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ABSTRACT. A conjecture of Liggett [9] concerning the regime of weak survival for the
contact process on a homogeneous tree is proved. The conjecture is shown to imply that
the Hausdorff dimension of the limit set of such a contact process is no larger than half
the Hausdorff dimension of the space of ends of the tree. The conjecture is also shown to
imply that at the boundary between weak survival and strong survival, the contact process
survives only weakly, a theorem previously proved by Zhang [13]. Finally, a stronger form
of a theorem of Hawkes and Lyons concerning the Hausdorff dimension of a Galton-Watson
tree is proved.

1. INTRODUCTION

This paper concerns the growth of an isotropic contact process on an infinite homogeneous
tree. The process was introduced by Pemantle [12], and discussed at some length by Liggett
in the 1996 Wald Memorial Lectures [9] (see also [10]). An isotropic contact process on the
homogeneous tree 7 = 7y of degree d+ 1 is a continuous time Markov process A; on the set
of finite subsets of (the vertex set of) 7 that evolves as follows. Infected sites (members of
A;) recover at rate 1 and upon recovery are removed from A;; healthy sites (members of Af)
become infected at rate p times the number of infected neighbors, and upon infection are
added to A;. Under the default probability measure P, the initial state Ag is the singleton
set {e} (where € is a distinguished element of 7 called the “root”); under P, the the initial
state Ag is the singleton set {z}. The neighborhood system on 7 is the usual one: each
z € T has exactly d + 1 neighbors.

The (isotropic) contact process on a homogeneous tree of degree 3 or greater differs from
the contact process on an integer lattice Z¢ in that there exist two essentially different
survival phases (cf. [12],[9]). In detail, there exist critical constants 0 < p1 < p2 < oo such
that

(1) If p < p; then A; = 0 eventually, w.p.1.
(2) If p1 < p < p2 then P{|A¢ — oo} > 0, but for each 2 € T,
P{z € Aor arbitrarily large ¢t} = 0.

(3) If p > py then with positive probability {A¢ — oo and for all z € 7, z € A; for
arbitrarily large values of ¢.
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For p < p; the process is subcritical; for p1 < p < pg it is weakly supercritical; and for
p > p2 it is strongly supercritical. The main results of this paper concern only the weakly
supercritical phase.

Let z € T be a vertex at distance n from the root vertex e. The probability that z € A;
for some t > 0 depends only on n, by the isotropy of the process; thus, we may define

un, = P{z € A; for some t > 0}.

Observe that if the contact process is weakly supercritical then u, < 1 for all n > 1, because
if u,, = 1 then w.p.1 the root e would be re-infected at indefinitely large times, and so the
process would not be weakly supercritical. A simple subadditivity argument shows that

(1) lim ui = f = B(p)

exists, and that u, < 8" for all n. The main result of this paper is the following theorem,
conjectured by Liggett in [9].

Theorem 1. If the contact process is weakly supercritical then

1
(2) B < Neh

Theorem 1 will be proved in sections 3-4 below. An immediate consequence of the theorem
is the following corollary.

Corollary 1. For p = py the contact process is weakly supercritical.

Proof. * For each n > 1, .
Hm T un(p) = un(p2).
plp2

This may be proved by standard arguments, e.g., using the monotonicity of the “percolation
structures” described in the next section. For each p € (p1,p2) and each n > 1, u,(p) <
B(p)™ < d=™/2, by Theorem 1; hence, un,(pz) < d~/2. Consequently, the contact process at
p2 cannot be strongly supercritical, because if it were then for every n > 1 it would be the
case that u,(ps) > €, where € > 0 is the survival probability for the process. O

Our interest in Theorem 1 was prompted by its similarity to a theorem concerning the
Hausdorff dimension of the limit set of branching Brownian motion in the hyperbolic plane
[7]. To explain the connection, we reformulate Theorem 1 as a result about the “limit set”
of the weakly supercritical contact process. Define 07 to be the set of “ends” of the tree
7T, i.e., 0T is the set of all infinite paths in 7 beginning at the root e that have no loops.
There is a natural family of metrics on 97 defined as follows:

d0(73 7/) — O_N('Yi'yl)

where 6 € (0,1) and N(7v,7’) is the distance to e in 7 of the last point that v and v’ have
in common. Define the limit set A of the contact process on 7 to be the (random) set of
all v € 87 such that each vertex of v is infected at some time. It is easily seen that if the
contact process is supercritical then on the event of survival A is nonempty and compact
(relative to any of the metrics dg). In section 5 below we will prove the following theorem:

!Thanks to ToM LIGGETT for pointing this out.
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Theorem 2. For p € (p1,p3] and 0 € (0,1), the Hausdorff dimension of the limit set A is

3) () = B

almost surely on the event of survival.

