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Abstract

Although the FDA recommends testing bioequivalence of individual pharmacokinetic
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1 INTRODUCTION

In bioequivalence studies, one typically is interested in demonstrating that a new
drug is similar in efficacy to a brand-named drug. The FDA (1992) recommends a
2 x 2 crossover design. Typically twenty four subjects are randomly divided into two
groups. One group will be applied the brand-named drug and after a washout period
the new drug. The other group is similarly treated except that the order of drugs is
reversed. The blood samples are then collected from each subject at various times
and a blood concentration curve against time of a certain ingredient is obtained.
The three most typical characteristics of the blood concentration curve consid-
ered are the area under the concentration curve (AUC), the maximum concentration
(Crmaz) and the time to reach the maximum concentration (Trnqz). FDA (1992) then
recommends that one applies Schuirmann’s (1987) two one-sided tests procedure to

test the hypotheses:
Ho:10)>A vs Hy: |0 < A.

Here § = 07 — 0p = In(ur/pr), where In is the natural logarithm function, and 6r
and g represent respectively the means of the characteristic in a In scale correspond-
ing to the new treatment and the reference (branded name) treatment. The FDA’s
recommended cutoff number A is In(1.25) so that ur and ug stay within 80% of each
other. If Hy is rejected, then bioequivalence is declared.

Schuirmann’s test, however, is one-dimensional. It would seem more reasonable to
consider simultaneously the test involving all relevant characteristics. In this paper

we shall consider testing the hypotheses:
Hy : maxls,-spLQ(i)] >A vs Hy: max15;5p|Q(i)| <A, (1.1)

instead. Here Q(i) relates to, for example, AUC, Cpqz and Tpar. Under a fairly



general linear model including the crossover design as a special case, we may consider

the canonical form

X; A NL(8,5),5=1,...,n, (1.2)

where X represents an unbiased estimate of § = (8, ...,0(P))’| n is the number of
subjects, p is the number of characteristics, and T is the p x p unknown covariance
matrix. The sufficient statistics are the sample mean and the sample covariance
matrix:

g DX 5 D= X)X - X)

n n—1

; (1.3)

where, for any vector V, V' denotes the transpose of V. This paper focuses on deriving
tests for (1.1).

When p = 1, i.e., only one characteristic is used in analysis, Schuirmann (1987)
provided an a—level test for (1.1) by using the intersection-union method with the
rejection region:

X < A =ty (@)SY?/y/m, (1.4)

where ¢,-1(e) is the upper o quantile of Student t distribution with n — 1 degrees of
freedom. Brown et al. (1996) obtained an a—level unbiased test with the rejection
region:

|X| < B(£Y/?), (1.5)

where B is some positive function which is always no smaller than the right hand side
of (1.4). Therefore, Brown et al.’s test (1.5) uniformly improves Schuirmann’s test
(1.4) in power. This fact will be used in Section 5. Although there is no closed form
for the function B, it can be evaluated numerically for (1.1).

In Section 2, we shall use the likelihood ratio approach to derive a test statistic.

Although the likelihood ratio test (LRT) generally satisfies a well known asymptotic
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result to help choose the cutoff point, it fails to recommend a meaningful cutoff point
for (1.1). In Section 3, we shall show that a confidence set approach leads to the
same statistic and a specific cutoff point. Section 4 shows that the intersection-
union method (see, for example, Berger (1982)) leads to yet another test, called the
intersection-union test, which uses the same statistic and a smaller cutoff point when
compared to the test derived by the confidence set approach. Consequently, the a-
level intersection-union test is uniformly more powerful than the test constructed
using the (1-) confidence set. Similar phenomenon has been observed in the one-
dimensional case. It is well known that the usual (1 — @) t-confidence interval leads
to a test for (1.1) which is only of size of a/2 and is uniformly less powerful than the
two one-sided tests procedure of size @. Here and later, the size of a test is defined
to be the supremum of the type I error over the null hypothesis space. In contrast, a
test has level « if its size is no greater than . The intersection-union test, however,
can be improved uniformly as shown in section 5. By adapting the test of Brown
et al. (1996), we can construct a multivariate test uniformly improving upon the
intersection-union test. The improvement in power may be as big as 0.11. Numerical

studies are reported in Section 6 before the conclusion in Section 7.

2 LIKELIHOOD RATIO TEST

The likelihood ratio approach is one of the most common ways of constructing a test.

