ e——2ps)k(e—2ps)n—k < (n + 1)271,(1 _ e—2ps)[n/2]

k=[n/2]
Taking nth roots, one finds that

U(s) = lim sup(un(ns))'/™ < 2¢/1 - &2,
n—>00
which converges to 0 as s — oo. o

By definition, ug(t) = P{e € A;} is the probability that the root vertex e is infected at
time ¢. If e is infected at time ¢ and if there is an infection trail from (e, ?) to (e,t+s), then
clearly e is infected at time ¢+ s. Hence, by the Markov and monotonicity properties of the
contact process, uo(t + s) > ug(t)ug(s) for all s, > 0. It follows that

7= Jim uo(t)? <1
exists, and that ug(t) < 5* for all ¢ > 0.
Proposition 4. lim,_, V(s)/s = log.

Proof. The concavity of V implies that the limit exists and is nonpositive, so it suffices to
consider only integer values of s. Fix ¢ = 1/m > 0 smaller than 1, and let » > 0 be an
integer such that ne € N . Let z be a vertex at distance ne from the root e. If there are
infection trails that extend from (e,0) to (e,n — ne) and from (e,n — ne) to (z,n), then
their concatenation is an infection trail from (e,0) to (z,n). Hence, by the Markov and
monotonicity properties,

Une(n) > uo(n — nE)Une(ne)

Taking nth roots of both sides and letting n — oo through integer multiples of 1/¢ gives
U(1/e) > V(1.
Taking logarithms and letting ¢ — 0 yields

lim V(s) > logn.

s—00 8

The reverse inequality is obtained in much the same way. Let z be a vertex at distance
ne from the root e. If there are infection trails that extend from (e, 0) to (z,n) and from
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(z,n) to (e,n + ne) then their concatenation is an infection trail from (e, 0) to (e, n + ne);
consequently,

Une(N)Une(ne) < up(n + ne).
Taking nth roots and letting » — oo gives
U(1/e)U(1)° < 7't

and letting ¢ — 0 yields
lim V(s)

s—00 8

< logn.

Proposition 5. Iflim, . V(s) = —co then

onax, V{(s) =logS.

Proof. By Proposition 3, V(s) — —oo as s — 04, and by Proposition 2, V(s) is continuous
in s. Consequently, if V(s) — —oo as s — oo then V(s) attains its maximum value vmay-
Moreover, since V' is concave, the hypothesis that V — —o0o0 as s — oo implies that there
exist constants a < 0 and 0 < s, < oo such that

(17) V(s) < as— asc+ Umax — 1 e <8< 0

Let z be any vertex of 7. If z is infected for a first time at time 7, then conditional on
the history of the contact process up to time 7 the probability that z will remain infected
until time 7 4 1 is at least 1/e, because the death rate is 1. On this event, z will remain
infected at the first integer time after 7. Hence,

(18) Up S € i un(m)

=e i exp{nV(m/n)}
=e(Q_+2)
A B

where
me A if m/n < s
m € B if m/m > s..

By (17), sum B is dominated by a convergent geometric series whose first term is no larger
than exp{n(vmax — 1)}. On the other hand, sum A contains at most ns, + 1 terms, none
larger than exp{nvmax}. Thus,

Z < exp{NVmax}(ns« + 1),

A

Z < exp{nVmax — n}/(1 —e™%)
B

and so the dominant term is sum A. Taking nth roots in (18) and letting n — oo gives
log B < Vpax. Proposition 1 implies the reverse inequality. |
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3. COUNTING PATHS IN T

The proof of Theorem 2 will require estimates of the number of “k—paths” in the tree
of a given length connecting eto e. For any k > 1, define a k—path v of length n to be a
sequence Yy = TgZ1Z2...Zn of n + 1 vertices of 7 such that for each 0 < m < n -2,

d(Tm,Tme1) =k VOo<m<n—-2and
d(mn—laxn) S k

For any two vertices z,y € 7, define I'*(z,y) to be the set of all k—paths of length n with
initial vertex z and terminal vertex y, and let N5(z,y) be the cardinality of T¥(z,y). As
usual, let e be the root node of 7.