It is well known, and easy to prove, that the Hausdorff dimension of the set of ends
(relative to the metric dy) is
log d
4 69.(07) = ——=—
Corollary 2. In the weakly supercritical regime, the Hausdorff dimension of the limit set
A is never greater than half the Hausdorff dimension of the space 0T of ends.

In [7] a completely analogous result was proved for hyperbolic branching Brownian mo-
tion: in fact, it was shown that at the boundary of the weak survival/strong survival regimes,
the Hausdorff dimension of the limit set equals half the Hausdorff dimension of OH. We
conjecture that this is also true for the contact process on 7, for any of the metrics dg: in
particular, we conjecture that for p = ps,

(5) 8 (A) = 264(0T).

2. CoNnTACT PROCESS: PRELIMINARIES

2.1. The Homogeneous Tree. In the subsequent discussion, we will identify the tree 7
with its vertex set, as there will be no need to explicitly refer to the edge set. There is a
natural distance function on 7 defined as follows: For any two vertices z,y € 7, d(z,y) is
the minimum number of edges in a path from z to y. There is a unique path v, with this
minimum number of edges — it is called the geodesic segment with endpoints z and y. For
each z € 7 and each integer n > 0 define B, () to be the set of all vertices y at distance no
larger than n from z, and define B, (z) to be the set of vertices y such that d(z,y) = n.
Note that forn > 1,
0Ba()] = (d + 1)d"

and

n n
Bu(e)l = 14 Y (d+ Dam = 1+ @+ )T
m=1
As n — oo, both cardinalities grow like constant x d". It is the exponential growth of
| B..(e)| that accounts for the difference between the behavior of the contact process on 7°
and the behavior of the contact process on the euclidean lattices Ze,

The tree T is homogeneous in the sense that every vertex has exactly d 4+ 1 neighbors.
It is also homogeneous in the sense that for any two vertices x,y there is an isometry that
maps ¢ to y. Nevertheless, it is convenient to mark a distinguished vertex e as the root;
under the default probability measure P = P°, the contact process is initiated at e. For
any vertex z # e, write |z| = d(e,z), and define 7(z) to be the set of all vertices y such
that the geodesic segment 7., passes through x. Observe that if z,y # e are two vertices
such that z ¢ 7(y) and y € 7(z), then

T(z)NT(y)=90.

Note also that if |z| = n then
T (z) N By(e) = {z}.
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2.2, The Contact Process. The contact process on 7 may be constructed with the aid
of a percolation structure on 7 X (0,00) (see Harris [4] for a detailed explanation). The
percolation structure is a system of independent Poisson processes attached to vertices and
ordered pairs of neighboring vertices. For each z € 7 the Poisson process attached to z has
rate 1, and determines the recovery times at z: in particular, at every occurrence time site
z recovers if it is infected. For each ordered pair (z,y) of neighboring vertices, the Poisson
process attached to (z,y) has rate p; the occurrence times are precisely those times when an
infection at  may jump to y. For purposes of visualization, it is helpful to imagine that (1)
for each vertex z there is a directed ray {z} x [0,00) drawn over z; (2) at each occurrence
time ¢ of the Poisson process attached to (z,y) an arrow is drawn from (z,1) to (y,?) in
7T x (0,00); and (3) at each occurrence time ¢ of the Poisson process attached to z a mark
* is attached to (z,t¢). The set A; may then be described as follows: y € A; if and only if
there is a (directed) path through the percolation structure (the system of rays and arrows
described above) that begins at a vertex in Ag, ends at (y,t), and does not pass through
any marks . Henceforth, we will refer to any path through the percolation structure (or
its projection to 7°) that does not pass through a mark * as an infection trail.

