SELECTING THE BEST WEIBULL POPULATION
BASED ON TYPE-I CENSORED DATA:
A BAYESIAN APPROACH

by
Shanti S. Gupta and Shuyuan He
Department of Statistics Department of Probability
Purdue University and Statistics
West Lafayette, IN 47906 Peking University

Beijing 100871 China

Technical Report #97-3C

Department of Statistics
Purdue University
West Lafayette, IN USA

1997



SELECTING THE BEST WEIBULL POPULATION
BASED ON TYPE-I CENSORED DATA:
A BAYESIAN APPROACH

by
Shanti S. Gupta and Shuyuan He
Department of Statistics Department of Probability and Statistics
Purdue University Peking University
West Lafayette, IN 47906 Beijing 100871 China
Abstract

This paper deals with the problem of selecting the “best” Weibull population in terms
of the largest value of the scale parameters, or the largest value of the means, or the
largest value of the variance. A Bayes rule based on type-I censored data is derived for
selecting the “best” Weibull population. A monotone property of this rule is discussed. A
selection rule based on an earlier termination is also proposed and investigated. Both our
results and approaches are similar to those of Gupta and Liang (1993) for selecting the
best exponential population.
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1 Introduction

Let my, ma,...,m denote k(k > 2) independent Weibull populations. Suppose m; have density
function

pri—l A;
(1.1) h(z|0;) = -/VfoTexp (— (gi) ) i=1,2,...,k,

where the values of the form parameters \;, ¢ = 1,2,...,k are supposed to be positive and
known, and the scale parameters ;, i = 1,2, ..., k are positive but unknown. Let m; = m;(6;),
1 =1,2,...,k, be increasing functions of 6;, i = 1,2, ..., k. In what follows, it is assumed that
the population associated with the largest value my) = max{m;} is the best population. It is
clear that the problem of selecting the Weibull population with the largest scale parameter,
the largest mean and the largest variance can be studied by taking m; = 6;, m; = ANIED Y
and m; = 02[T(1 + 2)\; 1) — T2(1 + A7 Y)], respectively.



In an application situation of industrial life-testing experiment, m items from each of the
k population my, ..., 7 are independently put on test at the outset and are not replaced on
failure. Due to the time restriction, the experiment terminates at a prespecified time T. The
failure time of an item is observable only if it fails before time 7. Otherwise the item is said
to be censored at time T'. This type of time censoring is known as type-I censoring.

In this paper, we give a Bayes selection rule based on type-I censored data to select
the best weibull population. A monotone property of this rule is discussed and an early
selection rule is studied. Both our results and approachs are similar to that of Gupta and
Liang (1987).

The problem of selecting the largest scale parameter Or) for exponential population was
studied by Sobel (1956). Gupta (1963) studied some selection rules for gamma population
via subset selection approach. His selection rules can be applied for exponential population
case. Huang & Huang (1980) and Berger & Kim (1985) studied this selection problem for
Type-II censored data. Gupta & Liang (1987) derived a Bayes selection rule to select the
largest scale parameters for exponential population based on type-I censored data. They

proved a monotone property for this Bayes selection rule and gave an early selection rule.

2 A Bayes Selection Rule

Let X, 1 < j < m, denote the failure times of the m items taken from population ;.
According to the type-I censoring scheme, we only observe min(X;;, T') and 6;; = I[X;; < T
which is the indicator of the event [X;; < T1]. So, N; = 7L, §;; is the number of uncensored
failure times up to time T'. |

Let Y3 <Y < ... <Yin, be the ordered values of the N; observable failure times. Then
(Y1, Y, ..., Yin,, N;) has a joint probability density

1 ftionle) = s (o) Tt e ().

j=1



where ¥; = (yi1, %i2, - Yin), 0 < <m, 0 < gy < ¥z < ... < ¥in < T and
n
(2.2) Y = >y + (m —n)T™.
i=1

Let A be the sample space generated by N = (N1, N, ..., Ni,) and conditional on N =
i = (n1,ng,...,nx), let Vi be the sample space generated by ¥ = (Y1, -, Yx)- Thus, for
¥= (%1, %k) € Va, (m —n)TH < y; <mT™, 1 <i < k.

