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Abstract

Wavelet shrinkage methods have been very successful in nonparametric regression.
The most commonly used wavelet procedures achieve adaptivity through term-by-
term thresholding. The resulting estimators attain the minimax rates of convergence
up to a logarithmic factor.

In the present paper, we propose a block thresholding method where wavelet coef-
ficients are thresholded in blocks, rather than individually. We show that the esti-
mators produced by the procedure, BlockShrink, are spatially adaptive and asymp-
totically optimal both for global and local estimation. The BlockShrink estimators
achieve the exact optimal rates of convergence for global estimation over a range of
function classes of inhomogeneous smoothness. The estimators attain the adaptive
minimax rates for estimating regression functions at a point. Moreover, a large sim-
ulation study shows that the BlockShrink estimators yield uniformly better results in
terms of the mean squared error than the widely used VisuShrink estimators. The
procedure is easy to implement and the computational cost is of order O(n).

Keywords: Minimax Estimation; Nonparametric Regression; Orthogonal Wavelet Bases
of Compact Support; Block Thresholding; Spatial Adaptivity.
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1 Introduction

Consider the nonparametric regression model:

yi = f(z:) + ez (1)
i=1,2,..,0(=27),z; =% and 2/s are iid N(0, 1).

The function f(-) is an unknown function of interest. In the present paper, we are
interested in estimating function f(-) globally as well as estimating f(-) locally. We measure
the quality of recovery by the mean squared error.

The theory and methods of nonparametric regression have been developed rapidly over
the last few years with the introduction of nonlinear wavelet methods by Donoho and
Johnstone, et al (see [7] and [10],[9]). Wavelet procedures have demonstrated unprece-
dented successes in terms of asymptotical optimality, spatial adaptivity and computational
efficiency. Wavelet methods achieve their unusual adaptivity through shrinkage of the em-
pirical wavelet coeflicients. They enjoy excellent mean squared error properties when used
to estimate functions that are only piecewise smooth and have near optimal convergence
rates over large function classes. In contrast, traditional linear estimators typically achieve
good performance only for relatively smooth functions.

Standard wavelet thresholding procedures are based on term-by-term decisions about
wavelet expansions. There, wavelet coefficients are estimated individually, retained or
discarded depending on the magnitude of the corresponding empirical wavelet coefficients.
The most widely used wavelet shrinkage method in nonparametric regression is the Donoho-
Johnstone’s VisuShrink procedure ([7], [10]) . The VisuShrink procedure has three steps:

1. Transform the noisy data via the discrete wavelet transform;

2. Denoise the empirical wavelet coefficients by “hard” or “soft” thresholding rules with

threshold A = e4/2log n.

3. Estimate function fat the sample points by inverse discrete wavelet transform of the
denoised wavelet coeflicients.

This procedure is adaptive and easy to implement. And with high probability, VisuShrink
estimators are at least as smooth as the target function. The estimators produced by the
procedure achieve minimax convergence rates up to a logarithmic penalty over a wide range
of function classes.

Despite its considerable advantages, however, it has drawbacks. VisuShrink achieves
a degree of tradeoff between variance and bias contributions to the mean squared error.



However, the tradeoff is not optimal. It favors reducing variance over bias. The squared
bias is of higher order of magnitude than the variance. In other words, the estimator is
over-smoothed. As a result, it creates a logarithmic penalty in the mean squared error. The
problem can not be solved by only fine tuning the threshold level. In fact, the threshold
rule is asymptotically optimal among all such uniform term-by-term threshold rules.

The difficulty of term-by-term thresholding is caused by the relative inaccuracy that
individual wavelet coefficients are estimated. Because of the need to guard against “false
positives” about the presence of irregularities of the underlying function f(z), VisuShrink
inevitably removes too many terms in the wavelet series. As a result the estimators are too
biased and so do not react to relatively subtle changes in the underlying regression function
f(z).

To solve the problem, we attempt to use the idea of block thresholding where wavelet
coefficients are threshloded in blocks, rather than individually. The idea of block thresh-
olding can be traced back to Efroimovich ([11]) in orthogonal series estimators; and Kerky-
acharian, Picard and Tribouley ([15]), for wavelet density estimation. But these block
thresholding are not local, so they do not enjoy a high degree of spatial adaptivity. Local
versions of block thresholding first appeared in Hall, Kerkyacharian and Picard ([12], [13]).
They proposed a block threshold rule and showed that the estimators attain the mini-
max convergence rates over a range of function classes. However, their simulation study
showed that the estimators have little advantage over the VisuShrink estimators when the
signal-to-noise ratio is high (see [14]).

In the present paper, we introduce a new block thresholding procedure, BlockShrink,
which is very easy to implement and has broader spatial adaptivity than the term-by-term
thresholding methods. The BlockShrink procedure differs from the methods discussed in
Hall, Kerkyacharian and Picard ([12], [13]) in the choice of the block length, the estimator
of the energy, and the threshold level.

The BlockShrink introduced in Section 3 has the following ingredients:
1. Transform the noisy data via the discrete wavelet transform: @ = W - Y.