We will repeatedly make use of three important properties of the contact process and the
associated percolation structure. The first is monotonicity: if two contact processes A;, A}
are built over the same percolation structure, and if Ay C Aj, then for all £ > 0 it must be
the case that A; C Al. In particular, if at some time ¢ all vertices of A; are erased except
one, then the resulting subsequent process will be dominated by the original process. The
second property is a Markov property: events determined by nonoverlappong parts of the
percolation structure are necessarily independent. The third is isotropy: if 7 is an isometry
of the tree 7 that maps e to z, and if A; is a contact process initiated by the single infected
site e, then ¢(A;) is a contact process initiated by the single infected site z.

3. OutwaRD INFECTION TRAILS AND EMBEDDED GALTON-WATSON PROCESSES

Fixz € T, 2* € T(z),and y € 7(z*) so that |z| = m, 2* = m+1, and |y| = m+k (thus,
z* is the second vertex on the geodesic segment from z to y). Define an outward infection
trail from 2 to y to be an infection trail that begins at z; proceeds directly to z* , after
which it does not exit the sector 7(z*); and first reaches 0 Bi(z) at y, where it terminates.
Define

It, =1z < 4} = {3 outward infection trail z — y}.

The dependence on the time at which z is initially infected is suppressed. Implicit in the
definition of the event is the understanding that the infection trail starts at 2 between
time ?g and the first recovery time at z after ty. Observe that Zj’ , depends only on the
percolation structure in Bx(z) N ({z} U 7 (z*)) after the time of initial infection at z, and
hence is independent of events that depend on the complementary part of the percolation
structure. By the isotropy of the contact process, P*(Z],) depends only on the length m
of the geodesic segment from z to y; thus, for |z| = m we may define
Wy, = P(Z:: )
1

Proposition 1. lim,,_,., w2 = 8.

Proof. Isotropy, monotonicity, and the strong Markov property imply that w,r > wpwg,
1/

so by the subadditivity lemma, lim,,_,o wn — exists. Obviously, W, < i, so the limit is
no greater than §. It remains to prove that the limit is no smaller than 5.
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For each z € 7 and each integer n > m = |z|, define H? to be the event that there is an
infection trail starting from the root vertex e and terminating at z that does not exit the
ball B,,_1(e) before reaching z. Define

nVm = PE(HY).
The probability cited depends only on n and |z|, by the isotropy of the contact process.
For each n > |z| the event H is contained in the event that site z is ever infected, and so

nUm < Um. Moreover, as n — oo the events H] increase to the event that site z is ever
infected, so

(6) Jim T nom = Um.
Fix € > 0, and choose m, k sufficiently large that
kom > B7(1—e)™.
That such a choice is possible follows from the preceding paragraph and the definition of
B. Let y be a vertex at distance k from the root e, and define o, to be the probability that
there is a direct infection trail starting at e (i.e., one that follows the geodesic segment from

e to y). By the isotropy of the process, this probability depends only on |y| = k. We claim
that for every integer n > 1,

(7) Wom42k 2 Oh(kVm )"
This will imply that
lim inf wp/ 54" > B(1 - ¢).

Since wy, is nonincreasing in n and € > 0 is arbitrary, it will then follow that

lim inf wl/” > 8.

n—o0

Choose z € T such that |2| = nm + 2k, and let zg,z1,...,2, be the vertices on the

geodesic segment from e to z such that |z;| = k + 9m. Suppose that (a) there is a direct
infection trail from e to zp; (b) for each ¢ = 0,1,...,n— 1, there is an infection trail from z;
to @;41, beginning in the initial infection epoch of z;, that does not exit By(z;); and (c) there
is a direct infection trail from z, to z, beginning in the initial infection epoch of z,,. Then
the concatenation of the infection trails (a), (b), and (c) is an outward infection trail from
e to z. Consequently, Wpm42k is no smaller than the probability that there are infection
trails satisfying (a), (b), and (c). By the Markov property, isotropy, and monotonicity of
the contact process, this probability is cx(xvm )™ ak. This proves (7). O

If there is an outward infection trail from an infected site  (beginnning at z during the
first infection epoch of z) to a site z* € 7(z), say that z* is a descendant of z. Fix an
integer L > 1 and a vertex y such that |y| = 1, and define

(8) Zo =25 = {e},
9) 2, = 2L = Ugez,_, {descendants of z in B,z (e)} — T(y).
Let Z, = ZL denote the cardinality of zL

Note: Removing the subtree 7(y) compensates for the asymmetry between the vertex e
and the other vertices of the tree: in particular, every vertex z € 7 — 7(y) (including e)
has exactly d neighbors at distance |z| 4+ 1 from e. This is needed for the following result.

