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Abstract

This is a brief tutorial on the topic of asymptotic relative efficiency and efficient estima-
tion. Starting with common parametric problems, the article describes various common
measures of relative efficiency, for both estimation and testing problems, and then dis-
cusses concepts of higher order efficiency and efficient estimation in complex models. The
relevance of asymptotic efficiency in finite samples is also discussed. Several illustrative

examples are given. The tone of this article is nontechnical.
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1. ASYMPTOTIC RELATIVE EFFICIENCY

One of the most important problems of statistical practice is point estimation of an unknown
parameter, say 6. In most cases, there are many apparently reasonable estimators of §. For
example, if one wants to estimate the mean of a normally distributed characteristic, it seems
reasonable to estimate it by the mean of the characteristic from a sample. Since for normal
random variables, the mean and median are the same, it also seems reasonable to use the
median of the sample values as an estimate. Indeed, each estimate is-a consistent estimate in -
this case; i.e., each estimate 0 satisfies P(Ié — 0] > ¢) — 0 as n — oo, for any given € > 0.
Asymptotic efficiency is a common method to discriminate between two reasonable estimates

when there is nothing to discriminate between them from the viewpoint of consistency.

Typically, two consistent estimates, say 6, and ég, will also have limiting normal distributions,
ie., \/ﬁ(é, —0) — N(0,0%(6)),7 = 1,2. In such a case, it is common to approximate the
variance of 6; by 02(0)/n. The exact variance of §; may be hard to calculate for a fixed
sample size n, and thus the approximation really does become important. Since variance is
a natural measure of accuracy of an estimate, it seems natural to define the efliciency of 0,
with respect to 8, as the ratio 02(8)/02(0). In principle, the quantities o2(8) and ¢2(f) may
depend on the unknown parameter . However, fortunately, in many important problems
of statistics, they are just fixed positive constants not depending on #, and therefore the
Asymptotic Relative Efficiency (ARE) 02/0? has the very appealing interpretation of being
one number summarizing the performance of 6, with respect to 0. The values of ARE are

between 0 and oo, and ARE > 1 corresponds to 0, being more efficient than 0,.

Fzample 1. Suppose X1, Xs, ... X, are independent observations from a N(8,1) population.
Then, v/n(X —8) — N(0,1) in distribution, and \/n(M —8) — N(0,7/2) in distribution,
where M is the median of the sample data X7, Xs, ..., X,. Thus, according to our definition,
the asymptotic relative efficiency of the sample median with respect to the sample mean for

a normally distributed population is 2/7 = .63.

Interestingly, the situation reverses and the sample median becomes a more efficient estimate

if the observations X;, X,,..., X, are instead obtained from a population with a Double
Exponential density, 1/2 e~*=9l. In this case, v/n(X — 6) — N(0,2) and +/n(M — 8) —

N(0,1), and the asymptotic relative efliciency of the sample median with respect to the
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sample mean is 2.

Ezample 2. Sir Ronald Fisher, one of the founding fathers of much of statistics as we
know it today, once had a communication with A. Eddington, a noted physicist, about how
to estimate the standard deviation of a normal distribution. Thus, if Xi, Xs,...X, are
independent samples from the N(6,0?) distribution where both parameters are unknown,

the specific question was a comparison of the two estimates

al_\/ﬂ‘% Z (z; — T)

=1

and & T; —T
T \/2(n—1) z_Z;I g

where I' (.) denotes the Euler Gamma function. Each estimate is unbiased for estimating
o. It is known that 4, is the UMVUE (uniformly minimum variance unbiased estimate) of
o for each fixed sample size. So in fixed samples, &7 is more efficient that &;. An interesting
question would be if even asymptotically, it has an ARE > 1. Using standard methods of
large sample theory, it is seen that /n(61—0) — N(0, 2 %) and \/n(G2—0) — N(0,%520?)
in distribution as n — oo®. Thus, applying the definition of the ARE, the ARE of &; with

respect to &3 is 7 — 2, which is indeed larger than 1.

