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1 Introduction

The classical It6-type stochastic differential equation is of the form

Xi=z0+ /t a(Xs)dW, + /t b(X,)ds : (1.1
0 0

with a, b matrices of functions and W a multi-dimensional Brownian motion. By replacing dW;
and dt with a vector of semimartingales dY; we consider the more general equation

i
X; =20+ /0 F(X,_)dY, (1.2)

where f denotes a matrix f = (f%) of functions. In applications one often wants to solve equation
(1.2) numerically, when possible. Because of simulation difficulties, and because one often combines
a numerical solution of (1.2) with a (slow) Monte Carlo technique, it is usually advisable to solve
(1.2) numerically with an Euler scheme, rather than a more complicated, faster one. (See the
survey paper of Talay [14] for a discussion of this issue.)

Without loss we will take the time interval to be [0, 1] rather than [0, T'] for some (non-random)
T > 0. We will assume [0, 1] is partitioned by II" = {0 =t < t; < ... < t, = 1} with t; = i/n,
0 < ¢ < n. Rates of convergence will thus be given relative to this partition scheme. For equation
(1.1) if @ = 0 then the rate of convergence of the Euler scheme is classically 1/n; if a does not vanish
then it is also classical that the rate is 1/4/n. The distribution of the (normalized) asymptotic
error, however, is not at all classical and was established only recently for equation (1.1) (see [8]).

In this paper we mainly aim to give a class of equations of type (1.2) that converge at the rate
1/+/n and determine their asymptotic error, although we also examine some equations providing the
rate 1/n. To give a flavor of our results in a very simple setting, consider the 1-dimensional case (for
Y and X as well) when Y is continuous and is either (1) nondecreasing, or (2) a local martingale.
Denote by X" the “continuous” Euler approximation for (1.2) and by X the “discretized” one
(see Section 3 for the definitions), so the error processes are respectively U? = X” — X and
U'=X"-X.

The first situation corresponds to a purely deterministic problem:
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Theorem 1.1. If Y is a non-decreasing continuous function, there is equivalence between

a) Forzo =1 and f(z) =z (i.e. X = €Y in (1.2)), the sequence of numbers nUP = nU; is
bounded.

b) For all starting points zo and all C functions f with at most linear growth, the functions
nU" and nU " converge uniformly to a limit U.

c) The function Y has the form
¢ 1
Y; =/ ysds, with / yfds < 0.
0 0

In this case, the limiting process U is the solution of the following linear equation:

¢ i
U ZA f’(Xs)Usyst - %/0 f(Xs)f’(Xs)y;?dS. (13)

This covers in particular the case of an ordinary differential equation of the form
dXt = f(Xt)ytdt,

where the coefficient f is C' and s ~» y, is a given nonnegative function: then the Euler approxi-
mation converges at the rate 1/n on the interval [0, 1] if and only if we have fol y2ds < oo, which
seems to be a new result.

In the second situation, we denote by C the quadratic variation process of Y. We then have
the following;:

Theorem 1.2. IfY is a continuous local martingale, there is equivalence between
a) For allzo =1 and f(z) =z (i.e. X = E(Y), the Doléans
exponential of X ), the sequence of random variables sup, |\/nUP| is tight.

b) For all starting points zo and all C' functions f with at most linear growth, the processes
(Y, /nU™) and (Y,\/nU") converge in law to o limit (Y,U).

c) The quadratic variation has the form
t 1
Cy =/ cyds, with / cfds < 00.
0 0
In this case, the limiting process U is the solution of the following linear equation:

t . 1 ¢ ,
Ut =/O f(Xs)Ude.;- 751 f(Xs)f (Xs)cdes’ (14)

where W is a standard Brownian motion, independent of Y.

Note that in (1.4) we have some “additional” randomness provided by the extra Brownian
motion W: this is a typical feature of the limiting error process, when the driving term Y itself is
random.

Surprisingly, the situation is very different when the driving term Y is discontinuous. Consider
for example the case where Y is a 1-dimensional discontinuous Lévy process. Then two situations



occur: first, if there is no Brownian part, then +/nU™ and \/ﬁﬁn converge in law to 0, which means
that the rate is faster than ﬁ (but we do not know the correct rate, or even if there is a rate at

all). Second, if there is a Brownian part in Y, then \/nU  converges to a limit U, but v/nU™ does
not converge in the usual sense (i.e. for the Skorohod topology on the set of cadlag functions). It
does converge to U, however, for weaker topologies: the one induced by convergence in (Lebesgue)
measure,which is known as the Meyer-Zheng topology [10], and also the new S-topology introduced
by Jakubowski [6].