2. At each resolution level, group the noisy wavelet coefficients into blocks of length
L = logn. A block (jb) is deemed to contain significant information about the
function f if the energy in the block B = ke (ib) 0%, > 5L¢* and then all the
coeflicients in the block are retained; otherwise the block is deemed insignificant and
all the coeflicients in the block are discarded.

3. Obtain the estimate of function f(z) at the sample points by the inverse discrete
wavelet transform of the denoised wavelet coefficients.

We show in Section 5 that the BlockShrink procedure enjoys a high degree of adaptivity
and spatial adaptivity. The BlockShrink estimators achieve true optimality in terms of
convergence rates over a wide range of function classes of inhomogeneous smoothness.



For global estimation, it attains the exact optimal rates of covergence over an interval of
function classes F defined in Section 4; for estimating functions at a point, it achieves the
adaptive minimax rates over a broad range of the Holder classes.

A simulation study (see [4]) showed that the BlockShrink estimators uniformly out-
perform the VisuShrink estimators in terms of the mean squared error, even when the
signal-to-noise ratio is high in which case the VisuShrink is known to perform very well.
Furthermore, in the cases of high signal-to-noise ratio, the BlockShrink also yields uniformly
better results than the RiskShrink (see [7]) and the SureShrink (see [9]) in all examples. In
some cases, the improvement is substantial. For instance, from Table 1, the BlockShrink
estimator of Doppler, a function with significant spatial inhomogeneity, achieves better
performance with samples of size n than each of the other three estimators with samples
of size 2 - n.

The paper is organized as follows. Section 2 introduces wavelets and some basic nota-
tions. The BlockShrink procedure is presented in Section 3. Section 4 gives the definitions
and properties of the function classes of interest. The optimalities of the procedure are dis-
cussed in Section 5. Section 6 discusses the simulation results. All the proofs are postponed
to Section 7.

2 Wavelets

Wavelets are a relatively new concept in applied mathematics ([5], [6]). But they have
already let to exciting applications in many fields, from signal and image processing to
statistical estimation.

Wayvelets are a special type of orthonormal basis in L, space. An orthonormal wavelet
basis is generated from dilations and translations of two basic functions, a “father” wavelet ¢
and a “mother” wavelet ). The functions ¢ and 1) are assumed to be compactly supported.
also we assume that ¢ has D vanishing moments and ¢ satisfies

fo-

Daubechies ([6]) constructed compactly supported wavelets called Coiflets which can have
arbitrary number of vanishing moments for both the father wavelet ¢ and mother wavelet

. Denote W(D) the collection of Coiflets {¢, ¢} of order D. So if {¢, ¢} € W (D), then ¢
and ¢ are compactly supported and satisfy

/w’gﬁ(:v)d:c =0, fori=1,2,..,D-1
/mi¢(x)dw —0, fori=0,1,..D-1

Let
din(t) = 21126(27t — k), i(t) = 29/%p(27t — k)
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And denote the periodized wavelets

?k(t) = Z bir(t — 1), ?k(t) = Z dik(t —1) fort €[0,1]

lez leZ

For the purposes of this paper, we use the periodized wavelet bases on [0, 1]. The collection
(@ hk = 1,..,200,4% 5 > jo,k = 1,...,27} constitutes such an orthonormal basis of
L,[0,1]. Note that the basis functions are periodized at the boundary. The superscript
“p” will be suppressed from the notations for convenience. This basis has an associated
exact orthogonal Discrete Wavelet Trasnform (DWT) that transforms data into wavelet

coefficient domains.

For a given square-integrable function fon [0, 1], denote

i = (f, din)s Oik = (f, Pix)

So the function fcan be expanded into a wavelet series:

F(@) =D Eiorion(z) + i > Oirthin(z) (2)
k=1 J=jo k=1

Wavelet transform decomposes a function into different resolution components. In (2),
ox are the coefficients at the coarsest level. They represent the gross structure of the
function f. And 6, are the wavelet coeflicients. They represent finer and finer structures
of the function fas the resolution level j increases.

We note that the DWT is an orthogonal transform, so it transforms i.i.d. Gaussian
noise to i.i.d. Gaussian noise and it is norm-preserving. This important property of DWT
allows us to transform the problem in the function domain into a problem in the sequence
domain of the wavelet coeflicients with isometry of risks.

3 The BlockShrink Procedure

Given a sample Y = {y;} as in (1). Let © = W - n~Y/2Y be the discrete wavelet transform
of n=Y/2Y. Write

é = (6]’017 tty j02j070j017 ce a0j02joa e 70-]—1,1’ te )GJ—1,2J—1)T
Here £, are the gross structure terms at the lowest resolution level, and b (j=1,--,J—
1,k=1,---,2) are fine structure wavelet terms. One may write
éjk = (ij + ajx + n_1/2ezjk (3)



where ;) is the true wavelet coeflicients of f, a;; is some approximation error which is
considered “small” by the results of Lemma 1 in Section 4, and z;;’s are the transform of
the 2;’s and so are i.i.d. N(0,1).