Proposition 2. (Z,).>0 is a Galton-Watson process with mean offspring number dlwy,.
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Proof. The event Z} . depends only on the percolation structure in B(z) N 7(z) after the
time of initial infection at . For distinct vertices  in 0B, (e) these regions of the perco-
lation structure do not overlap with each other or with the contact structure inside By (e).
Consequently, if N(z) is the number of descendants of z in Bjs;z(e), then the random
variables N(z), where z ranges over Z,, are conditionally independent given Ug<n 2k, each
with the same distribution as V(e). This proves that (Z,),>0 is a Galton-Watson process.
For each vertex z € 7 — 7 (y) there are d™ vertices in 7(z) at distance L from z, and for
each such vertex z*, the probability that z* is a descendant of z is wy,. It follows that the

mean offspring number is dlwy,. (]

4. BACKSCATTERING

In this section we will use the existence of embedded Galton-Watson processes to prove
the following proposition.

Proposition 3. Suppose that d3? > 1. Then there exists ¢ > 0 such that for every n > 1,
P(F,) > ¢,

where Fy, is the event that there is an infection trail that starts at e, exits By(e), and then

returns to e.

Corollary 3. Ifd3% > 1 then the contact process is not weakly supercritical.

Proof. Proposition 3 implies that P(F) > ¢, where F' = Ny,>1F,. On the event F there
are infection trails starting at e that wander arbitrarily far away from e and then return
to e. But a contact process initiated by the single infected site e can only reach finitely
many sites in finite time. Consequently, on the event F, the root vertex e is re-infected at
arbitrarily large times, and therefore the contact process is strongly supercritical. O

Proof of Proposition 3: Assume that d8% > 1, and fix 8, such that d-3 < B« < B. Choose
an integer L sufficiently large that all of the following are true:

(10) ug, > wg > BF;
(11) pr & P{ZL > (dB)"EVn > 0} > 0;
(12) (1 - pLBE/2) )" < 1/2.

The existence of such an integer follows from Proposition 1, Proposition 2, and elementary
considerations: The definition of wy, implies that uy, > wy, and Proposition 1 implies that
for all large L, wy, > BL. Proposition 2 implies that (Z1),>o is a Galton-Watson process
with mean offspring number dfw;, > dZBL (for sufficiently large L), so pr > 0, by an
elementary fact about Galton-Watson processes. In fact, as L — oo through powers of 2,
the probabilities pr, increase, because for z, € 7(z) at distance 2L from z, doubling L
makes it easier for z, to be a descendant of z. Finally, since d32 > 1 and py, > € > 0 for all
large L = 2%,
(dB)" log(1 — prBy /2) < —(dB.) prBi /2 < —log?2

for all large I = 2F, which implies (12).

To finish the proof, we will show that, if  — y denotes the event that there is an infection
trail from z to y beginning during the first infection epoch at z, then for every integer n > 1,

L
(13) TnéP{Ha}EZn:Z£’:x—->e}>%_
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Observe that on this event, there exists an infection trail that starts at e, extends to some z
at distance nL from e, and then extends back to e, so (13) does in fact prove the proposition.
The proof of (13) is by induction on n. For n = 1, the event occurs if Z; > 1 and, for a
single randomly chosen z € Z;, there is an infection trail from z to e beginning at some
time between the first infection and the first recovery at z. By (11), the probability that
Z1 > 1is at least pr. Given that Z; > 1, the conditional probability that z — e for a
randomly chosen z € 2, is uz, which by (10) is at least BL. Thus,
ry > prBL.