Proposition 6. For any vertex z € 7,
NE(e,z) < 2(d +1)d* ((k +1)df) "

Proof. The vertices of 7 may be arranged in “levels” L,,n € Z, in such a way that

(1) every vertex y € L, has exactly d neighbors in L,41 and exactly one neighbor in

£n—1;

(2) the root vertex e is in level Lo; and

(3) the terminal vertex z is in £, for some r < 0.
For an arbitrary vertex y € 7, define the depth L(y) of y to be the index of its level (i.e.,
the unique integer n such that y € £,). Thus, L(z) = 7.

Let y € 7 be an arbitrary vertex, at an arbitrary depth m; and let 0By (y) be the set
of all vertices in 7 at distance k from y. By the homogeneity of 7, the cardinality MY of
0Br(y) N L4, depends only on v and k, and is given by

MF=1 ifv=—k;

(19) MF = g* ifv==~k;
MF=(d-1)d'<d fv=-k+2j and —k<v <k;
MF=0 otherwise.

Now consider the set Fﬁ(e,ﬁr) of k—paths v = zoz122...2, of length n, starting at 2o = e
and terminating at an arbitrary vertex z, in level £,. Each path v € T (e, £,) determines
a unique sequence of depths [; = L(z;). Observe that there are no more than 2(k 4+ 1)"
allowable depth sequences [;, because for each 0 < j < 7 there are only (k + 1) possibilities
for the increment /; —1;_1, and there at most 2(k+ 1) possibilities for I, —I,,_;. To complete
the proof, we will show that for any allowable depth sequence [ = lpl4l; . ..l, the number of
possible k—paths v € I‘ﬁ(e,ET with depth sequence [ is no larger than

dnk/Z(d + 1)d2k.

Fix an allowable depth sequence [ = lglyl5...l,. Suppose that the first 7 points zoz; ... 2;
of the path v have been determined. Then by equations (19), the number of possible choices
for ;41 is, for any 0 <7 < n — 2, no larger than

d(k+li+1—1i)/2,

and for ¢ = n — 1 is no larger than (d + 1)d* (since the distance between z,,, and z, is no
larger than k). Consequently, the total number of paths v € T'5(e, £,) with depth sequence
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[ is no larger than

n—2
(d+ 1)d* [] dHir=0/2 = (d 4 1)d*dF/2d !
1=0
< (d+ l)dedkn/2'
O

Note: In effect, the upper bound in Proposition 6 provides a lower bound for the spectral
radius of the random walk in 7 whose one-step distribution is the uniform distribution
on the sphere of radius k. The exact value of the spectral radius, as well as much more
precise estimates on N%(e,z) for fized z, may be deduced from the results of either [5] or
[13]. When k = 1, Proposition 6 implies that the number of 1—paths grows no faster than
0((2V/d)™), which agrees with Kesten’s formula [4] for the spectral radius of simple random
walk on 7.

4. EXPECTED NUMBER OF INFECTIONS

If a vertex z € 7 is ever infected, then eventually it will recover (recall that the recovery
rate is 1). It may then be re-infected at a future time, but will again eventually recover.
The cycle of infection/ recovery may continue, but eventually it will cease, because in the
weakly supercritical phase the infection must ultimately vacate every finite subset of 7,
with probability 1. Consequently, for every vertex z the total number J, of recoveries is
almost surely finite. (Because the recovery process at zis a Poisson process with rate 1, the
number of recoveries in any finite time interval is finite, w.p.1).

Proposition 7. If 8 < 1/+/d then there ezists a constant C, depending only on B and d,
such that for every vertez z € T — {e},

EJ, < C(d(z,e) + 1)4=e),

Proof. Fix vertex z at distance £ > 1 from e. Let 0 < 11 < 71 < 15 < ... denote the times
of first infection, first recovery, second infection, second recovery, etc. at z. Observe that
these are Markov times for the contact process. The event that 14 < oo is just the event
that z is ever infected, hence has probability uz < 8.