Let § = (01,...,6;) and Q = {0_‘|0z > 0,1 < i < k} the parameter space. Let A be the
action space. Action ¢ corresponds to the selection of population 7; as the best population.

For a given g € Q and an action 1, the associated loss function is defined by

where L(z) is a nonnegative and nondecreasing function of z, z > 0, such that L(0) =0.

Let g(6) = f=1 g;(6;) be the prior density over the parameter space Q. It is assumed
that [ L(myy)g(6)df < co.

A selection rule § = (01,02, ..., 0) is defined to be a measurable mapping from the sample
space (N, (Va)ien) to [0,1]% such that 0 < &(#,7)) < 1 and k1 8:(7,7) = 1 for all
¥ € Vi, 7 € N. The value of §;(7, §) is the probability of selecting population ; as the best
population based on the observation (7, 7). .

Let R(f ,g) denote the Bayes risk associated with the selection rule §. Then by Fubini’s

theorem we have

(2.4) = /. > 8(1,1) [ Loy = mi) (7, 9160)9(P)adag,

aeN Vi i=1

where f (7, 710) = [T&, fi(5,n:l6;). Let

£ = [ £ 78)o(0)as

and

S - 1 fl )9(6)



Then, we have

k
R(5,9) = / ) [ Llmgy = ma)g (81, 9) £ (5, 5) by

=, Z $(7, 9) 0407, 5) £ (7, )

with

(2.5) A, §) = [ Limgg = me)g @1, 9)46.
Let

(2.6) A, 9) = {11840, 9) = max 85(7,9) |

Then, an uniformly randomized Bayes rule is dg = (0Gy, -+ 0g, ), where

{|A( Pt ifi e AR, 9),

otherwise.

2.7) 5@, ) =

3 A Monotonicity Property of 5};

For the problem of selecting the best exponential population, Gupta and Liang (1987) proved
the monotonicity property of gg. It what follows we prove the same result for Weibull

population. Firstly, we have to show that d¢ is a function of (7, y1, --., yx) only.
Define

Fil@iy i) = /Ooo fi(¥i, mi|0:) 9:(6;)dO

fi(#i, n;) is positive and from which we get

fi(¥i,m:]0:) 9:(6;)
67 exp {67y} 0i(6)
6N exp {=07%y:} g:(6:)d0;

9:(0i|gi, mi) =
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Hence g;(6;|9:, n:) is a function of 6;,n; and y; only. We write g;(6;|y;, n;) for g;(6;|%:, n:)
in what follows. Note that

k
9017, §) = 1 9:(0ilyi, ma).
=1
So, we can write (8|7, §) for g(A|7,7), here § = (y1,...,yx). From (2.5) it is seen that
Ai(7, ), and hence d¢ is a function of @ and §. We use Ay(7,§) and g@(ﬁ, ) for Ay(7, )
and b¢(7, %) in what follows.
For each fixed (y;,n:), 9:(6;|yi, n:) is a probability density in 6; such that g;(6;|y;, n;) = 0

if and only if g;(6;) = 0. Hence we can define a likelihood ratio by

. e if g;(0|y;,n;) > 0
(3.1) r (6t i, ) = { 4:(6lye,ms) (Olyssma)
‘ 0 if g:(0ys, ns) = 0.

Simple calculation shows that for some nonnegative function W

* * % )"L m 1 *
T(0|yi’ni,yi)ni) = W(ymnz)yhn’b) (%) €xp (_W(yz - yz)> .

From which we get the following lemma.

Lemma 3.1 Let r(0|yf,n},y;,n;) be defined by (3.1). Then,
(a) as y} > y;, then r(0|y}, ni, vi, n;) is nondecreasing in 6, and

(b) as n} > n;, then r(0|y;, n},yi, n;) is nonincreasing in 0.
The following lemma is used in the proof of lemma 3.3.

Lemma 3.2 If g(6) and h(0) are probability density functions such that g(6)/h(6) being

nondecreasing, then for any nonnegative and nonincreasing function f(6)

[ £0)9(0)d0 < [ (O)h(6)ao.