Now suppose that inequality (13) is true for every positive integer smaller than n, where
n > 2. There will be a vertex z* € Z, such that 2* — e if (i) the cardinality Z; of 2; is
at least (dB.)L; (ii) for some & € 2Z; there is a vertex z* € Z, N T (z) such that z* — z;
and (iii) there is an infection trail from # to e beginning at some time between the time
of first re-infection from Z,, and the time of first recovery thereafter. Fix z, and let G be
the event that both (i) and (iii) occur for this z. Given that z € 24, (a) (i) and (iii) are
conditionally independent, because the events in question involve nonoverlapping (in time)
parts of the percolation structure; (b) the conditional probability of (ii) is 75,—1, by isotropy;
and, consequently, (c) the conditional probability of G, isr,_jur. Moreover, conditional on
the composition of the set 2y, the events G, ¢ € Z1, are independent, once again because
these events involve nonoverlapping parts of the percolation structure. Consequently, by
(10)-(12) and the induction hypothesis,

tn > P{Z1 > (dB.)"}P(Uprez,{z* — €} | Z1 > (dB.)F)
> prP(Uzez, Uprez,nt(z) {2 — € & 2% — 2} | Z1 > (dB.)D)
> pr(1 = (1 = 1)) Ywy,

> pr(1 - (1 - 20y

> pr.BL/2

5. THE LiMIT SET

In this section we use the existence of the embedded Galton-Watson processes to identify
the Hausdorff dimension of the limit set A.

Proof of Theorem 2. For each integer n > 1 define YV, to be the set of all vertices in 7 at
distance n from the root e that are ever infected, and define Y,, to be the cardinality of J,.
Then

EY, = (d+ 1)d"u, < (d+ 1)d"B8",
since there are exactly (d 4 1)d™ vertices at distance n from e. Consequently, by the Borel-
Cantelli lemma, for any ¢ > 0 it is P—almost surely the case that eventually

Y, <d(f+¢)".

The sets ), provide a sequence of open covers of A: in particular, if &, is the set of all
ends of 7 that pass through z, then
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Note that for each z € Y, the diameter (in the dy metric) of &, is 6", which becomes small
as n — oo. Hence, by the result of the preceding paragraph, for any ¢ > 0,

Z dia,meterg(gz)—1°g(dﬁ+ds)/log9 <1

ZEYn
for all sufficiently large n. This implies that with probability 1,
—log(dp)
[
< ——.

The proof of the reverse inequality uses the existence of the embedded Galton-Watson
processes Z, = ZL constructed in section 3. Recall that Z, is the cardinality of the set
Zp, of vertices at distance nL from e that are descendants of vertices in Z,_;, and that the
mean offspring number is dlwy. Now any infinite sequence of vertices z,, € Z, such that
each z, is a descendant of z,,_; determines a unique end of 7 that must be included in the
limit set A, since all of the vertices z,, are eventually infected. Thus, A is contains the set of
ends of the Galton-Watson tree for the Galton-Watson process Z,. By a theorem of Hawkes
[5] (see also Lyons [11]), the Hausdorff dimension (in the metric dg) of this Galton-Watson
tree is

log(dwy L)
logf
It follows that, on the event of survival of (Z£), this is a lower bound for the Hausdorff
dimension of A.

Since w}—d/ L, B as I — o0, to complete the proof it suffices to show that the Hausdorff
dimension of A is almost surely constant on the event that the contact process survives.
This is routine. Let 6, be the essential supremum of the random variable 6% (A). Then for
any 6 < 6x, there is positive probability p that the limit set of a contact process initiated
at e has Hausdorff dimension at least 6. Since the Hausdorff dimension of a subset of 7
is unchanged by application of an isometry of 7, it follows that for any vertex z, there is
positive probability p that the limit set of a contact process initiated at z has Hausdorff
dimension at least 6. But on the event that the contact process (started at e) survives,
infinitely many vertices are infected, and at each initial infection a new contact process
is initiated (contained in the original, of course). Birkhoff’s ergodic theorem implies that
infinitely many of these contact processes have limit sets with Hausdorff dimension at least
d. (Note: Ergodicity of the implied stationary process is a consequence of the tail triviality
of the percolation structure.) a

6. APPENDIX: PRUNING A GALTON-WATSON TREE

In this appendix, we provide a new and simple proof of the theorem of Hawkes and Lyons
cited in the proof of Theorem 2 above. The result we obtain is in fact stronger than the
results of Hawkes and Lyons: we prove that a Galton-Watson tree must contain infinite
homogeneous subtrees of any degree smaller than the growth rate prescribed by the mean
offspring number. Proposition 4 contains a precise statement. The proof is similar in spirit
to that of Proposition 3 above.

