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Abstract.

The problem of ranking and selecting normal means as originally studied by
Shanti Gupta is approached herein from a robust Bayesian perspective. This
model uses the usual hierarchical Bayesian setup but does not require complete
specifications of the hyperpriors. Instead, elicited prior information about the
population of means as a group is used to specify a quantile class for the hyper-
priors. Two criteria are suggested for ranking and selecting and provide insight
not only to which population is best, but in addition give quantitative meth-
ods for deciding how much better one population is than another. Using these
criteria, minimum and maximum values are calculated for the derived quantile
class. Relative sizes of these evaluations and the distance between the max and
min give insight as to the quality of the data and the sufficiency of the sample
size. These concepts are illustrated with a numerical example.
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1.1 Introduction

Shanti Gupta began a career in Ranking and Selection Methods when he wrote
his thesis “On a Decision Rule for a Problem in Ranking Means” in 1956. His
new approach to the selection problem was to derive procedures which selected
a subset of “random” size in such a way that the probability of obtaining the
“best” population was greater than a specified level. This formulation is to be
contrasted to that initiated by Bechhofer (1954) in which a fixed size subset
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(generally size one) was selected. The basic problem with this new random
approach involved deriving selection procedures which had certain desirable
properties; namely the selected subset should include the “best” population
with reasonably high probability and the size of the selected subset should be
as small as possible while still assuring the probability requirement. Thus began
the quest to find an optimal selection procedure “t” which minimized E[S|d,1]
subject to satisfying P(CS|d,t) > P* where 9 is the k vector of unknown
means, “t” denotes the particular selection procedure used and P* is a pre-
specified number close to unity.

It turns out that there is no one optimal solution for this problem. In
fact it has no solution in that context because for one configuration of the
parameter space one procedure does better than another and vice versa for
another configuration. See for example Paulson (1952) and Seal (1955). This
impossibility thus lead to an enormous amount of work which dealt with various
formulations and models and their correspondent procedures. The fact that
this area of research has flourished so much is due in no small measure to the
influence and encouragement Shanti provided. He was always at the forefront
encouraging development in a wide variety of areas directions. In that regard
it should be noted that both of the computations above were made initially in
the frequentist sense (as though the problem facing the practitioner were going
to be encountered over and over again under exactly the same experimental
conditions) since modern Bayesian theory was just beginning to surface at that
time. A classic paper by Dunnett (1960) was the first paper to deal with
selection problems using a Bayesian flavor. But Shanti’s perspective was so
broad that all approaches were supported. In fact at a very early stage, 1965,
he even encouraged his first Ph.D. student (the first author) to write a thesis
on Empirical Bayes Multiple Selection Procedures. Since that time a number of
Bayesian and empirical Bayesian papers mainly from a decision theoretic point
of view have appeared (see for example Goel and Rubin (1977)). A recent
paper by Berger and Deely (1988 does develop a more practical approach to
this problem.

But in spite of all this work, both frequentist and Bayesian, on the normal
means problem there has not been a full scale adoption and application of them
in the practical world. Practitioners are still using the old fashioned but more
importantly inadequate AOV type analysis of data much of which really requires
a procedure to rank the means. Of course the computer facilities for these
methods are well developed compared to the frequentist or Bayesian ranking
procedures. In addition frequentist ranking procedures require statement about
the parameter space that may not always be practically realizable and whereas
the Bayesian formulation is more practical, there is still the problem in that
approach with the prior or lack of it for die hard frequentists.

The notion of exchangeability amongst the means and the hierarchical Bayesian
formulation adds another dimension to the problem. Since the equipments,
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suppliers or processes generating the means to be compared are assumed to be
somewhat similar, we treat the population means as exchangeable, an assump-
tion which is conveniently modeled through a HB setup. Thus the main feature
of this approach is that it facilitates in a much more practical way the use of the
type of prior information that practitioners are likely to have available; namely,
information about the group of means as opposed to information about specific
individual members of the group.