Consider the event that v;;; < oo for some 7 > 1: if this event occurs, there must be a
vertex Y; (not necessarily unique) in the set A, of sites infected at time 7; from which the
infection spreads to z at time v;4;1. The entries of the finite sequence Y1,Y3,...,Y;,_1 are
all members of A, = UsspAs; multiple occurrences of an element y € A, in the sequence
Y1,Y,,...,Ys _; are possible. Let y € 7 be any vertex of the tree, and denote by m
its distance from z. The probability that y occurs at least » > 1 times in the sequence
Y1,Ys,...,Y;, 1 is no greater than »}, < ™", because each such occurrence entails that
infection travels from yto z in a new time interval (7, v;41] (keep in mind also that the times
7; are Markov times). It follows that the expected length of the sequence Y1,Ys,...,Y 1
is bounded above by

3 pe) i gri:e) < 3 pHen) g=) /(1 = B).

i n=1 e
To evaluate the latter sum we must estimate the number of vertices y € 7 such that
d(e,y) + d(y,z) = m, for n > 0. By the triangle inequality, there are no such vertices if
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n < d(e,z) = k. If n = k then there are exactly k such vertices — the vertices y on the
geodesic segment from e to z. Finally, if y is a vertex such that d(e,y) + d(y,z) > k then
d(e,y) + d(y,z) = k + 2m for a positive integer m, and the number of such vertices is no
larger than (k + 1)d®>™. (To see this, partition them according to the closest vertex z on
the geodesic segment from e to z. There are (k + 1) possibilities for z, including z. The
vertex y must be at some distance m from 2. The number of possibilities is bounded by
d™, because for each of the m steps leading from z to y there are at most d possibilities.)
Thus,

> N gHE) < g5 N (k4 1)dm B2 = (k +1)8%/(1 - dB?).

y#z m=0
Together with the result of the preceding paragraph, this proves the proposition for all
vertices = # e. O

5. BEHAVIOR OF THE GROWTH PROFILE FOR LARGE s

Recall that an infection trailis a (continuous) path in the percolation structure that does
not pass through any “death marks” x. Define the I-skeleton of an infection trail to be
the sequence of vertices in 7 through which the infection trail passes; note that this is a
1—path, in the terminology of section 3. For any 1—path ¥ = zgz122...2,, define the
associated k—path to be the subsequence v/ = 2, Zm, ... ZTm, such that mg = 0, m, = n,
d(Tm,_,,%n) < k, and for every 0 < j < r — 2, m; is the first index 7 > m;_y such that
d(Tm,_;, ;) = k. Define the k-skeleton of an infection trail to be the associated k—path of
its 1 — skeleton.

Lemma 1. Let & = zpz122...2, be any k—path of length n. Then the probability that £
1s the k—skeleton of an infection trail starting at zo is no greater than

Cn(k—i- 1)nﬂnk,
where C is as in the statement of Proposition 7.

Proof. This is by induction on the length n of the k—path £. Let F be the event that £ is
the k—skeleton of an infection trail. In order that the event F' occur, it is necessary that
(1) the contact process initiated at 2o eventually infects z1, at some time ¢y, and (ii) there
is an infection trail starting at (z1,01) and ending at z,, whose k—skeleton is z1z5...2,.
Note that o4 need not be the first time that the contact process initiated at zo = e infects
z1, nor that o1 be a Markov time for the contact process. However, o; must be one of the
times v;, 1 < ¢ < Jg, at which an infection cycle at z = z; begins. Let F; be the event
that there is an infection trail starting at (z1,7;) and ending at z, whose k—skeleton is
Z1%o...2,. Then

(20) FC U({z/z < oo} N EF).
=1
If n = 1 then the event F; is certain, given that v; < oo. If n > 1 then since v; is a Markov
time, P(F; |v; < o0) = P(F'), where F”' is the event that 125 . ..2, is the k—skeleton of an
infection trail starting at (z1,0). By the induction hypothesis, P(F') < (C(k+1))"~ 18—k,
Hence, by the Bonferroni inequality and (20),

P(F) < iP({w < 00} N F) < EJy, (C(k + 1)1 gk~

i=1
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and the result now follows from Proposition 7. O

For ke N,t>0,¢ > 0,and z € 7, define Fy(¢,k,¢) to be the event that there is an
infection trail from (e, 0) to (z,t) whose k—skeleton has length less than et.