Let (Zn)n>0 be a supercritical Galton-Watson process with mean offspring number p > 1,
and let Z be the Galton-Watson tree associated with the process (Z,),>0. Thus, Z has
vertices arranged in “levels” n = 0,1,2,..., with exactly one nth level vertex for each
particle counted in Z,; and Z has directed edges from nth level vertices to (n + 1)th level
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vertices, one for each parent-child pair. For each integer I > 1 let ZL be the Galton-Watson
tree associated with the Galton-Watson process (Z,1)n>0. Fix a real number 1 < A < p
and an integer L > 1. Define the (L, \)— pruned tree ZZ()) as follows: (1) Set 2§ = 2L
(2) For each integer n > 1, define ZZ,, by removing from Z~ every vertex with fewer than
AL offspring, and all of that vertex’s descendants. (3) Set

ZL(/\) = n’?ﬁ:l‘z’f
Observe that the sequence of trees ZL is nested, so the intersection is well-defined and
is a tree (albeit possibly empty). By construction, every vertex of ZL()) has at least AL

offspring, so if ZZ(\) # @ then it is infinite, and in fact contains an embedded tree in which
every vertex has exactly [A"] offspring.

Proposition 4. Foreveryl < X < p there exists L > 1 sufficiently large that, with positive
probability, the (L, \)— pruned tree ZL()) contains the root vertex vy of ZL. On this event,
the Galton-Watson tree ZL contains an infinite homogeneous tree of degree [\F] + 1.

Lemma 1. For every v < p there exists 71 = v1(v) < 1 such that for all sufficiently large
n>1,
P{0< Z, <"} <7

Proof. This is fairly well known, and may be proved by a relatively standard generating
function argument. O

Lemma 2. Let £1,&,, ... be independent, identically distributed Bernoulli-r random vari-
ables, and let S, = Y, &. For any pair r,s of real numbers satisfying 0 < s < r < 1,
there exists v5 = 72(r, 8) < 1 such that for all sufficiently large n > 1,

P{S, <ns} <73
Proof. This is a standard result. O

Proof of Proposition 4. It suffices to prove that for every 1 < A < p there exist an integer
L > 1 and a real number o > 0 such that for all n > 1,
(15) Dn, def P{w € 2L} > a.

Denote by p. the survival probability for the Galton-Watson process (Z,)n>0 (i-e., g« =
1 — p. is the probability of eventual extinction, given that Zy = 1). Choose 73 so that the
conclusion of Lemma 2 holds with r = p, /4 and s = p,/8. Fix v € (A, 1), and choose 11 < 1
so that the conclusion of Lemma 1 holds. Then for all sufficiently large integers I, all of
the following inequalities will hold:

< pul4
L
Ty < Puld

Mo« sl

We will show that for any such L, equation (15) must be true for a = r = p, /4.
The proof is by induction on n. The probability that vp has fewer than v offspring in
2L is less than ¢, 4+ ¥¥, by Lemma 1. Consequently,

P> P =9 > /2.
Assume now that p, > p./4; we must show that p,y1 > p./4. Observe that vy € Z7€'+1
occurs if and only if vy has at least A” offspring v in ZL. Consider all of the offspring v of
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vp in ZL. The event that there are at least v of these has probability greater than p./2, by
the preceding paragraph. For each offspring v, there is probability at least p, > p./4 =7
that v € ZL, by the induction hypothesis. Hence, by Lemma 1 and our choice of 7, and s,
the conditional probability that vo has fewer than sy’ offspring in ZZ, given that vp has at
least v¥ offspring in Z7, is smaller than

V3 < pa/a
Since AL < svl, it follows that the event that vy has fewer than AL offspring in ZL has
probability smaller than (1 — p./2) + p./4. Consequently, the probability p,;; that vo has

at least AP offspring in ZL is greater than p,/2 — p./4 = a.
O
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