The first phase of this approach is contained in a paper by Berger and Deely.
With the advent of the MCMC methods with emphasis on the Gibbs sampler a
more general approach than taken in that paper is now computationally feasible.
Even so the HB approach uses either a non-informative or an elicited subjective
hyperprior both of which may not be consistent with the type of prior informa-
tion readily available about the group of means being studied. Specifically, it
may be that the available prior information does not allow complete specifica-
tion of the hyperpriors but on the other hand should not be ignored as in the
non-informative case. Qur approach to the hyperpriors assumes that they are
determined only up to a family of distributions which depend on the available
prior information. With this type of model and consequent analysis we believe
we are providing the practitioner with tools effectively use the type of prior
information that might be available in many situations; namely information
about the populations as a group as opposed to information about individual
populations.

Thus specification of a prior on the unknown population means using the
HB model can easily incorporate this kind of information can be modelled
using Hierarchical Bayes. The prior is a mixture of conditional distributions
with the mixing distribution determined by what is known about the group of
populations. Hence for the normal means problem we can think of the individual
means coming from a normal distribution with mean 8 and variance 72 which
are distributed according to some hyperprior (3, 7%) where h is determined by
the prior information. The robust Bayesian approach we take in this paper is
to relax the requirement that A has to be completely specified to an assumption
that the type of prior information available allows specification of kA to below
to the Quantile class of distributions.

Specifically, we assume this family is the quantile class, (cf. Lavine (1991))
where the elicited prior information specifies particular quantiles but nothing
more about the hyperpriors. Using a technique from Lavine (1991), we then
compute maximum and minimum values for the above criteria where these ex-
trema are taken over the family of hyperpriors specified by the prior information.
The utility of the prior information is assessed by computing the difference
between the maximum and the minimum of the probabilities thus obtained; a
small difference indicating a useful inference whereas large differences would be
meaningless and thus not very useful. The effect of the sample size and the ob-
served test data on inferences is assessed by consideration of the magnitudes
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of the criterion probabilities; for example, values of these probabilities near
unity would indicate that the sample size and test data were very effective in
determining a “best” member of the entire group, whereas small values would
indicate ineffective test data. It is to be emphasized that a major implication
of our treatment of the hyperpriors is that the prior distribution on the means
implied through the HB model need not be completely specified. It is this latter
feature which utilizes whatever partial prior information is available and in this
sense guarantees the robustness of the suggested ranking procedures over all
priors satisfying such information.

Finally, it should be noted that another feature of the Bayesian approach is
the fact that the ranking criteria not only gives the ranks of the means but in
addition can be used to determine how much better one population is than
another. Further amplification of this feature is made in Section 2 where we
define and discuss two specific criteria to be used in the ranking process. In
Section 3 the details of the robust procedures are developed while numerical
examples illustrating our methods are given in Section 4

1.2 Selection Criteria

The suggested ranking criteria is based on Bayesian concepts arising from the
posterior distribution. We focus on two concepts here:
Criterion 1: the posterior probability that any one of the means is larger
than all of the others by an amount “b”, i.e. compute for each i = 1,2,...,k
the quantity

P; = P(¥; > 9; + b for ALL j # i| data)

where b is a non-negative specified constant;

Criterion 2: the predictive distribution that any one of these populations will
have a larger observation than all the others by an amount “c”, i.e. compute
for each ¢ = 1,2,...,k the quantity

PR; = P(Y; > Y; + cfor ALL j # i| data)

where Y; is a new observation from the ith population and c is a non-negative
specified constant.