Lemma 2. For each k € N there exist constants € > 0 and r € (0,1) such that

Sup sup —P(Fx(tt’ k,e)) < 00
€T t>1 T

Proof. Tt suffices to prove this with the supremum over all ¢ > 1 replaced by the supremum
over all integerst > 1, because conditional on the event F(t,k,¢) the probability that the
infection trail to (z,t) extends to (,[t] + 1) without leaving the vertex z is at least !
(recall that the instantaneous death rate in the contact process is 1). Similarly. it suffices
to prove the result with the supremum over all ¢ > 0 replaced by the supremum over all
t > 0 in some fixed arithmetic progression.

Let By = Bpi(e) denote the set of all vertices in 7 at distance < k from e, and consider
the part of the percolation structure over By, for times between 0 and 1. There is a positive
probability é that in this part of the percolation structure there are no infection arrows
originating at vertices of By and that there is a death over every vertex z € Br. Note that
on this event there cannot be an infection trail from By x {0} to By X {1} that does not
exit Bg. It follows from the independence between nonoverlapping parts of the percolation
structure that for any integer n > 1 the probability that there is an infection trail from
By, x {0} to By x {n} that does not exit By is no larger than (1 — §)™. Consequently, by the
isotropy of the contact process, for any ball Bi(y) in 7 of radius k¥ and any time ¢ > 0, the
probability that there is an infection trail from Bg(y) x {t} to Bk(y) x {t + n} that does
not exit By(y) is no larger than (1 — §)".

Let £ = zgz1Z2...2., be a fixed, but arbitrary, k—path. Suppose that there is an
infection trail of duration n > m whose k—skeleton is £; then for at least half of the indices
j € {0,1,...,m — 1} the infection trail must stay in the ball B(z;) for a time exceeding
n/2m. Hence, the probability that such an infection trail exists is no greater than

3 (m) (1 — 6y 2ml(1 — (1 — §)I/2mlym=3 < (m 4 1)2™(1 — §)™/4-1,
3=[m/2]

By Proposition 6, the number of distinct £—paths of length m with initial vertex e and
terminal vertex z is bounded above by ¢CJ* for constants ¢, Cy not depending on = or m.
Thus, by the result of the preceding paragraph, the probability that there is an infection
trail from (e, 0) to (z,n) with k—skeleton of length < en is bounded above by

c(nfe +1)(2CE)™5(1 — )41,
It is clear that if £ > 0 is sufficiently small then this is exponentially decreasing in n. O
Proposition 8. If 8 < 1/v/d then n < 1.

Proof. Fix k € N,and let ¢ > 0 and r € (0,1) be as in the statement of Lemma 2. Then the
probability that there is an infection trail from (e,0) to (e,t) whose k—skeleton has length
less than et is O(r’). Hence, to prove the proposition it suffices to prove that if K, is the
number of k—paths from e to e of length n > ef that are k—skeletons of infection trails
beginning and ending at e , then

EKEt = O(qd)
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for some ¢ < 1. It will then follow that n < max(r, ¢°).