Let L(X, 8,%) be the likelihood function of model (1.2), where X = (X}, ...y Xn). The

test statistic is defined to be

supy, L(X, 6, %)

T o)

MX) =

X) = 2.1
supg, g, (X, 8, ) 21)

and we reject the null hypothesis if A(X) < K for some suitable K. It is interest-

ing that (2.1) has a simple expression which leads to the simple test in Theorem 1
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below. In comparison the likelihood ratio test for testing H, against Hp has a very
complicated form especially for large p and when ¥ is nondiagonal since it involves
calculating the maximum likelihood estimator for § when § € H,, a calculation
known to have only numerical solutions. See the comment at the end of the proof of

Theorem 1 in the Appendix.

Lemma 1 Under the model (1.2),

1
1+ infyeg,n(X = 0YS-1(X - 0)/(n - 1)

AX) = ( 2. (2.2)

Proof. See the appendix.

Below let X7 denote the ith element of X and ¥;; the ith diagonal element of 3.

Theorem 1 Consider the testing problem (1.1) under model (1.2). Then, for 0 <

K <1,
MX)< K ifandonlyif | XD <A-CySa/n V1<i<p (2.3)
where C? = K~2/" _ 1,

Proof. See the appendix.

There is one problem in this approach, i.e., the determination of the critical value
K. Traditionally, one may conclude that —2in(A(X)) has an asymptotic chi-squared
distribution with degrees of freedom d — dj,, where d is the dimension of the whole
parameter space and dp, is the dimension of the null hypothesis space. In testing
(1.1), however, d — dy, = 0 which is nonsensical since a chi-squared distribution with
zero degree does not exist. However, the likelihood ratio test does give us a useful
statistic. We postpone to Sectiqn 4 the determination of the critical value C so that

the likelihood ratio test is an a-level test.



3 CONFIDENCE SET APPROACH

Another way of constructing a test is the confidence set approach. Earlier Hsu, Lu
and Chan (1995) proposed using two separate confidence sets, one for the new and one
for the reference treatment. Their approach should be less efficient than considering
one confidence set for the difference as we shall do below. Brown, Casella and Hwang
(1995) constructed confidence sets which are optimal in some sense for bioequivalence
problems. They assume that ¥ is known, although it is possible to generalize their
result to the unknown ¥ case.

For testing a statistical hypothesis, let C(X) be a confidence set for §. One may

define a test for (1.1) which rejects the null hypothesis if and only if
C(X) C Ha. (3.1)

It is easy to see that this test would be an a-level test if C(X) has confidence level 1—c.
We shall consider the Hotelling’s T2 = n(X —0)'S~}(X —8). Then (n—p)T?/[(n—1)p]
has an F'—distribution with degrees of freedom p and n—p. Let F,,_,(a) be its upper

a quantile and C) be the value such that P(T? < C?) =1 - @, and
C(X)={8:T*< C?}. (3.2)
Then C(X) is a 1 — a confidence set for §. In fact,

Ct = Fyn-pl0) o (n = 1) (3.3)

Theorem 2 Consider the testing problem (1.1) under model (1.2). Then the test
defined by (3.1) and (3.2) is equal to the test which rejects the null hypothesis of (1.1)
if and only if

1XOl<A-CSa/n vV 1<i<p (3.4)



Proof. See appendix.

Notice that this test uses the same statistic as the likelihood ratio test (2.3). It
also gives a precise cutoff point as shown. This is a very useful feature of this test.
It can, however, be uniformly improved by the intersection-union test in the next

section.

4 INTERSECTION-UNION TEST

Schuirmann (1987) proposed a test (1.4) by using an approach called intersection-
union method in Berger (1982). See also Casella and Berger (1990, p.356). In this
section we will generalize the Schuirmann’s test to p > 1.

Let us consider p sets of hypotheses:
Hoi: 10 > A Hy;: 169 < A, (4.1)
for : = 1,...,p. For each set of hypotheses, one has the a-level rejection region

Ri={|X9 < A —t,y(a)y/Zi/n})

corresponding to the Schuirmann’s test (1.4) for the one-dimensional case. It is ob-
vious that the rejection region _

R =n?_,R; (4.2)
defines an a-level test for (1.1) since Hy = Ni_; H,, and R’ has a form similar to the
likelihood ratio test (2.3). This method is called intersection-union since the rejection
region is the intersection of several rejection regions and the null hypothesis is the

union of several null hypotheses. This test is also called the repeated univariate test

(based on decision rule 2) in Schall et al. (1996).