Closer examination of the proposed ranking criteria reveals how they can be
used to make quantitative rankings among the k individuals in the particular
group being studied. Firstly, by computing each P; and PR; for i =1,2,...,k
we can compare each member to all of the individuals remining in the total
group; from these computations subgroups for further comparisons may be
suggested. That is, suppose P; and PR; are very close to unity for a partic-
ular ‘¢’; this would indicate we have conclusively found the best amongst all
k members. However when this is not the case it may be that a subgroup of
just a few members may have their sum of P; or PR; very large in which case
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we would then be interested in comparisons amongst that subgroup only. It is
easily seen that such iterations might eventually lead to simply a comparison of
just two members of the original group of k. In general, we allow for the pos-
sibility of finding subgroups and making comparisons within those subgroups
which includes ultimately all possible pairwise comparisons. There are clearly
many possibilities each of which can be computed as required without effecting
the validity of any other calculation. In addition a salient feature of these com-
putations is that the degree of how much better one member is than any
other in the particular group being compared, be it one other or many, can be
assessed by varying the quantities “6” and “c¢” in the formulas. This process
lends itself to a type of “OC” analysis by plotting P; against b and PR; against
c. Note that Criterion 1 reduces to the Bayesian Probability of Correct Selec-
tion (PCS) when b = 0 but the fact that we allow b to take on positive values
is an important improvement over the usual PCS criterion. Specific examples
of these concepts will be given in Section 4.

The proposed criteria above are not new. The first criterion has been dis-
cussed extensively in Berger and Deely (1988) for the problem of ranking normal
means. The second criterion has been treated in a general context by Geisser
(1971) and more specifically in Geisser and Johnson (1994).

1.3 Model and Computations

Let X;, the sample mean for the jth population based on n; observations, be
normally distributed with unknown mean 6; and known variance o7/n;. The
prior on 8 = (64, ...,0;) will be described by a two stage process as in the usual
hierarchical Bayesian model. For the first stage let 6y,...,60; be conditionally
i.i.d. with a normal distribution with mean 8 and variance 2. For the second
stage we assume only that 8 and 72 are independent with distributions h; and A,
which are known to belong to a specific quantile class. This class is determined
by the prior information available about the unknown means 6, .. .,0;. Further
discussion on this point will be made in the next section.

We can now proceed with the computational forms for Criteria 1 and 2.
Firstly it will be helpful to adopt the following notation. Let

Ai={9;>9;+bforall j #i}and B; ={Y; > Y; + cfor all j # ¢}.

From our model it follows that conditional upon 8 and 72 the posterior pdf
of 0; is a normal distribution denoted by =(9;|z;,8,7%) with mean mpos; =
a;z; 4+ (1 — a;)p and variance vpos; = a;07 /n; where o = 72{r? + 07 /n;}".
We can then write the conditional joint posterior pdf of # as

k
W(ﬁl_@n 187 7-2) = H ﬂ-('ﬂj I"z"ja /67 TZ)'

j=1
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It will be convenient to denote the univariate normal cdf and pdf with mean p
and variance v by G(e|u,v) and g(e|u, v) respectively. In addition we require the
following form for the posterior distribution of 8 and 72 denoted by h(83, 7?|z):

f(z|B,7%) - H(B, T
[ f(z]B, ) - h(B, T2)dBdr> (1.1)

where h(f, 7%) denotes the hyperprior on 3 and 72. We will not assume a specific
form for (8, 72) but we will be able to use prior information about the group of
populations to locate (3, 72) in the quantile class. Let H denote the so elicited
class of hyperpriors. For the purposes of this paper we will assume that the form
of the prior information can be interpreted as follows: A(8,72) = hy(8) - hao(7?)
and that for 8 and 72 respectively we are able to ascertain three regions R,
R,, Rz and §4, 52, S5 with respective prior probabilities p;, p., ps and ¢1, gs,
g3. Thus

H = {h: / hi(B)dB = p; and / hy(r?)dr? = g; for j = 1,2,3}
R; S;

h(B,7%|z) =

Criterion 1: Using the above notation, we can then write
P, = P(Ailz) = / P(Ailz, B, 7)h(B, 7*|z)dBdr> (1.2)
where

P(Az IQNB,TZ) = /P(Ai|£7187T270i)g(ﬂi|mposiavposi)d’0i (13)

= / {H G(¥; - b|mposj,vposj)} g(9;|mpos;, vpos; )dd;.
0

i#i
Criterion 2: For this criterion we firstly note that the predictive distribution
of Y; given f and 77 is normal with mean mpos; and variance u; = af-l— vpos;.
- Thus we can write :

PR;; = P(Bi|z) = / P(Bi|z, 8, 7°)h(B, 7%)|z)dBdr? (1.4)
where

P(Bi|z, 8,7) = / P(Bilz, B, 7% u)g(ilmpos,, wi)dys (1.5

= /0 {HG(% — blmpos;, u,-)} 9(%:|mpos;, u;)dy;.