By Proposition 6, the number of k—paths from e to e of length » > &t is no larger
than 2(d + 1)d*((k + 1)d*/?)*. Let £ = zox; - - -z, be any such k—path. By Lemma 1, the
probability that £ is the k—skeleton of an infection trail is no larger than C™(k + 1)"5"*.
Thus, the expected number of k—paths of length n that are k—skeletons of infection trails
beginning and ending at e is no greater than

2(d+1)d* (C(k + 1)X(BVa))
For all k sufficiently large it will be the case that ¢ = C(k 4+ 1)2(8vVd)* < 1, so
EKe <2(d+1)d" Y7 (C(k+ 1)*(BVA)") = O(¢*).

n>et

n

6. THE CrITICAL CASE

This section is devoted to the proof of the following proposition, which will complete the
roof of Theorem 2. The argument is largely borrowed from [7], section 4.

Proposition 9. If8 = 1//d then n=1.

For any integer n > 1, define F, to be the event that there is an infection trail that
begins at the root e at time ¢ = 0, reaches a vertex z at distance n from e, and then returns
from z to e. Since the contact process is, by hypothesis, weakly supercritical, P(F,) — 0
as n — oo (see [7] section 4). Define

¢ = lim sup P(Fn)%

n—00

Lemma 3. If( =1 thenn=1.

Proof. Let H, be the event that e € A; for some ¢ > n, and let H, be the event that e € A4;
for some integer t > n. Since the recovery rate in the contact process is 1, for any n the
conditional probability is at least exp{—1} that e remains infected for n <t < n +1, given
that e is infected at time n. Hence, P(H,) < exp{1}P(H!), and it follows that

P(H,) < exp{1} Y P(e € Anpm) < exp{1}a"/(L = )

m=0
Thus, to prove that n = 1 it suffices to prove that
lim sup P(H,)'/" =1
n—>r00
Fix € > 0, and let G, be the event that there is an infection trail starting at (e, 0) that
reaches a vertex at distance n» from e and then returns to e by time en. On the event G,
some vertex at distance n from e is infected at some time ¢ < en; hence, summing over all

such vertices and all integer times < en, using again the fact that the recovery rate is 1, we
obtain that

P(G,) < (d+ 1)d"? (exp{l} i expnV(m/n)+ p" exp{—p}/n!)

m=1
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(p"e~?/n! is an upper bound for the probability that a particular vertex z at distance n
from e is infected before time 1). Consequently, by Proposition 3, if ¢ > 0 is sufficiently
small then
lim sup P(Gn)% < 1.
n—+oQ

Now by hypothesis, lim sup,,_, ., P(Fn)l/ " = 1. Consequently, if ¢ > 0 is sufficiently small

then, by the result of the preceding paragraph, limsup,,_,., P(F, N Gg)l/" = 1. But the
event F,, N Gy, is contained in Hy,), so it follows that

lim sup P(H[en])% =1.
[l

Proof of Proposition 9. By Lemma, 3, it suffices to show that { = 1. For this we adapt from
[7] (section 3) the notion of a downward infection trail. Let z,y € 7 be vertices such that
L(z) = m < L(y) = m + k; here L(z) denotes the depth of the vertex z (the index of its
level L1,(,) — see the proof of Proposition 6). A downward infection trail from z to y is an
infection trail that begins at z, never enters level £,,_1, and first reaches £, at y, where
it terminates. Observe that a downward infection trail is the same as an outward infection
trail (see section 3 of [7]) provided that the initial vertex z is at depth L(z) > 0. By the
isotropy of the contact process, the probability that there is a downward infection trail from
z to y depends only on k = d(z,y), so we may define

wg = P{3 downward infection trail z — y}.

By Proposition 1 of [7], wllﬁ/ kL [ as k — oo. Thus, the probability that there is a downward
infection trail from e to z is, in exponential size, just as large as the probability that there
is any infection trail from e to z.

If there is a downward infection trail from an infected site z at level L(z) > 0 (beginnning
at z during the first infection epoch of z) to a site 2* € 7(z), say that z* is a descendant
of z. Fix an integer L > 1 and define Y7, to be the number of descendants of e at depth
L. Then by Proposition 2 of [7], there is a Galton-Watson process ZZ with mean offspring

number dlwy, such that Y, > Z,I; for all n. Since w}J/L - B = 1/\/3 as L — oo, if L is
sufficiently large then the Galton-Watson ZL is supercritical. Hence, for any f_ < 8, if &
is sufficiently large then

(21) o £ P{Y;, > (dB_)F} > ¢ > 0,

where € > 0 is the probability that the Galton-Watson process ZZ does not reach extinction.