The term-by-term thresholding procedure, VisuShrink, estimates the function f by

230 J-1 29

Z ﬁjokﬁﬁjok )+ Z Z 0]’9] |03k| > €/ 2n~1log n)ﬂ’ﬂﬂ@)

J=jo k=1

Here, each wavelet coefficient is estimated separately.

In BlockShrink, we threshold wavelet coefficients in groups instead of thresholding in-
dividually. At each resolution level j, the empirical wavelet coefficients éjk are divided into
nonoverlapping blocks of length L = [logn]. Denote (jb) the indices of the coefficients in
the bth block at level j, i.e.

(55) = {(, k) : (b— 1)L +1 < k < b}

Let B(Jb) = E(Jb) 0]k denote the L, energy of the n01sy signal in block (jb). From (3), it
is clear that B(Jb) is biased as an estimate of Z(]b) x> the energy of the function fin the
block. In fact,
EB(jb) = Z(ij + ajk)2 + Ln~1e?

(5%)
On the other hand, B(]-b) does provide a guideline about the magnitude of 3 ;) 6%,. In
BlockShrink, a block (jb) is deemed to contain significant information about the function
fif ij > 5Ln_1 %2 and then all the coefficients in the block are retained; otherwise all the
coeflicients in the block are discarded. Therefore, the coefficients 8;; in the block (jb) is
estimated by

éjk = éjkI(ij > 5LTL—162)

And the whole function fis estimated by

290

-1 27
Zé?o“ﬁ]ok + Z Zeﬂkd)ﬂc

Jj=jo k=1

If one is interested in estimating f at the sample points, then the fast Inverse Discrete
Wavelet Transform (IDWT) can be used. And {f(z;) : ¢ = 1,---,n} is estimated by

f:{f@):i=l,---,n} with

A

f — WI . n1/2é)
We call the procedure BlockShrink.

We show in Section 5 that the BlockShrink estimators attain the exact optimal rates
over a wide range of function classes. The BlockShrink estimators are appealing not only
quantitatively but also qualitatively. They automatically adapt to the smoothness of the
target functions. Here is an example of the BlockShrink in action. For better comparison,
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the true function, HeaviSine, is superimposed on the estimator as dotted line. It is clear
that the estimator captures both the smooth and the jump features of the function very
well. The reconstruction jumps where the target function jumps; the reconstruction is
smooth where the target function is smooth. Further simulation results are discussed in
Section 6.
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4 The Functions Classes F

Following Hall, Kerkyacharian and Picard’s lead, we consider the adaptivity of our Block-
Shrink procesure over the following function classes which they introduced in [13]. These
are not traditional smoothness classes. The function classes contain functions of inhomoge-
neous smoothness. The functions can be regarded as the superposition of smooth functions
with irregular perturbations. See remarks 1 and 2 below. Here is the formal definition of
the function classes F.

Definition 1 Let
f: f(al,a,’)’,Ml,Mz,Mg;,D,l/)
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where 0 < a; < a <D, 0< < 11+T220;1’ and My, M5, M3,v > 0, denote the class of
functions f such that for any j > jo > 0 there exists a set of integers A; for which all of

the following are true:
o card(A;) < M3297;
o For each k € Aj, there exist constants ag = f(277k),a1,...,ap_1 such that for all
T € [277k, 279 (k + v)],

D-1
|f(z) — E am(z — 277k)™| < My 279

m=0

o For each k ¢ A;, there exist constants ag = f(279k),a1,...,ap—1 such that for all
T € [277k,279(k + v)],
D—

(@) = 32 am(z —277k)™| < My27®

m=0

[y

Roughly speaking, the intervals with indices in 5; are “bad” intervals which contain less
smooth parts of the function. The number of the “bad” intervals is controlled by M3 and
v so that the irregular parts do not overwhelm the fundamental structure of the function.

Define the traditional Holder classes A*(M) as: for o < 1,
A (M) = {f:|f(z) — fy)| < M|z —y|*}
and for @ > 1, m = | and &/ = a — m,
AS(M) = {f :|f™(2) = F™(y)| < M|z —y|*'}

Remark 1: The function class F(a1,a,y, M1, M, M3, D,v) contains the Holder class
A*(M) as a subset for any given ay,v, My, M3, D, v.

Remark 2: A function f € F(ay,a,v, My, M2, M3, D,v) can be regarded as the sum of a
regular smooth function fo in a Besov class Byoooo(M2) and an irregular perturbation 7.

f=fotr

The perurbation 7 can be, for example, jump discontinuities or high frequency oscillations.
For further details about the function class F, the readers are referred to Hall, Kerkyachar-
ian and Picard ([13]).

The following results on the wavelet coeflicients of functions in F follows directly from
the definition of F.



Lemma 1 Let f € F(ay,o,, My, My, Ms,D,v). Assume the wavelets {¢,9} € W (D)
with supp(¢) = supp(vp) C [0,v]. Let n=27. Then

€ —n 75 f(k/n)] < Mul|gllan=C/*eD) if ke Ay

|7k — n‘%f(k/n)l < My|g|lin~ 024 ifk ¢ Ay
0] < My|lepli 27702 if ke A
06| < M||p|127702*)  if k¢ A

Now suppose one has a dyadically sampled function {f(£)}7_, with n = 27. Then
one can utilize a wavelet basis to get a good approximation of the whole function f. The
following is an upper bound for the approximation error.