2. EFFICIENT ESTIMATES

A question of natural interest is the following: is there such a thing as a “most efficient”
estimate, and how do we formulate such a concept? It turns out that in parametric esti-
mation problems, it is indeed possible to easily formulate such a concept. Thus, suppose
X1,X3,...,X, are independent observations from a population with density f(z|f). The
quantity 1(0) = —FE, [ = f :c|0)] whenever the definition makes sense, is called the Fisher
Information function. Let 8 be any estimate of # that is consistent and asymptotically nor-
mal, i.e., \/ﬁ(é — 0) — N(0,0%(0)). Then, under some (frequently satisfied) regularity
conditions on the density f(z|0), it is true that o(f) > 1/I1(6) (exceptions may occur at a
“few” values of §; this phenomenon is known as superefficiency, but we will not worry about
this.) Thus, any estimate § of  which actually attains the bound o%(8) = 1/1(6), can be
legitimately called an EFFICIENT estimate of .
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In a given problem, there are usually many efficient estimates of the unknown parameter
6. Standard methods of estimation typically result in efficient estimates, although in finite
samples they may have different variances, biases, etc. This reinforces the fundamental issue
that efficiency and ARE are intrinsically asymptotic indices in nature, but one hopes that if
one estimate is more efficient than another according to the definition of ARE, in moderate
samples it outperforms the other estimate as well. Among the standard methods of point
estimation, maximum likelihood estimates and Bayes estimates typically are all efficient
estimates, although exceptions to these general phenomena can and do occur. For instance,
if the number of nuisance parameters grows with an increasing sample size, then maximum
likelihood estimates of the most important parameter will usually not be efficient. Also,

method of moment estimates may not be efficient even in very simple problems.

3. OTHER MEASURES OF EFFICIENCY

Besides point estimation, another very important problem of statistics is testing of hypothe-
sis. As in point estimation, there are usually many reasonable tests of a specified hypothesis
and it is useful to have a concept of efficiency of one test with respect to another. Various
efficiency measures have been proposed here too, primarily among them Pitman efficiency

and Bahadur efficiency.

The Pitman efficiency is defined in the following way: fix a type 1 error probability or level
a, fix an alternative 8, and specify a desired power 1 — 3 at this alternative. Let n;(e, 3, 6)
denote the minimum sample size required by the ith test, i = 1,2, to achieve this goal. The
Pitman efficiency of the first test with respect to the second is taken as the limit of the ratio
na(a, B,0)/n1(a, B,0) as the alternative § — 6 at a suitable rate, where 6y is exactly (the)
boundary between the null and the alternative hypothesis.

Of course, there are a number of subtle issues involved here. Dependence of this limit on «
and § would make universal interpretation of the efficiency value difficult. Also, the limit
itself should exist for the definition to make any sense. Finally, the boundary value 6, may
not be unique. In almost all problems that commonly occur, fortunately these subtleties do

not cause any problems and one has a quite good efficiency measure.

Bahadur efficiency proceeds along the same lines, except one lets a tend to zero, keeping



the alternative 4 fixed. Thus the Bahadur efficiency can depend on both § and the desired
particular power 1— 3. Fortunately, again, usually dependence on 8 does not occur, although
dependence on @ does. Thus, in contrast to the Pitman measure of efficiency, which is usually
one single number, the Bahadur efficiency measure is a curve or a function, a function of the
specified alternative 8. This is actually good in some sense, as one has an efficiency measure
that discriminates between two competing tests based on which alternative values are really
important in the given context. Bahadur [3]’s original approach was to compare the rates
at which the P-Values corresponding to the two tests converge to zero at the specified .

However, the two descriptions are equivalent.

FEzample 3. Suppose X3, Xs, ... X, are independent observations from the Double Exponen-
tial density 1/2 e~1*=% and we would like to test Ho: 6 < 0 vs. Hy : § > 0. The following

two tests appear to be reasonable:

Sign Test. Count N = # sample values > 0.
Reject Hy if N is large.

Median Test. Find the median M of the sample values.
Reject Hq if M is large (large positive).

The exact critical values for each test (i.e., what is to be regarded as a “large” value) can
be found by large sample considerations (or even exactly, although it may involve numerical
computing and randomization).

Now, it turns out that the Pitman efficiency of the Sign test with respect to the Median test is
1. So the Pitman measure does not discriminate between the two tests. Interestingly enough,
the Bahadur efficiency does, and indeed, Sievers [27] shows that the Bahadur efficiency of

the Sign test with respect to the Median test equals

1
=lo
® f156)( —9(6)

where g(0) =1/2 e7?

e(f) [log 2+ g(6)log g(0) + (1 — g(6))log(1 — g(6))]*




ep(0) is seen to be > 1 for any § > 0, establishing for Double Exponential data, the Sign test
could be regarded as a better choice than the Median test. The following is a short table of
the Bahadur efficiency at selected values of 6.