J#i

Letting RC denote “Ranking Criterion” and using (1.1), we can then write both
(1.2) and (1.4) as a function of the hyperprior & as

S P(B,7%) - L(B,7%) - (B, 7*)dBdr*>  N(h)

BOW) = =175, ) - mp,ryagar  ~ Dr)y O
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where P(8,7%) is given by (1.3) and (1.5) respectively for Criteria 1 and 2 and
L(pB,7?%) is the second stage likelihood function given by

L(ﬂ,T2)=f(£|ﬁaT2)=/[Ig(fﬂjlﬁjaf’;/"j)'g(ﬂjlﬁﬁz)dﬁj (1.7)

= [ o(as18,(02/m5) + )

Our goal is to find maximum and minimum values for RC(h) over the family
H. To accomplish this, we use the form (1.6) and invoke the Linearization
Principle made popular recently by Lavine (1991) which allows us to write:

Nh) e
II{}&)I(D_(h_)_ = @ iff @ = min{a: m’?,x[N(h) —a-D(h)] <0} (1.8)
in V()

aiff a

min DR min{a: m}z}x[N(h) —a-D(h)] <0} (1.9)

The value of this principle can be appreciated by observing the fact that for
a given “a” the quantities max{N(h) — aD(h)]: h € H} and min{[N(h) —
aD(h)]: h € H} are easily computed. Specifically,

max(N (k) —a-D()] = max [{P(8, ) - alL(B, T)}(p, r*)dpdr*
= Z ZFL—U(G)PM]'
where
PLij(a) = max{[P(8,7%) - alL(8,7): (8,7%) € BN 5;}.
A similar calculation is used to obtain |
PL;;(a) = min{[P(B,7%) — a]L(B,77): (B,7%) € R; N S;}.

By noting the forms of the functions P (in either (1.3) or (1.5)) and L in
(1.7), it can be seen that for any given “a”, values of PL;;(a) and PL;;(a)
are easily obtained numerically. This in turn leads to the computation of the
desired values @ and @. The numerical example in Section 4 illustrates these
computations.

1.4 Numerical Example

Consider the example given in Moore and McCabe (1993) (p. 756 Ex. 10.18)
concerning a study of the effects of exercise on physiological and psychological
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variables. For illustrative purposes here we focus on the psychological data
which is summarized in Table 1. The Treatment consisted of a planned exer-
cise program, the Control group were average type people while the Sedentary
group were chosen by their inactivity. High scores indicate more depressed than
low scores and here we are interested in computing which group is most (least)
depressed and by how much. Thus if we think of §; as the unknown mean de-
pression of the jth group, then we can use either Criteria described in Section 1
to understand the effect of exercise (or lack thereof) on depression.

Table 1

sample sample
Group n mean  stdev
Treatment (T) 10 51.9 6.42
Control (C) 5 574 10.46
Joggers (J) 11 49.7 6.27
Sedentary (S) 10 58.2 9.49

Firstly we want to consider the value of prior information about the group as
opposed to information about each population. Of course the type of prior
information available in any particular situation can be very different. Here we
are simply indicating just one of many different elicitation scenarios. In any
case we do assume that the available prior information will be specific enough to
indicate a particular quantile class which will then be used for the hyperpriors.
For purposes of illustration consider eliciting answers to the following question.