Theorem 1 For a given sample {f(£)}7_,, let fu(z) = Ypoy n V2 f(E)gu(z). Assume
the wavelets {¢,} € W (D). Then

If — FII% < Cun~ 5 (4)

Jor all f € F(an,a,y, My, My, M3, D,v), where the constant C, depends on the wavelets
&, ¥ and oy, 0,7y, My, My, M3, D, v, but not on f.

According to Lemma 1 and this theorem, one may use n='/2 f (%) as an approximation
of {5e = (f, da) and use fu(z) = Tpoy n2f(£)¢su(z) as an approximation of f. The
approximation error can be bounded based on the sample size and the smoothness of the
function.

5 Optimality Of The BlockShrink Procedure

The BlockShrink utilizes information about neighboring wavelet coefficients. The block
length increases slowly as the sample size increases. As a result, the amount of information
available from the data to estimate the energy of the function within a block, and making
a decision about keeping or omitting all the cofficients in the block, would be more than
in the case of the term-by-term threshold rule. The BlockShrink increases the estimation
accuracy of the wavelet coefficients and so it allows convergence rates to be improved.

In the section, we show that this is in fact true. We investigate the adaptivity and spatial
adaptivity of the BlockShrink procedure to unknown degree of inhomogeneous smoothness
over the function classes F(ay, o, v, My, Mz, M3, D,v). We begin with global estimation.



5.1 Global Estimation

In global estimation, one is interested in estimating the whole function for estimating the
value of f at all the sample points {f(z;),z = 1,---,n}. Denote the minimax risk over
function class F by

fn F

It is well known that the optimal rate of convergence for global estimation over Hélder class
. . 2a . .

A*(M) is n” T+2a. Because the function class F (a1, o, v, M1, M2, M3, D, v) contains A®(Ms)

as a subset, the convergence rate over F(ay, o, y, M1, Ma, M3, D, v) can not be better than

2a

n~T+2a. Theorem 2 shows that the BlockShrink estimators attain the convergence rate of
2a

n~1+2a, Therefore, the estimators achieve the optimal rates across a whole interval of the
function classes F.

Theorem 2 Suppose the wavelets {¢,¢} € W(D) and supp(¢) = supp(sp) = (0, N). Let
F = F(ew, e, v, My, My, M3, D,v). Then the BlockShrink estimators satisfy

sup E|| f2 — f|I> < On~783 (1 4 o(1)) (5)
fer

forall0 < a< D and for allv > N.

Thus, the BlockShrink estimator, without knowing the a priori degree or amount of
smoothness of the underlying function, attains the optimal convergence rate that one could
achieve by knowing the regularity.

sup E| fr — f|I* < R(F,n)

feF
As a special case, the BlockShrink attains the exact optimal rates over a wide range of the
traditional Holder classes A*(M):

Theorem 3 Let the wavelets {¢, v} € W(D). Then the BlockShrink estimators are simul-
taneously near minimax:

sup  E||fr — fII* < Cn~53= (1 4 o(1)) (6)
fEAX(M)

for all0 < a < D and all M € (0,00).
Similar results hold for the BlockShrink estimator of {f(z;),=1,---,n}.
Theorem 4 Under the conditions of Theorem 2, the BlockShrink estimator f of {f(z:),t =

1,---,n} is simultaneously rate-optimal:

sup 3" E(ful@) — f(z:)? < O~ (1 + o(1)) (7)

feEF T ;o

forall0 < a< D and for all v > N.
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Remark 3 (Generalization): It is not difficult to generalize the adaptive results over similar
function classes that allow different types of irregular perturbations in one function.

Remark 4 (Use of Coiflets): If one is willing to impose the following local Lipschitz
condition on F when F is relatively smooth, then there is no need to use Coiflets.
(). Ifa > 1> oy, then for k ¢ A;,

|f(z) — F(277k)| < M4277, for z € [279k,279(k + v)]
(ii). f @ > o3 > 1, then
|£(z) — f(277k)| < M,277, for z € 277k, 279 (k + v)]

5.2 Estimation At A Point

In global estimation, BlockShrink achieves complete success of adaptation across a range
of function classes F = F(au,@,7, M1, Mz, M3, D,v) in terms of convergence rate. That
is, one can do as well by using the BlockShrink procedure when the degree of smoothness
is unknown as one could do if the degree of smoothness is known.

But for local estimation, i.e. estimation at a point, it is impossible to achieve complete
adaptation for free. One must pay a price for adaptation. Denote the minimax risk for
estimating functions at a point zo over a function class F by

R(F,0,m) = inf sup B(fa(w0) — (0))?