0 0 1 25 5 1 2 5
es(0) 1 1.003 1.017 1.057 1.182 1.545  3.214

4. RELEVANCE FOR FINITE SAMPLES

An important practical question is how closely the ARE approximates the ratio of the
variances of two estimators in finite samples. It is difficult to give a very general answer
to this, but in many examples the fixed sample relative efficiency seems to monotonically
converge to the asymptotic relative efficiency, and the approximation becomes quite close
for sample sizes > 25. For example, for estimating the mean of a normal distribution, the
ARE of the median with respect to the mean is off from the asymptotic value 2/7 by at most
6.8% for sample sizes > 20. Trimmed means are also common alternatives to usual sample
averages as estimates of populations means. A certain amount of trimming of the smallest
and the largest observations causes the effect of potential outliers to be decreased and has
other nice advantages. Usually 5 or 10% trimming from each side is recommended; see Bickel
and Lehmann [8] . For the 10% trimmed mean estimate for estimating a normal mean, the
fixed sample relative efficiency with respect to the regular mean is at most 2.75% off from
the asymptotic value .975 for sample sizes > 20. Thus, there is some empirical evidence
that the ARE reasonably approximates the fixed sample efficiency in moderate sample sizes.
Expansions of the fixed sample quantity in which the asymptotic quantity is the leading
term have also been attempted, frequently on a case by case basis. One can see Albers [2],
Chandra and Ghosh [12], Groeneboom and Qosterhoff [18], Hodges and Lehmann [22] for

such developments.

5. SENSITIVITY WITH RESPECT TO UNDERLYING DISTRI-
BUTION

It is entirely possible that one estimate or test is more efficient than another if samples

are obtained from one distribution, but loses this advantage, may be drastically, for a fairly
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similar distribution. The comparison of the sample median and the sample mean is a good
illustration. The mean has an efficiency of 1.57 with respect to the mevdian if samples are
known to come from a normal distribution, but this efficiency drops to .5 if data instead
come from Double Exponential density, described before. Yet it is not easy to distinguish
between the two distributions from moderate samples by using common methods, graphical -
or otherwise. Bickel and Lehmann [8] provide some concrete results in this direction. For
example, they show that if samples are obtained from any density that is symmetric and
unimodal about the mean, then the 5% trimmed mean has an ARE of at least .83 with respect
to the mean for estimating the population mean, and of course, for a lot of particular such
densities, the efficiency is substantially larger than 1. This may be used as an argument for
using the 5% trimmed mean if concerns about the exact density from which one is sampling

exist. More information on this can be found in Huber [23] and Staudte and Sheather [28].

6. CONCEPTS OF HIGHER ORDER EFFICIENCY

As stated before, in parametric estimation problems, it is customary to have many es-
timates which are fully efficient. It then becomes necessary, at least from a theoretical
standpoint, to have a criterion to distinguish among them. The concept of Second order
efficiency (now usually referred to as third order efficiency) was introduced to address this
issue. See Rao [25, 26], and Akahira and Takeuchi [1], Efron [14], Ghosh, Sinha and Wieand
[16] for later developments. The idea is to derive an expansion for n times the variance of a
statistic, in which the leading term is the Fisher information function and subsequent terms
decrease in reciprocals of powers of 1/n. The second term is used as a comparison among
different estimators, or simply for selecting an estimator which is first as well as second
order efficient. In a peculiar result, Pfanzagl [24] showed that often first order efficiency
automatically implies second order efficiency as well, making it necessary to consider higher
order efficiencies as a basis for comparison and selection. Bickel, Chibisov, Van Zwet [6] and

Ghosh [15] expand on these results and ideas.

7. COMPLEX MODELS

Parametric models using a given functional form for the density are often convenient

choices, and perhaps restrictive. Similarly, the assumption that the sample observations are
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independent also often does not meet the criteria of realism. Real data often have a positive
serial correlation or have a time series character. Models broader than parametric can be
of various types; nonparametric models used to be the popular alternative. In standard
nonparametric modelling, very little is assumed about the density besides some minimal
features, mostly to do with shape and symmetry, unimodality, etc. Intermediate between
fully parametric and fully nonparametric models, are the recent semiparametric models. It
should be mentioned that complexity may arise not just from more complex models, but
also because the quantity to be estimated is more complex than a simple thing like a mean
or variance. For example, Bickel and Ritov [10], Hall and Marron [20] talk about estimating

J(f'(z))*dz, the integrated squared derivative of a density.

Efficient estimation in complex models has a large literature, of a substantially more
difficult nature, as expected. The literature includes Begun et. al. [4], Bickel et. al. [7]
Chen [13], Groenboom and Wellner [19], Hasminskii and Ibragimov [21], and Van der Vaart
[29], Efficiency for dependent samples also has a substantial literature, but is more scattered.
Grenander and Rosenblatt [17] is a classic reference which established efficiency of the sample
mean for estimating the mean of a stationary process under quite mild conditions. Brockwell
and Davis [11] gives more information and discusses more problems. Efficient estimation in
a relatively recent class of time series models known as long memory processes appears to

be of a totally different qualitative nature. This can be seen in Beran [5].
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