Theorem 3 Consider the testing problem (1.1) under model (1.2). Then the test R’

for (1.1) has size . It is uniformly more powerful than the test (3.4).
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Table 1: The actual size a; of the test derived from the confidence set approach when
the test level is 0.05, the sample size n = 24 and the number of characteristics p
varies.

p | 1 2 3 4 5 10
o [ 0.025 6.63x107° 2.10x107° 6.70x107% 2.35x10~% 3.68x10~"

Proof. See appendix.

From Theorem 3, we can determine the critical value C = tn-1(@) in (2.3) so that
the likelihood ratio test (2.3) has size a. Therefore the o-level likelihood ratio test
is equal to the intersection-union test. Also, we can figure out the actual size of the
test (3.4) constructed by the confidence set approach. The size is the number ¢; such
that C; = t,_1(0y). After some straightforward calculations, we may conclude that

2

o = P(5 > g)/2 (4.3)
n-1

where ¢ is the o upper quantile of x3/x2_,. Here x2 denotes a chi-squared random
variable with p degrees of freedom, and all the above chi-squared random variables
are independent.

In particular, if p = 1, then a; = /2, a well known result in the one-dimensional
case. Namely the 1 — o confidence interval leads to the two one-sided tests procedure

with size a/2. In general, we can conclude that
(841 S a/2

for all p. Also o, is decreasing and can be as close to zero as possible when p goes
to infinity. Table 1 gives the value of ; and as is shown, a; can be very small. This
shows that the discrepancy between the error probability o of the confidence set can
be.drastically different from the actual size of the test that the confidence set leads to.

This striking phenomenon is unique to the bioequivalence problem, since in standard
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problems the error probability of a confidence interval equals the size of its associated

test.

5 IMPROVED TEST

Although the intersection-union test R’ improves upon the test constructed using the
confidence approach, it can be uniformly improved in power itself. In this section we
will generalize Brown et al.’s (1996) test (1.5) to the case p > 1. Here, we will apply
the intersection-union method again.

Consider the rejection region of an unbiased test

RY = {|I X9 < B(vVZa)}

of Brown et al. (1996) (1.5) for the one-dimensional case. For the specific form of
B, see Brown et al. (1996). It is known that RY is an unbiased a-level test for (4.1)
which contains properly the rejection region of Schuirmann’s test. Consequently, it

has a uniformly larger power than Schuirmann’s test. Let
RV =nf_,RY.

Obviously RV uniformly improves R. Further, by an argument similar to the one in
the last section, we conclude that R has size « for testing (1.1). The test RV is not
unbiased for (1.1) unless p = 1. It might be uniformly improved in power by enlarging
the rejection region without overshooting the test level. The problem of constructing
a test better than RY is still unsolved. Both RV and R’ have the good property that
their power functions are decreasing in each |§)| when other §)s and ¥ are fixed.
This is reasonable since we want to have a maximum power when § = 0, i.e., the
two drug effects have the same mean. Unlike the one-dimensional case, when p > 1

we shall show below that a nontrivial unbiased test with such a power function does
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not exist. Therefore, an unbiased test for (1.1), if exists, may have a pathological

rejection region and may be difficult to construct.

Theorem 4 Let @(X,}i‘) be the critical function of an a-level unbiased test for (1.1)
whose power function is unimodal with respect to each coordinate 8. Then ®(X, 5)

is the trivial test, i.e., @(X,ﬁ) = a,a.s..

Proof. See appendix.

6 NUMERICAL STUDIES OF POWER

In this section we will provide some simulation results for the power of the derived
tests in Sections 4 and 5. We choose p = 3 and A = In(1.25) in (1.1) which means
that we may consider AUC, Cp,, and T, simultaneously and the ratios of two
population means for the characteristics must be within (0.8,1.25) for bioequivalence
to be asserted.