Consider the Hélder class A*(M). The optimal rate of convergence for estimating f(zo)

with o« known is n~" where 5
o

T 112
Brown and Low ([2]) and Lepski ([16]) showed that one has to pay a price for adaptation
of at least a logarithmic factor even when « is known to be one of two values. They showed
that the best one can do is (logn/n)” when the smoothness index « is unknown. We call
(logn/n)" the adaptive minimax rate over the Holder class A*(M).

The following result shows that the BlockShrink achieves the adaptation with the min-
imal cost for estimating f at a point.

Theorem 5 Let the wavelets {¢,%} € W(D) with D > a. Let zo € (0,1) be fizred. Then
the BlockShrink estimator f*(zo) of f(zo) satisfies

sup B(f7(20) — f(0))* < C- (

feAx(M) n

BT (14 o{1) ©

Hence, f,"{(:z:o) achieves the adaptive minimax risk for a wide range of Hélder classes.
The logarithmic penalty is a price one has to pay for not knowing the smoothness of the
target function f. It cannot be further reduced according to the results of Brown and Low
([2]) and Lepski ([16]). Therefore, for local estimation, (8) is the optimal adaptive result
one can expect in terms of convergence rates.

11



6 Simulation Results

The BlockShrink procedure is very easy to implement and the total computational cost
of the procedure is of order O(n). We implemented the BlockShrink procedure in the
statistical software package S+Wavelets.

A simulation study ([4]) was conducted to investigate the performance of the Block-
Shrink. In [4], the BlockShrink is compared with the Donoho and Johnstone’s VisuShrink,
RiskShrink and SureShrink. The VisuShrink and the RiskShrink are term-by-term thresh-
olding procedures, they differ only in threshold. The readers are referred to Donoho and
Johnstone ([7]) for further details. The SureShrink thresholds the empirical wavelet co-
efficients by minimizing the Stein’s unbiased estimate of risk at each resolution level (see
[9])-

We studied eight functions representing different level of spatial variability. For each
of the eight objects under study, Four different methods, the BlockShrink, the VisuShrink,
the RiskShrink and the SureShrink, were applied to noisy versions of the data. Sample
sizes from n = 512 to n = 8192 and signal-to-noise ratio SNR = 4 and SNR = 7 were
studied. And several different wavelets were used.

The BlockShrink consistently outperforms the VisuShrink in all examples. In many
cases, BlockShrink has better precisions with sample size n than the VisuShrink with
sample size 2 - n for all n from 512 to 8192. Furthermore, when the signal-to-noise ratio
is high (e.g. SNR = T), the BlockShrink yields uniormly better results than each of the
VisuShrink, the RiskShrink and the SureShrink. The readers are refered to [4] for further
details.

For the reasons of space, we report in Table 1 some of the simulation results on the
Donoho and Johnstone’s four test functions: Doppler, HeaviSine, Bumps and Blocks. Table
1 reports the average squared error over 100 replications with sample sizes ranging from
n = 512 to n = 8192. The SNR is 7 and the wavelet is Symmlet 8. Figures 3 to 6 compare
the visual quality of the four different reconstruction methods. All the figures were produced
with the sample size 1024, the wavelet Symmlet 8 and the signal-to-noise-ratio 7.

The BlockShrink estimators are visually appealing. The reconstruction is smooth where
the underlying function is smooth. They do not contain spurious fine-scale structure that
are often contained in the RiskShrink estimators and the SureShrink estimators. The
BlockShrink adapts very well to the subtle changes of the target functions. For instance,
one can see from the reconstructions of Doppler and Bumps, the BlockShrink estimators
reach to the peaks deeper than the VisuShrink estimators.

Finally, we emphasize that the same S+ Wavelets program, with the same parameters,
produce all four reconstructions using the four different methods; no user intervention was
permitted or required.

12



7 Proofs

7.1 Proof of Theorem 2:

Let
N\ _ (¢ £ D 0 . n 0 T
0= (€j017 e 75_7'0230’0]'01’ e 70_7'0210’ v an—l,la v )0.]—1,2]—1)

be the discrete wavelet transform of {n~=7y;}. Let f(z) = 3", n—%yi¢Ji(.'I7). Then

270 J—1 94
Z §JOk¢Jok + Z Z 0_7k¢.7k

Jj=jo k=1

We can also write f(z) as

flz) = Z[n‘ff )+ n"Zez)dui(e)

= Yl + (7 F () — ) + 0 Fezil ()

i=1

270 J-1 27
= Z[&ok + @k + 1 262Jok]¢yok )+ Z Z ikt @ik +n Zezjk]¢yk( )
. k=1 j=70 k=1

Here, &, and ;5 are the orthogonal transform of {£5;} via W, and likewise ;o and ajy
the transform of {n~2 f(z;) — €5}, and Z;,x and zj; the transform of {z}.