Consider now the event F¥ that there is an infection trail that begins at the root e at time
t = 0, reaches a vertex z € Yy, and then returns from z to e. Clearly, P(F¥) < P(F,),
where Fy; is as in Lemma 3 above. The event Fff will occur if there is just one descendant
z of e at depth & such that (i) there is a descendant z* of 2 at depth kn and an infection
trail from z* to z, beginning at the instant of initial infection of z*; and (ii) there is a
subsequent infection trail from z to e. Now conditional on the set Vi of descendants of e at
depth k, the events (i) for the different * € )i are mutually independent (since they involve
non-overlapping parts of the percolation structure), and each has probability P(FF_,) (by
the isotropy of the contact process). Moreover, given that event (i) occurs for some z € Yy,
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the conditional probability of event (ii) is at least uz. Consequently, if 7, = P(FF), then
T > P{Yy > (dB-)*}P(Ugey, (1)&(ii) | Vi > (dB-)F)
> pe(1—(1- Tn—l)(dﬂ‘)k)uk
> prup(l — exp{—(dB_)*rn_1})

For each fixed &, 1, = P(Fflc ) — 0 as n — oo, as the contact process is weakly supercritical.
This implies that the last exponential displayed above is well-approximated by the first
term of its Taylor series around 0. Furthermore, if kis sufficiently large then u; > 8%, and
P > € by the last paragraph. Thus, for all large n,

Tn 2> 5(dﬂ3)krn—1/2'

It follows that lim inf,_,, P(FF)Y/™ > £(dB%)*/2. Since P(F¥) < P(F,;), this implies that
lim sup,,_, oo P(Fn)l/” > df?%; but f_ < B = 1/+/d was arbitrary, so this proves that

lim sup P(F,)Y/" =p=1.

n—oo

7. THE GROWTH PROFILE AND LIGGETT’S ¢—FUNCTION

In this section we make the connection between the growth profile V' and Liggett’s
¢—function. The main result is Theorem 4. The proof will use the following intermediate
characterization of (.

Lemma 4. For every z > 1/+/d,

o=

P(2) = Jim (i una)(dz)“)

n=0

Proof. Recall that ¢(2) = lim;—oo( Ew,(As))Y/?, where A; denotes the set of infected vertices
at time ¢ and w,(A4) = Y, 4 #"®). Here L(z) denotes the depth of z, as in the proof of
Proposition 6. Let M* denote the number of vertices of 7 at distance k from the root e
and at depth v; recall that M* = 0 unless v = —k + 27 for some integer j < k, by equations
(19). Thus,

oo k
Ew,(A;) = Z Z z‘k"'zJMkajuk(t).
k=0 j=0
Since M ,f = d*, it follows directly that

Ew,(Ay) > > 2FdFui(2).
k=0
On the other hand, the inequalities (19) and the hypothesis that 22d > 1 imply that
© k
Ew,(A) <> 2FdPuy(t)z%d ™

k=0 35=0

< 3 Fdtug(t)(1 - (Zd))!

k=0
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Since the limit lim;—oo( Ew,(A;))'/? exists and equals ¢(z) (see [10]), the desired result
follows from the last two displayed inequalities. O

Proof of Theorem 4. Fix z > 1/V/d, set V,(s) = V(s) + log(dz), and define
o =sup V,(s)/s = sup(V(s) + log(d=z))/s.
s>0 >0

By Propositions 3,8 and 4, V,(s)/s converges to —oo as s — 0+ and V,(s)/s converges to
logn < 0 as s — 00. Consequently, o < oc.