Now the power is a function of

1
Q( ) 012 P120102 P130103
9= _9_(2) , and X = | p120109 0'3 £230203
Q(3) £130103  P30203 Ug

in (1.2), and o; is the standard deviation of each variable and p;; is the correlation
coeflicient of each pair of variables. In the simulation, 9t = a,0; = band p;; = ¢ for
all 7,7. It is reasonable to assume that p;;’s are positive since AUC, Cpar and Tior
usually are positively associated. All results are based on 100,000 simulation times.
Table 2 gives the power simulations of the intersection-union test and the improved
test in Section 5 when a = 0,b = 0.5 and c is from 0 to 1 with a step 0.1. The improved
test, as expected, has a uniformly higher power than the intersection-union test (4.2).
The power increment is getting larger and larger when the correlation coefficient goes

to 1. When b = 0.6 and ¢ = 1, the improved test can have a power 0.244 which
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Table 2: The power simulations of the intersection-union test (IUT) and the improved
test in Section 5 when a = 0,b = 0.5 or 0.6 and ¢ varies.

b=0.5 b=0.6

c IUT  Improved test IaT Improved test
0 | 0.04893 0.06557 0.00291 0.01446
0.1 | 0.05183 0.06875 0.002470 0.01516
0.2 ] 0.05478 0.06991 0.002880 0.01497
0.3 | 0.05825 0.07539 0.003630 0.01601
0.4 | 0.06379 0.08278 0.004730 0.01870
0.5 | 0.07440 0.09231 0.006170 0.02136
0.6 | 0.08849 0.10814 0.008610 0.02502
0.7 | 0.10908 0.12864 0.011920 0.03169
0.8 | 0.13960 0.16192 0.020110 0.04516
0.9 | 0.19367 0.21815 0.037560 0.07271
1 10.37123 0.40705 0.13811 0.24431

is 0.11 larger than the intersection-union test. Also one may notice that the power
increment is sensitive to the correlation coefficient. For example, when b = 0.5 and ¢
is changed from 0.9 to 1, the power of the improved test increases from 0.218 to 0.407.
Therefore, it is much easier to establish the bioequivalence if the characteristics are
extremely highly correlated.

In Table 2, we focus on the case where powers are not high. These are the cases
where the improvements are largest. When powers are high, the improvement is
negligible. However, since the improved test is uniformly more powerful, there is no

loss in any event but possible with some gain in using the improved test.

7 CONCLUSION

In this paper we discuss several different ways of constructing bioequivalence test
in a multivariate setting when the covariance matrix is unknown. It is interesting

to observe that the likelihood ratio approach, the confidence set approach and the
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intersection-union (IU) approach all lead to the same statistic. However, the first does
not provide a cutoff point; and the U approach gives a better cutoff point than the
confidence set approach and hence provides a more powerful test. This IU approach
can be uniformly improved by using Brown et al’s (1996) one-dimensional result. It
appears that it is difficult to further improve upon this improved test. In particular,

under a certain condition, any unbiased test for p > 2 is a trivial test (see Theorem 4).

8 APPENDIX

Proof of Lemma 1.

" 1 NNy Vsl
:—)—(\/Zr.)"l’lzln/zgxp{ _7'=ZI(AJ 8)T7H(X; - 8)/2}.

Here, for a matrix M, |M| denotes its determinant. It is well known that

e—n/?

(V2r)m|(n — 1)S/n|r/2

X) = L(§,T|X) lg:x,r.:(n—ni/n =

To evaluate the numerator in (2.1), note that

e—n/?

(V2m)m?| T, (X; = )(X; = 0 /n[™?

supg L(8, B|X) = (8.1)

and

1=
I
I
£
|
:
4
+
,:_!\
o
|
=
™
!
=

(X; - 0)(X; — 8)'|

[y
1]
—

Hence (8.1) equals

e—n/?

(VEr)|(n ~ DE/n2(1 + n(X — YE-1(X - 0)/(n = 1)"/*’

establishing (2.2).



Proof of Theorem 1. By Lemma 1, A(X) < K is equivalent to
infpe,d(X,8) > C2. (8.2)

where d(X,8) = (X - 8)L"1(X - 9).

If X € Hy, then (8.2) fails. Since by setting X = 6, we may see that the left hand
side of (8.2) is zero. Obviously (2.3) fails also. Hence (2.3) and (8.2) are equivalent
for this trivial case.

If X ¢ Hp, then X € H, and hence X stays inside a cube. We shall obtain an
expression for the left hand side of (8.2), by finding a 8, outside the cube such
that d(X,0) is Iﬁinimized at § = 0,,;,. Let P;; denote the (p — 1)-dimensional plane
which consists of points whose ith coordinate is equal to jA where j =1or j = —1.
Obviously these P;;, (1 < i < pand j = £1), contain the boundary of the cube. Now
let

d;; = mingep,d(X,6).
We claim that
d* = min; ;d;;. (8.3)
where d* = d(X,8,,:») is the global minimum within @ € Hy, i.e., d* equals the left
hand side of (8.2). Equation (8.3) will be proved after (8.6). Let us assume it for the