1. What is the smallest interval which contains all of the unknown means
6,’s? Ans. (35,70)

2. What is the smallest interval containing the average of the 6,’s? Ans. (45,60)

3. How confident are you that the distance between the maximum 6; and the
minimum 6; is at least 10% of the range given in (1), i.e. the difference
between the maximum and the minimum depression scores will be at least
3.5 units on the scale of measurements to be used. Ans. 90%

For Questions (1) and (2) we assume that we can place a probability of at
least 0.95 on the answers. Using this elicited information we can obtain regions
in the (8, 7%) space with their respective probabilities which then specifies the
particular quantile class to be used for the hyperpriors on 8 and 72. Thus from
(2) we have that P{45 < 8 < 60} = .95 since § is the prior mean of the §;’s.
~ This in gives the three intervals Ry, Ry, R on § as (0,45), (45,60) and (60,00)
with their respective probabilities of 0.025, 0.95, 0.025.
and with respective prior probabilities p;, p2, ps and q;, g2, g3. Thus
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From (1) we can write P{f| — 0 < 35} = .95 and from (3) we have
P{0x)—0y > 3.5} = .9. These two expressions can be used to obtain probability
intervals for 72 by noting that

P{H[k] - 0[1] < C} = P{T—- g < C/T}

where T and S are the maximum and minimum respectively of k standard
normal rv’s. Using k& = 4 in Figure 1 with (1) and (3) gives the following
results:

0.95 = P{35/7 > 3.65} = P{r? < 100}

and
0.9=P{3.5/7 < 1.1} = P{r* > 10}.

This in turn gives three intervals S, S», 3 on 7% as (0,10), (10,100) and (100,00)
with their respective probabilities of 0.1, 0.85, 0.05.

Putting the B and 72 intervals together gives nine regions with their corre-
spondent probabilities. Thus we have determined which quantile class describes
the hyperpriors for the elicited information. Table 2 indicates symbolically the
regions and their respective probabilities.

Table 2
R; = (60, 00) 0.0025 0.0213 0.0013
B R» = (45,60) 0.0950 0.8075 0.0475
R, = (0.45) 0.0025 0.0213 0.0013
S1 =(0,10) S, =(10,100) S5 = (100, 00)
2
r

For this configuration the solutions to (1.8) and (1.9) when using Criterion 1
yield the (min, max) interval as (0.4575 0.6919). An indication of the sensitivity
to these values can be seen by changing the probabilities to

.0025 .0025 .0025
.0025 98 .0025
.0025 .0025 .0025

We obtain (0.489, 0.702). If we keep the original probabilities, but tighten
up the regions to make the middle interval on 72 to be (30, 40), then the
(computation gives (0.490, 0.697). Using this configuration and the increased
probabilities we obtain (0.5054 0.6968). Changing the middle interval for 72 to
(100, 500) and the new probabilities produces (.5249, .6294). Thus it can be seen
that the type and size of the prior information has an effect but there is a general
agreement amongst the resulting computations. In particular when comparing
all four populations it is not overwhelmingly true that the Sedentary group
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suffers the most depression. This is not surprising when looking at the values
for the Control group. However when comparing the two populations, Sedentary
and Joggers, there is overwhelming evidence that the Sedentary group are much
more depressed than the Joggers. This data is reported in Table 3.

Table 3
Criterion 1 Criterion 2
b min max c min max
0 0.827 0.993 0 0.744 0.953
sample 1 0.640 0.984 1 0.574 0.929
sizes 2 0.406 0.966 2 0.487 0.898
10,11 5 0.101 0.829 5 0.244 0.746
0 1.000 1.000 0 1.000 1.000
‘sample 5 0.978 0.999 5 0.937 0.985
sizes 8 0.304 0.656 8 0.362 0.612
100,110 10 0.016 0.083 10 0.060 0.164

In addition it can be seen in Table 3 just how much more depressed the Seden-
tary group is. For example, when using Criterion 1 we can say that there is
at least one unit difference with posterior probability between 0.640 and 0.984.
Another aspect of these computations is illustrated by noting the effect of the
sample size. The lower part of Table 3 has been calculated assuming the data
for these two populations had been based on sample sizes of 100 and 110. If
this had been the case then the data would have indicated there was a five unit
difference with probability between 0.978 and 0.999.

Many other comparisons and calculations are suggested by the above. The
computations are easily performed and a wide variety of inferences possible.
Our purpose here through these brief illustrations has been to indicate how this
methodology can be easily applied and how the results obtained give valuable
new insight into the normal means ranking and selection problem.
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