We note that Z;; and zj; are i.i.d. N(0, 1) and
z " .
ik = Lok + djok + 17 2€Zjok
o 1
Oix = O +aj+n"2ez

It follows from Lemma 1 and the orthogonality of the discrete wavelet transform that

270 J-1 27 n
Z ajy + Z Z a?k = Z(n_%f(:cz) — €5 < Cln~ = (9)
k=1 Jj=jo k=1 =1
Let ) )
éjok = éjok

Group the noisy wavelet coefficients into blocks of length L = [logn], the integer part of
log n. For simplicity, we use L = logn in the proof. Then the estimate of 6;; in block (jb)

is
Oir, = 0,41(Bjp > 5Ln"'e?)
The BlockShrink estimator of fis

Fr@) =Y Eordion(z) + Z Zaykl/hk

k J=Jjo
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By the isometry of the function norm and the sequence norm, the risk of f: can be written

as

E|fz = 3 =3 E(€iok — Eiok) +ZZE (B3 — ;) +229 (10)
k

J=Jo i=J k

It follows from Lemma 1 that

502, = ofn™1He) (11)

j=J k

Let C denote a generic constant that varies from palce to place. Then one has

D B(Gok  Eior) < 20" -1+2Eamk<0n (12)

Now consider /-1 ¥, E(@r — 01).

Z ZE (Gir — 0;)* = M3 E(fi —0x)’
I=io j=jo b ke(jb)
J-1 i
S 2n 162 ZE( Z z?kI(B(Jb) > 5Ln—1€2))
J=jo b ke(jb)
J-1 i I
+ S5 63 P(Biy < 5Lnte) +2 3 Y dl,
j=jo b ke(jb) =%
Denote
R(jb) = Z jkI B(Jb) >5In~ 162))
k€(jb)
G = 2 P By < 5Ln7'é)
ke(5b)
and
= n L2 Z ZR(]b), Z ZR(]b)
' J=jo J=jo

Therefore,

- 7] 2a

Y3 T EBjr — 0r)* <281 4285 +2C'n" T4

Jj=jo k
Let

G; = {blocks at level j contain no coeflicients with indices in A;}
G, = {blocks at level j contain at least one coeﬂicient with indices in A;}

G" = {blocks (jb) such that Sye(jn) a3 = 5351 """}

We will first assume the following two lemmas. The proof of the lemmas is given at the

end.

14



Lemma 2

(2). card(G) < M327;
(v2). card(G") < CL™'nTm

Lemma 3 (%). If By > 20Ln~'¢?, then

P(Bgy < 5Ln7te?) <n™! (13)
(ii). If Bijpy < g5Ln1€?, then
Ry =E( ), Z?kI(B(jb) > 5Lnte?)) < 5Ln~t (14)
ke(3b)

Now let Jp be an integer satisfying
2J° = Conl“'%

where the constant Cy > (320M22||7,b||%e_2)1+% so that
1 _ .
HJz-k < -3—5672 1e? for j > Jo and k ¢ A,

Similarly, J; is chosen so that
2J1 = Clnﬁ
and for j > J; and all k, 6%, < z=n~1é?

Now, decompose S; into four parts:

Jo—1 J-1
Si = nte Y Y Ry +nle Y, Y Ry

Jj=jo (jb) J=Jo (jb)eG”

J-1 J-1
+nte? Y, D Ry +nTle Y Y. Rgy
j=Jo (jb)EG;\G" j=Jo (5b)€G\G"
= Si1+ Si2+ Si3+ S1s
Jo—1 Jo—1 v
S o= nle Z ZR(jb) <n7lé Z ZL < Cn™ T2 (15)
J=j0 (5b) J=jo (jb)

It follows from Lemma 2 that

J-1 J-1
512 = ’I’L_162 Z Z R(jb) S ’n—162 Z E L S n_162C’L—1n1+%L S CTI,_% (16)
j=Jo (jb)EG" i=Jo (jb)e€G"

15



Now for j > Jp and (jb) € G; \ G”,
I _
By = D0k + ajp)® <2 05, +2) af < =In7'¢?
. 80
(7%) (4%) (4%)
So, it follows from Lemma 3 that
J-1 J—1
p=n12Y Y Rpy<nleY Y 5Inl<Cnt
i=To (F5)EGA\G" i=Jo (b)€G;\G"
We can further decompose S14 into two terms:
Ji—-1 J-1
Su=nTte Y >, Ray+n'e ), >, R
i=Jo (b)EGI\G" §=J1 (b)EGI\G"

From Lemma 2, card(G}) < M3277, so

Ji—1 J1 1
—122 Z R(]b)<n €2 Z Z L<n12ZM32”L—-on 1+2a)
i=Jo (5b)€GI\G" j=Jo (jb)€G; i=Jo

And for j > J; and (jb) € G; \ G”, again we have

1 _
By =2 (05 + aje)* <2305+ 23 aj < o5 ln'€
(4 (5%) (3b)

So,

J-1
ne Y Y Ry =o(n”5R)

i=h (76)EG\G"
Now it follows from (18) and (19) that
S1a = o(n~T3)
By putting (15) — (20) together, we have
Si < Cn~ 38 (1 + o(1))

Now let us consider S;. We separate S, into four parts:

S2 = Z > R(Jb)+2 Y. B

J=jo (5b)€G; Jj=jo (Jb)GG’
Jo—1

J=-1
= (X ¥ By+> X Ruy)+ Z > R+ Z > R

J=jo (jb)€G; i=Jo (b)€G; j=jo (jb)EG; j=J1 (jb)€G]
= So1+ S22+ Sas + Sas

16
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Apply Lemma 3, we have

Jo—1 Jo—1
Sy = Z > Riyl(Byy >20Ln~ ")+ 3. > RipI(Bgy < 20Ln~'¢")
Ji=jo (§b)€G; J=jo (5b)€G;
= = -1 2 2
< 2 X X T4 X ) (W0LnTiE+2 3 a)
J=jo (jb)EG; kE(j5b) j=jo (jb)EG; ke(jb)
—2a_
< Cn™ 2= (14 0(1)) (22)
J—1 J-1 v
S:2o= 3, X By< ) > ) 05 <Cnmee (23)
i=Jo (76)€G; j=Jo (§b)€G; ke(3b)
Ji—1 , il L
323 = Z Z RE]b)I(B(Jb) > 20Ln—16 )+ Z Z RI(Jb)I(B(Jb) S 20Ln" "€ )
J=Jj0 (jb)EG’- J=Jjo (jb)EG;.
-1
< Z Y 0hn + Z Y (40Ln7'é 42 Y af)
J=jo k=1 j=jo (jb)EG]; ke(5b)
Ji—
< Cn'+ Z 40Ln~ M52 4 O~ Tisa
J=Jo
< Cn (1 + o(1)) (24)
J-1 J-1 -1 v
Su o= 3 > Ep< Y X 3 0 <03 202 L= o(n7rw) (25
i=1 (ib)EG j=J1 bEG, kE(50) i=J1
It follows from (22) through (22) that
S, < Cn~ ™55 (1 + o(1)) (26)
By putting (11), (12), (21) and (26) together, we prove the theorem
B||fr ~ I} < Cn w5 (1 + o(1)) (27)

i
Now we shall prove Lemmas 2 and 3. First Lemma 2.
Proof of Lemma 2: (i) follows from the condition card(A;) < M327Y. To prove (ii),

note that from Lemma 1, we have

J-1 2«
> S < On-rHs

J=jo k

Let m = card(G"). Then (ii) follows from

1
Cun 5 > T > 2 g Ln el
J=jo

Before we prove Lemma 3, we note the following inequalities involving x? distributions:

17



Lemma 4 IfY ~ x%. Then fort >0,
(1). P 2L1+1)<[(1+8)7] ™%
().  E(Y-I(Y 2 L(1+1))) < L1+ 1)1 +1)7"]7%;

Proof of Lemma 3:
(i). It follows from the triangle inequality ||u + v|| > ||ull — ||v|| that if " u? > a®s with

a > 1, then
(S (st w <5} C {02 2 (a—1)%s)
If B(jp) > 20Ln~'€?, then by choosing s = 5L and a = 2, one has
{Biyy <5Ln7 '} = { Y ("2 (05 + aji) + zix)? 2 5L} C{ Y 2%, > 5L}
ke(jb) ke(b)

So it follows from Lemma 4 that
4
P(Byy < 5In'@) < P(Y 2% >5L) < (%)—
ke(jb)

L
2 Sn_l

(ii). Similarly, the triangle inequality ||u + v|| < ||u|| + ||v]| implies that if >~ u? < a®s

with a < 1, then
D o(ui+ ) > s} S {D_vi = (1-a)’s}
So, if B(js) < &Ln~'€?, then by choosing s = 5L and a = 3
- 1
{Baw >5Ln e} C{ 3 2 2 (1— 55)"8LY S { D =z > 451251}
ke(sb) ke(5b)
Hence, it follows from Lemma 4 that
3.5125

4.5125)

L
2

< 5Ln7t

Ry < B( DY 25I( ) 25, > 4.5125L)) < L4.5125(
RE(B)  KE(3D)

|
Before we prove Theorem 5, let us note the following two lemmas on the bound for

the wavelet coeflicients of functions in a Holder class A*(M) and on the bound for the
approximation error ay.

Lemma 5 Let the wavelets {¢,v} € W(D), Then for all functions f € A*(M), the wavelet
cofficients of f satisfies »
10| < C" - 279(z+)

where the constant C' depends on the wavelets, o and M only.

Lemma 6 Let {a;;} be the Discrete Wavelet Transform of {n_%f(:v,) — &7}, then for all
f e A (M) ,
|ajk| < Clln—a2—_1/2

where the constant C" depends on the wavelets, a and M, but not on f.

18



7.2 Proof of Theorem 5:

First note the following lemma.

Lemma 7 Let X; be random variables, then

X' < VEXD)

It follows from Lemma 7 that

(f*(xo) — f(=0))?
\/E(Ejok Eiok) 2% k(T0) + D D \/E(éjk — 032 [P35 (o)l + D D 105kl [bsn(2o) |)2
= (Ql + Q2+ Q3)

Let consider the three terms separately. First note that at each resolution level j, there are
at most N basis functions ) such that ¥;x(z0) # 0, where N is the length of the support.