Lemma 3.3 Let Ay(7, §) be defined in (2.5). For eachi(1 < i < k), Ai(7, ) is nonincreas-
ing in y; and also in nj, j # i when all the other variables are kept fized, and nondecreasing

m n; and also in y;, § # 1, when all other variables are kept fized.
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Proof. We prove that A;(7, ) is nondecreasing in n;. The others can be proved in a similar

way.
Define
Gt =64, ...,0;_1, i1, .., k)
Q' ={6;]0; > 0,5 =1,2,...k,j #i}
§=(y1, - y) and §* = (Y1, -, Yi-1, Y Yis1, -+ Yi)-
We have

AR, 9) = |

Qi (/0 L(m[k] — m;)g:(0:y;, nz)d01> ng(ajlyja n])dé;

J#i

Since for each fixed ¢ and 7, L(mp) — m;) is nonincreasing in 6; and by lemma 3.1 the
likelihood ratio r(6;|y;, ni, ¥, n;) is nondecreasing in 6;, for y} > v;. So, Lemma 3.2 implies
that

/0 L(myy — mq)gi(6:|ys, n;)do; > (/0 L{mpyy — m;)g:(0i]y;, n;)do;
and hence Ay(7, §) > Ai(7, 7).

From Lemma 3.3 we can get the monotone property for gg.

Theorem 3.4 For eachi=1,2,...,k, 5'G(ﬁ, ) is nondecreasing in y; and also in nj, j # i
when all other variables are kept fized, and nonincreasing in n; and also in y;, j # i when

all other variables are kept fized.

Proof. For yf > y; and j # i, by Lemma 3.3, we have A;(7t, y*) < Ay(7, §) and A;(7, y*) >
A;(7t, §), for j # 4. Now, i € A(#, y*) implies that

Ai(it, §) 2 (7, y*) = max 8, (7, 47) > Ajild (7, )
Hence, A;(7t, §) > max; A;(7, §) and it follows that
A(#t, y*) C A7, §)
. 8o, 8¢, (7, ¥*) > 8¢, (7, §). Proofs for the rest are similar.
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4 An Early Selection Rule

In this section, we consider the following linear loss function: L(my) — m;) = mpx) —m;, the
difference between the parameters of the best and the selected populations. Thus the set

A(7, ) given by (2.6) turns out to be:
(4.1) A(#,§) = {il / migi(Bilyi, ni) db; = min, / mjgj(f)jlyjanj)d@j}-
Similar to the proof of Lemma 3.3, we can proof the following result.
Lemma 4.1 For each fized i, [ m;g;(6;|y;, n;) db; is increasing in y; and decreasing in n;.

We will use Lemma 4.1 to derive an earlier selection rule.

At time ¢, 0 < ¢t < T, let N;(t) denote the number of failures from population ;. That
is , N;(t)=number of {X;;|1 < j < t,X;; < t}. Also, we use Y1 < ... < Yin, for the N;(2)
failure times up to time t. At time ¢, exclude population 7; as a nonbest population if there

exists some population 7 such that

(4.2a) Np(t) < m and /mhgh(ehl'yh(t)’m) déy > /migi(eilyi(taT),Ni(t))d9i
or
(4.2b) Na(t) = m and / M gn On|yn (1), m) 6y > / magi (8w (¢, T), Ni(t)) db;
.where

Na(®) Ni(®)

(4.3)  w(t) = Zl Yy + (m = Na(€))£™, w:(t,T) = Zl v + (m — N;()T™.
i= i=
Let S(t) denote the indices of the contending populations at time t. That is,
S(t) = {t|Nu(t) < (=)m and /migi(eilyi(t’ T), Ni(t)) db;
(4.4) > (2) [ mgn(Onlon(t),m) o, b # i}.

The following lemma shows that for any ¢, 0 < ¢t < T, S(¢) is not empty.
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Lemma 4.2 For any 0 <t < T, the set S(t) defined by (4.4) is not empty.

Proof. Let

S'(t) = { I/ngz (6:lya(t, T), Ni(2)) db; = max /mhgh(9h|yh(t T), Nh(t))dah}
Then S'(t) is not empty. We prove that S'(¢) is a subset of S(t). For i € S(t) and any h # 1,
if Np(t) < m, we have y,(t) < ya(¢t,T). Hence, by Lemma 4.1
[ mrgn(Gulun(t), m) 6, < [ magn(Bulyn(t, T), m) by
< [ magn(6nlyn(t, T), Na(t)) dB
< [ migi(lui(t, T), Ni(t)) db..