By definition of o and the intermediate value theorem, for all o, < ¢ sufficiently close to
o, the line of slope o, through the origin must intersect the graph of V. Thus, there exists
3« € (0,00) such that V,(s.) = ox. Now

(i un<t>dnz“) "> (g (O

— (U(s*)dz)i
= exp{o.}

as t — oo. This implies, by Lemma 4, that ¢(z) > €. Since 0. < o was arbitrary, it
follows that

w(z) > €.

The proof of the reverse inequality is similar to the proof of Proposition 5. First note
that by Proposition 3, V(s) - —oo as s — 0+, so for any z > 0 there exists § € (0,1)
sufficiently small that for all s € (0, §),

V(s) +log(dz) < min(—1,0 — 1)

Now

3 un()dz" < 3 U(t/n)"d" 2"
n=0 n=0

= i’: exp{n(V(t/n)+ log(dz))}
33234‘22a
A B

where 4 extends over all n < 6t, and ) g over all n > §t. There are at most 6t terms in
>~ 4, none larger than e’¢, since ot > V(t) + log(dz) by definition of o. By our choice of
&, the terms of 3" p are dominated by the terms of a geometric series with ratio < e~! and
with initial term no larger than et(°=1)/6 < ¢4o=1) Hence, by Lemma 4,

1

¢(z) = lim sup (i un(t)d”z”> t <e’.

t—oco n=0

(|

Proof of Corollary 1. By Proposition 8, if 8 < 1/+/d then lim, o, V(s) = —oco. Thus,
Theorem 4 implies that for every z > 1/4/d the value of ¢(2) is given by equation (13). By
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Proposition 5, the function V(s) attains its maximum value of log 8 at some s = s, € (0, ).
When z = 1/(dg),

max(V(s) + log(dz)) = (V(s«) +log(dz)) = 0,
so by (13), ¢(2) = 1. O

8. THE GROWTH PROFILE AND THE SPREAD OF THE INFECTION

Proof of Theorem 8. When 8 < 1/+/d, by Propositions 8 and 5, max; V(s) = log . Also,
B > —logd because otherwise the expected number of sites ever infected would be finite,
which would preclude the possibility of weak survival. Consequently, there is at least one
solution s of V(s) = —logd. Let s; be the smallest solution and s; the largest solution.
Recall that r; and R; are the smallest and largest distances d(z,e) among the infected sites
z € A, and for any interval (a,b), Ni(a,b) is the number of vertices z € A; such that
at < d(z,e) < bt.

Proof of Relations (7)-(8)(Sketch). We will show that a.s. on the event of survival, for any
€ > 0, Ny(t/s1 + €t,00) = 0 eventually and N(0,¢/s; — ) = 0 eventually. This will imply
that a.s. on survival, lim sup R;/t < 1/s; and liminf r;/t > 1/ss. The reverse inequalities
liminf R¢/t > 1/s; and lim sup r;/t < 1/s, will follow from relation (9) proved below.

A routine argument using estimates like those developed in the proof of Proposition 3
shows that it is enough to consider integer times t (the probability that an infection trail
moves a distance > ¢t in time 1 decreases more rapidly than any exponential e~). For a
fixed large integer ¢, the probability that N(t/s; + €t,00) > 0 is smaller than

> un(t)d™(d +1).
n>t/s1+et
But u,(t) < exp {nV(t/n)}, so by an argument like that used in the proof of Theorem 4 the
terms in the above sum are bounded by the terms of a geometric series with sum smaller
than O(e~* for some § > 0 depending only on €. Since 3=, € Ne™* < oo, the Borel-Cantelli
Lemma implies that a.s N¢(t/s1 + €t,00) = 0 eventually. A similar argument proves that
a.s. N¢(t/s1 + €t,00) = 0 eventually.

Proof of Relation (9)(Sketch): Fix s > 0 such that V(s)+logd > 0. The probability u,(ns)
that a particular vertex at distance n from the root will be infected at time ns is no larger
than exp{nV(s)}. The number of vertices in 7 at distance n from e is (d + 1)d"~1. It
follows that the expected number of such vertices that are infected at time ns is no larger
than
(d+ 1)dme™V (),
Consequently, by a routine application of the Borel-Cantelli lemma and the Markov inequal-
ity,
1
lim sup -~ log Ny.(ns) < V(s) + logd.