time being. Note that P;; consists of point # such that
Q’e,— = jA
where ¢; is the ith coordinate vector. Let = £71/20. Using the new notation, we
may write P;; as
7'S2e; = jA | (8.4)
and the distance as
d(X,8) = (572X — )BT X ) (8.5)
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The minimization problem is now equivalent to minimizing (8.5) over all 5 satisfying
(8.4). This is equivalent to find the minimum distance between £~1/2X and the plane
defined by (8.4). Note that the distance between a point yo and the equation y'a = b

is
a’yo —-b

a'a
Letting a = $/2¢; and b= jA, then
X (@) — jA|?
I o S A

Using this and (8.4), (8.2) is then equivalent to

[ X® —ja|

57— <O (8.6)

Combining the two inequalities for 7 = 1, (8.6) is equivalent to (2.3), establishing
Theorem 1.

To prove (8.3), we first note that obviously
d" < d;
for every 1, , since F;; is a subset of Hy. Hence
d* < min;;d;;.

Further, the global minimum d~ is achieved on the boundary of the cube. This is due
to the fact that the minimizer §,,;, is the point of the intersection with the cube of

the largest ellipsoid of the form
S ={8:d(X,8) = constant}
such that S is contained in the cube. Using this, we then have
d* > min; ;d;;
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since the boundary of the cube is contained in the union of Pij’s. Hence (8.3) is
established and the proof is completed.
A Comment on Theorem 1: Note that we are fortunate to have a simple expression

for d* by using (8.3). There is no simple expression for
minﬁEHAd(‘X,’ -Q)v

however, when X is outside the cube H,. This kind of minimization relates to the
problem of finding the maximum likelihood estimator of § when § is known to be in
a cube, which generally cannot be found in closed form. As a result, only numerical
solutions are possible.

Proof of Theorem 2. Let b(X) = max;<i<pbi(X), where b;(X) = supgec(£)|ﬁ(i)|.
By (3.3), the test rejects if 5(X) < A. We claim that

bi(X) = | XV + Cry/Sai/n (8.7)

which obviously establishes the theorem.
To prove (8.7), let ¢; be as in the proof of Theorem 1. Then 8 = e;f, and for
geCX)

eld < X0 4 (21/26,')’2—1/2(Q—— X)

1

= X0 4 /erSef(0 - XyE-1(8 - X))
< X(i) + Clveﬁflei/\/ﬁ
X6 4 Cry iii/n

where the first inequality follows from the Cauchy-Schwartz inequality. Similarly,

el > X — Cyy/Ti/n. These imply that bi(X) is less than or equal to the right

hand side of (8.7). To establish the equality, let

Q = X + Clie;/\/ i:,-,-n.
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It can be shown that these two §'s belongs to C(X) and also one of them gives
equality in (8.7). This establishes the theorem.

Proof of Theorem 3. By the intersection-union method, R’ is an a-level test. Now
we show the supremum of the probability of type I error over Hy is at least . These
obviously imply that the size of the test is exactly a. To achieve this, let 9" be a fixed
constant for every ¢ and let all entries in ¥ be the same. Therefore, all coordinates of
X; in model (1.2) are the same, and thus R! reduces to the Schuirmann’s test (1.4).
It is well known that the Schuirmann’s test has size a, establishing the theorem.

To prove the second part of the theorem, we show that t,_;(«) is less than C;
which will imply that R’ is uniformly more powerful than (3.4). This follows from
(3.3) and the fact, which is easily proved, that the random variable p(n—~1)F, n_p/(n—
p) is stochastically greater than the random variable Fy,_;, where F,, has an F-
distribution with degrees of freedom p and gq.

Proof of Theorem 4. The normal distribution belongs to the exponential family
and hence E; s®(X, fJ) is an analytic function of @ for each £. Thus Ezs®(X, ﬁ) =a
if 81 = £ A due to the unbiasedness of ®. Let A be the set of § such that |Q | < A.
Since, by assumption, Eg,gé(}:’,i) is unimodal in 8V, it is not smaller than o on
A. On the other hand E; s®(X, 53) should be no larger than a on AN H, because of
its unbiasedness. This implies Ep z®(X, $) is constant & on A N Hy which contains
an open set of §. Therefore, by analyticity, Eg,zq)()_( ,i) = a for all § and £. We
conclude ®(X, f)) = a almost surely by completeness and the proof of the theorem is

complete.
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