If Np = m, we have y,(t) = yx(¢,T) and it follows that

[ muan(Onlyn(6),m) don = [ magu(@alun(t, T), m) do
< [ migi@ilys(t, T), N:(8)) ds.

Hence, ¢ € S(t).
Now, the life-testing experiment terminates as soon as there is a time £, 0 < t < T, such
that |S(t)] = 1 and in this case, we select the population with its index in S(t) as the best

population. Otherwise, the experiment goes until time T'. At time T, Let

45 S = {0l [l W) a0, = s [ oy @lus N s .
where S(T'~), which is not empty by Lemma 4.2, denotes the set of the indices of those
populations having not been eliminated before time T. Then, an uniformly random selection
is made over S(T).

From the above description, we see that the early selection rule can make selection earlier
than the termination time T'. Denote this early selection rule by 5'5 = (0, 0¢, ). Note

0&,, 1 <1 < k are functions of the data during the time interval (0, 7.
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Theorem 4.3 Under the loss function L(0) = 0, 05, = 0¢,(71,7) for all1 <i <k, j€ Vi
and 7t € N, where dg, (7, ) is defined by (4.1) and (2.7).

Let B={0<y <T||S(t)] =1} and

{hﬁB if B+ ¢,
t]_’:

(46) T if B =g,

where ¢ denotes an empty set. Note that if B # ¢, then B = [t;,T]. By an uniformly
randomized selection over the set S(T") when t; = T, Theorem 4.3 is equivalent to the

following theorem.
Theorem 4.4 S(t1) = A(7,§) for all (71, 7).

Proof. Case 1. As t; < T, then |S(t;)| = 1. Without loss of generality, we let m; be
the population with index in the set S(¢;). Since A(7,§) contains at least one element, it
suffices to show that i ¢ A(7, ) for all ¢ # k. Since ¢ ¢ S(¢,), it means that population =;

is eliminated at some time, say ty, by some population, say m,. That is, at time £, either
(473)  Na(to) <m and / M gn (Onlyn (fo), m) dbn > / magi(0ilys(to, T), Ni(to)) d6;

or

(4.7b)  Nu(to) = m and / Mg Onlyn (to), m) dby > / magi(Gilyi(to, T), Ni(to)) d6;.

Now, note that N;(t) is an nondecreasing function of ¢ € (0,7] and N;(t) < m. Also, by

(4.3), yn(t) is nondecreasing in ¢ and Y;(¢, T) is nonincreasing in ¢. Especially we have

Ny, = Nip(T) <m, Ni(t) < NJ(T) = Ny, yi(to, T) 2 4:(T.T) = y;

Yp = yh(T) > (:“—)yh(to) if Nh(to) < (::)m

Thus, when Nj(tp) = m, then Nj, = N,(T) = m. Then by Lemma 4.1 and (4.7b),



/mhgh(ehlyh,Nh)d9h =/mhgh(9h|yh(to),m) doy,

> [ migi(B.lui(ta, T), Nita)) db,
(4.8) >m;gi(6:|yi, Ni) db.

When Nj(tp) < m, then yr = yn(T) > yn(to) and N, = Np(T) < m. Therefore, by
Lemma 4.1 and (4.7a),

/mhgh(9h|yh, Ny) doy, >/mh9h(9h|yh(to),m) oy,

_>_/migi(0i|yi(to,T),Ni(to))d9i
(4.9) >m;g;(0:|y:, N;) db;.

In either situations, we see that i ¢ A(7, §).

Case 2. As t; = T, we need to prove that

(a) i ¢ S(T) implies ¢ ¢ A(7, §), and

(b) 7 € S(T') implies ¢ € A(7, §).

We prove (a) first. Suppose ¢ € S(T'). Then, ; is eliminated at a time ¢, < T by some
other 7y, '

If to < T, this reduces to the situation discussed in Case 1.

If to = T, then by (4.5), [ 6ngn(On|yn, Nn)dbn > [0:9:(6ily;, N;) df;. Therefore, by the
definition of A(7, %), ¢ € A(7, ).

Note that the statement in part (a) is equivalent to that

(4.10) A7, g) C S(T).
Now, part (b) is a direct consequence of (4.5) and (4.10). Therefore, we complete the proof.
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