The proof of the reverse direction uses again the notion of a downward infection trail,
which was introduced in the proof of Proposition 9. Let z be a vertex at depth n > 0, and
let uy(t) be the probability that there is a downward infection trail from (e,0) to (z,?).
Then for any s > 0,

(22) lim u%(ns)t/™ =0,

n—0d
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This may be proved in much the same manner as Proposition 1 of [7].

The virtue of considering only vertices infected via downward infection trails is that the
existence (or nonexistence) of these infection trails depends only on the part of the perco-
lation structure above the vertices of the tree in the sector between the initial and terminal
vertices. Thus, for any distinct vertices z,z’,... at depth m and any times ¢, s, the numbers
€:(s,1),&(8, 1), ... of vertices y,¢',... that are infected at time ¢ by downward infection
trails starting at (z,s),(2',s),..., respectively, are mutually independent. Consequently, if
Npm(nms) denotes the number of vertices at distance nm that are infected at time nms
(by infection trails starting at (e,0)), then N, (nms) dominates a Galton-Watson chain
Z, whose mean offspring number is

d™ur (ms).

(See [7], Proposition 2 for a similar result about time-independent infection trails.) It follows
that on the event of non-extinction of this Galton-Watson process,

1
]jf_l,gf ;log Nom(nms) > log d™uy, (ms).

By choosing m large, we can (i) make the event of non-extinction of the G-W process arbi-
trarily close to the event of non-extinction of the contact process, and (ii) push u*, (ms)!/™
close to €9, by (22). Therefore, almost surely on the event of non-extinction,

litm inf %log Nyp(ns) > V(s)+logd.

REFERENCES

[1] Durrett, R. and Schinazi, R. (1995) Intermediate phase for the contact process on a tree. Annals of
Probability 23, 668—673.
[2] Grimmett, G. (1989) Percolation. Springer-Verlag, New York.
[3] Harris, T. E. (1978) Additive set-valued Markov processes and percolation methods. Annals of Proba-
bility 6 355-378.
[4] Kesten, H. (1959) Symmetric random walks on groups. Transactions Amer. Math. Soc. 92 336-354.
[5] Lalley, S. (1995) Return probabilities for random walks on a half-line. J. Theor. Probability 8 571-599.
[6] Lalley, S. and Sellke, T. (1995) Hyperbolic branching Brownian motion. To appear, Probability Theory
and Related Fields.
[7] Lalley, S. and Sellke, T. (1996) Limit set of a weakly supercritical contact process on a homogeneous
tree. Manuscript.
[8] Liggett, T. (1985) Interacting Particle Systems. Springer-Verlag, New York
[9] Liggett, T. (1996) Stochastic models of interacting systems. 1996 Wald Memorial Lectures. To appear
in Annals of Probability.
[10] Liggett, T. (1996) Branching random walks and contact processes on homogeneous trees. Probability
and Related Fields
[11] Liggett, T. (1996) Multiple transition points for the contact process on the binary tree. Annals of
Probability 24 1675-1710.
[12] Pemantle, R. (1992) The contact process on trees. Annals of Probability 20 2089-2116.
[13] Sawyer, S. (1978) Isotropic random walks on trees. Zeitschrift Warscheinlichkeitstheoried2 279-292.
[14] Stacey, A. M. (1996) Existence of an intermediate phase for the contact process on trees. Annals of
Probability 24 1711-1726.
[15] Zhang, Y. (1996) The complete convergence theorem of the contact process on trees. Annals of Proba-
bility



CONTACT PROCESS ON A HOMOGENEOUS TREE

DEPARTMENT OF STATISTICS, MATHEMATICAL SCIENCES BLDG., PURDUE UNIVERSITY
E-mail address: 1lalley@stat.purdue.edu

17