Therefore,

J-1 27 oo 2

Jj=jo k=1 j=J k=1

2730 -
= 32 |/l — i) Hhe(o0) < 26N (28)

For the third term, it follows from Lemma 5 that

Qs =2, Z 105kl [ sx(20)| < ENII@bII 21207 < On (29)

i=J k=1

Apply the inequality \/z +y < v/z + /¥ to the second term:

Q2 =

IA

\/E(éjk = 0it)? ¥k (o)|
J-1 2 _ _ _
E kz e (z0) [y E(@s — 6;4)2I( By > 5Ln1e2) + 6% P(B) < 5Ln~1e?)
J=730 k=1
J-1 27

Z Z |%bjx (o) |\/E (01 — gk)2I(B(Jb) > 5Ln"1e?)
J=jo k=1
J-1 2J
+ 0 3 [ir(o)l10341y/ P(Biy < 5Ln1e2)
J=jo k=1
Q?l + sz

Similar as in the proof of Theorem 2, let J} be an integer satisfying 2% = C(')nﬁ,
where the constant C}) is chosen so that (;x + ajr)? < En~'e?, for j > Ji. (The existence

80

of such constant C} follows from Lemma 5 and Lemma 6.) Therefore, by Lemma 3,

E(zjz-kI(B(jb) > 5Ln"1e?)) < 5Ln~", for j > Jj

19



Also let J! be an integer satisfying 271 ~ (ﬁ)ﬁlﬂf Then use (9) and apply the inequality
VZ +y <z +/y to Qa1, one has

J-1 27 J-1 27

Qu < V22NN |¢jk(fvo)|\/E(Z?kI(B(jb) > 5Ln~1e?)) + V2 Y S |ik(o)l|as]
'—jo k=1 J=jo k=1
-1 9J J-1 27
< Vo2 Z Z [¥;6(z0 |\/Ezjk + V22 Z Z |k (z0)|VELn?

i=j0 k=1 j=Jo k=1

J-1 2 ,

+V2 Y 3 [9in(wo)|C 2792
Jj=jo k=1

= Cn"m5 (14 o(1))

Apply Lemma 3 and Lemma 6 to @2,

Ji—1 93

Q< Y0 3 lbin(wo)ll054ly P(Byiny < 5Ln=1e2)I(B > 20In~'¢%)
Jj=jo k=1
Ji—1 97
+ Z S [obs(@o) 1661y P(Bisy < 5Ln-1€3)I(Bypy < 20Ln~"¢?)
J=Jjo k=1
J—-1 27
+ 30 1in(wo)l|05e]
’ k=1
J -1
< Z N2I2|[p|ooC" - 279+ =12 Z N22||4p] |00 (V20n-1€2 + |aji|)
.7—.70 J=Jjo
J-1 »
+ Y N292||gh|| o C" - 2775 H)
g
1 .
= OBy 4+ o))
So it follows that 1
ogn o
Q2 = C(=22) ™5 (14 o(1)) (30)

By putting (28), (29) and (30) together, we finish the proof.

log n, _2a

)22 (14 o(1)) (31)

E(f(w0) = f(0))* = C(
i
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Formulas of the Donoho and Johnstone’s four test functions:

1. Doppler.
f(z) =

2. HeaviSine.
f(z) = 4sindrz —

z(1l — z)sin(2.17 /(z + .05))

sgn(z — .3) — sgn(.72 — z)

3. Bumps.
fla) =3 kK ((z —z;)/w;)  K(z)=(1+]z])™"
(z;) =(1, 13, .15, .23, .25, .40, .44, .65, .76, .78, .81)
(h;) = (4, 5, 3, 4, 5, 42, 21, 43, 3.1, 51, 4.2
(w;) =(.005, .005, .006, .01, .01, .03, .01, .01, .005, .008, .005)
4. Blocks
f@) = S hiK(@—2;)  K(s) = (1+ sgn(z))/2
(z;) =(1, .13, .15, .23, .25, .40, .44, .65, .76, .78, .81)

_5a 3a ——4a

(hj) = (4,

5, —4.2, 2.1, 4.3, —3.1, 5.1, —4.2)
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Table 1: Mean Squared Error From 100 Replications

n || BlockShrink | VisuShrink | RiskShrink | SureShrink
Doppler

512 0.584 1.304 0.946 1.121
1024 0.341 0.868 0.605 0.635
2048 0.195 0.560 0.368 0.379
4096 0.093 0.309 0.231 0.230
8192 0.050 0.185 0.134 0.128
HeaviSine

512 0.369 0.598 0.588 0.596
1024 0.195 0.336 0.324 0.331
2048 0.119 0.200 0.177 0.188
4096 0.088 0.161 0.156 0.157
8192 0.045 0.086 0.081 0.082
Bumps

512 1.187 3.512 1.895 1.240
1024 0.701 2.352 1.253 0.993
2048 0.437 1.569 0.837 0.575
4096 0.319 0.736 0.453 0.372
8192 0.179 0.454 0.279 0.220
Blocks

512 1.118 2.158 1.289 1.381
1024 0.685 1.549 0.904 0.891
2048 0.425 1.133 0.650 0.656
4096 0.372 0.619 0.403 0.410
8192 0.211 0.440 - 0.276 0.285
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