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Summary: If f is a smooth nondecreasing function on [0,1], the local time Ly spent by
standard Brownian motion on the graph of f satisfies P(Ly < ) 2 P(2Lg < z), z > 0.
The 2 is best possible.

Introduction: This paper is concerned throughout with the local time of a standard
Brownian motion (B;) on the graphs of functions f defined on [0,1], f smooth enough
so that the paths of By — f(¢),0 <t < 1, are Brownian paths. Girsanov’s theorem
characterizes these functions. The local time spent by (Bt) on the graph of f up to time s
is defined as the local time spent by (B: — f(t)) at 0 up to time s, and designated L¢(s).
We shorten Lg(1) to Ly.

We use ~ to designate equality of distribution of random variables, and X KXY means
P(X < t)> P(Y < t),t <r. The purpose of this note is to answer a question raised by
C. Burdzy and J. San Martin in [1], namely, is L fsto whenever f is nondecreasing. The

answer is, almost. We prove

Theorem 1. If f is nondecreasing on [0, 1], then Lf52L0. The constant 2 is the smallest
possible.

Of course, the distribution of Lo is the distribution of mazo<i<1Bt, and is explicitly
known. It is easy to construct rapidly oscillating functions which show that no distribu-
tional comparison along the lines of Theorem 1 is possible, if the restriction that f be

nondecreasing is entirely removed.

Proof of Theorem 1. Let (F;) be the filtration of (B:). First we give the examples
which verify the last sentence of Theorem 1. The joint density of (L:/ V1, B:/\/t), which

is the same for all £, is given on page 45 of [2], and it is easy to use this to show

(1) P(B: > aVt|Lo(t) < eVt) = 0 as a — o,

uniformly in € > 0.



Let an = 1 — n~ Y, and define the functions g, and h, on [0,1] by g, = n%t, and
ha(t) =0, 05 t < ap, bn(t) = n%(t — an), an <t < 1. Let €, > 0 be so small that

(2) P(L,,(n"?) > &) > an.

Put T,=inf(t > a, : B = hy(t)), and define

Ap ={mn <1-n"2},
Cr = {Lo(an) < €n}, and
'Dn = {0 < Ban < \/ﬁ}'

There are constants z,,n > 1, such that
(3) 2n < P(Ap|Fa,) <1on Dy, and z, — 1.
By (2), there are constants wy,n > 1, such that

(4) wp, < P(Dy)Fa,) < % on Cp, and w, — %

Put I'y, = {Ln, — Lhn(an) > €}, and note, by (2) (and the strong Markov property) that

(5) P(T,|Fr,) > an on Ay.

Now P(Lp, < €,) < P(Cn)— P(C,NTy), and P(Crn)/P(Lo < €n) — 1 as n — 00, s0

to prove

(6) limsup P(Ly, < €n)/P(Lo < €n) < %,

n—r00

it suffices to prove

(7 limsup P(T»|Cr) > 3.
We have
(8) P(T,NC,)>PT,NCrNA,NDy)

— P(T'3|Cn N An O D) P(An|Cr N Do) P(Dy|Cr)P(Cr).

2



Now
P(T,|C.NA,ND,)

= EP(To|Fr)I(Cp 0 Ap N Dy)/P(Cr N Ay N D)

> O,

using (5). Also,
P(A,|C,NDy,)

= EP(Ap|Fu,)I(Cr 0 D,)/P(C,N Dy,)

2 Zn,
using (3). In addition (4) implies P(D,|Cy) > wy,. These three inequalities together
with the estimates obtained for ap, z,, and w,, when plugged into (8), yield (7) and thus
(6). And (6), together with the fact that lim, oo P(Lo < c€n)/P(Lo < €,) = ¢, for
any constant ¢, show that the functions h, may be used to verify that the constant 2 of

Theorem 1 may not be replaced by a smaller one.

Now the first sentence of Theorem 1 will be proved. For notational convenience, we
both assume f(0) = 0, and extend f to [0,00) by defining f(¢t) = f(1),t > 1. Let € > 0.

Put
TJ’E =0,

7'2];-’_7_1 = inf{t > 7'2’;-’€ :|Be — f(t)| =€}, >0, and
i =inf{t > 0¥, : By = f(¢)},5 > 1.
Let Nge = sup{k : mox < 1}. Then N¢. is the sum of the downcrossings of [0, €] by
B; — f(t),0 < t £ 1, plus the upcrossings of [—¢,0] by B; — f(t), 0 <t < 1, and thus (see
page 222 of [2]),

(9) Ly = lim(e/2)Ny.

Let X = 700 Y = 7' — 70!, and let R be a random variable such that P(R =
1) = P(R = 0) = ;. Of course, Y has the distribution of inf{¢t > 0 : B; = —1}. Let
X;,i>1,X;,i>1,Y;,i > 1, and R;,7 > 1, be independent sequences of independent and
identically distributed random variables, the individual variables having the distributions

of X, X,Y, and R respectively.

If T';,2 > 1, are nonnegative random variables, and ¢ > 0, we put Op(¢) = sup{k > 0:
Sk Ti<t}). Put Z; = X; + X; + 4YiR;,i > 1, and W; = 4Y;R;,i > 1.
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We claim

(10) GZ(5_2):’NO,&:’
and
(11) Ow(e™*)Z N ze.

Before proving (10) and (11), we show how they can be used to prove the first state-
ment of Theorem 1. It is not difficult to use EX; = EX; < 0o, and EY;R; = oo, to
show

Jim 0z(1)/Ow(t) =1 as..
From this, scaling, (9), (10), and (11), we have
P(Ly<z)= l.l_r)r(l) P(eNgae < )
> lim P(eOw(¢™") < @)
= 51_15(1) P(eBz(e7?) < z)
= P(Lo < z/2),

the second equality since lim.—o €0@z(¢™2) has a continuous distribution, namely, the

distribution of Lyg.

Now we prove (10). Let

‘v?’e = inf{t Z T202~’i1: |Bt B 0,e | = S}

2:1

Then e~2(r05, — 70:5,) = X, e 2(v)* — 19%,) = X, and e7%(7]"°) = 4YiR;, the last
equality since 75:° = vy’ with probability 1, and |B,o 0 .| = 2¢ with probability 1. Thus

_2(7'21 — 7'2z ‘o) = Xi+ X; + 4R;Y;, all the 1ndependence being provided by the strong
Markov property. The strong Markov property also provides the additional independence

necessary to extend this last equality to (10).

Finally (11) is proved. Since f is nondecreasing, the conditional probability, given

ff2c, tha.t .B f2r: = f(B

T2i41 7'2.-}-1

decreasmg, if this happens, then T2f ’_?_62 > inf{t > 7'2’;’3_61 By = f(B,s,2 ) + 2¢}, the only
2i—2

) — 2¢, exceeds 3. Furthermore, again because f is non-

4



possibility of equality being if f is linear on some interval. Thus ¢~2 (7'2’;’_?_52 - 7_2fi,25) R AY;R;.

Furthermore this distributional inequality holds conditionally given F, s,2, and now (11)
2%

follows.
The author thanks Jaime San Martin for his comments on an earlier draft of this
paper.
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