The paper is organized as follows: In Section 2 some preliminaries are given, and this section
may be skipped at first reading (except for the definitions of the so-called stable convergence, and of
the UCV property). Section 3 is devoted to general results (extending [8]) on rates of convergence.
We have given in Section 4 some results in the case Y is of finite variation, because this is simpler
than the general case while it shows already all the pathologies of this problem; this section may
also be skipped, although it contains the proof of Theorem 1.1. Section 5 is devoted to continuous
semimartingales, and this is the most useful part of this paper as far as applications are concerned,
and it contains the proof of Theorem 1.2. Finally, the case of Lévy processes is considered in
Section 6.

2 Preliminaries

In this paper we will mainly be dealing with weak convergence in the Skorchod topology: weak con-
vergence for this topology is denoted by “=>”. We need to give a review of and some complements
to weak convergence.

First we recall some facts about stable convergence. Let X, be a sequence of random variables
with values in a Polish space E, all defined on the same probability space (2, F, P). We say that
X, converges stably in law to X, written “X,, =2 X” if X is an E-valued random variable
defined on an extension ({2, F, P) of the original space and if

lim E(Uf(X5)) = E(Uf(X)) 2.1

for every bounded continuous f : E — IR and all bounded measurable random

variables U. This convergence was introduced by Renyi [12] and studied by Aldous and Eagleson
[1], see also [3]. It is obviously stronger than convergence in law.

If Y is another variable with values in another Polish space F' we have the following equivalence:

Lemma 2.1. If X,, =% X then we have (Y, X,) =W (Y, X) for the product topology on
E xF.

Conversely if (Y, X,) weakly converges to a limit, we can realize this limit as (Y, X) with X
defined on an extension of the space on which Y is defined, and X, =% X as soon as Y
generates the o-field F.

Proof. The first claim is trivial. Conversely, assume that (Y, X,) weakly converges to a limit
(Y',X"). Call Q(y,dz) a version of the regular conditional distribution of X' given Y’. Set
Q=QxE, and F = F® £ where € is the Borel o-field of E, and P(dw, dz) = P(dw)Q(Y (w), dz).
We thus define an extension of the original space, with the “canonical” variable X (w,z) = z, and
the pairs (Y, X) and (Y, X') clearly have the same law.

Observe that (2.1) holds for all U = g(Y"), where g is continuous and bounded on F, and what
we need to prove is that it holds when g is measurable and bounded. But we then can find a
sequence g, of bounded continuous functions such that g,(Y) — ¢(Y) in L'(P), and the result
readily follows. O



Note that all this applies when X,,, X are R%-valued processes with cadlag paths, as well as
Y: we can then view them as random variables with values in the Skorohod space ID. However, in
- this situation we should be careful: the stable convergence of X,, implies the weak convergence of
the pair (Y, X,,) for the product topology on ID(IR?) x ID(IR?), which is not the Skorohod topology
on ID(IR*+?), and we do not have in general weak convergence of (Y, X™) in the usual sense.

Next, we prove a result on weak convergence and discretization which might be well known,
but we could not find it in the literature. First, a standard result asserts that if = is a function
belonging to ID and if 7, is a sequence of increasing piecewise constant functions from [0, 1] into
[0,1] which converges to the identity, then the sequence of “discretized” functions z o7, converges
to £. More generally, we have:

Lemma 2.2. If a sequence X™ of (possibly multidimensional) processes weakly converges to X,
then the processes X 1’7‘"(") weakly converge to the same limit.

Proof. By the Skorohod representation Theorem, we can replace weak convergence by a.s. con-
vergence, so that we only need to prove that if z, — z in ID, then the sequence y, = z, o 7, also
converges to z. There are time-changes A, converging to the identity, and such that z, — z o A,
goes uniformly to 0. Then y, — z o A}, also goes uniformly to 0, where A/, = A, o 7,. Now we have
seen above that £ o Al, = z in ID, and we are finished. O

Next, we recall some facts about convergence of stochastic integrals, coming from the work of
[5], [7]. See [9] for an expository account. First recall that for every § > 0, any semimartingale can
be written as

Xt = Xo+ AQ): + M(8): + > AX,1(jax,|>6} (2.2)
8<t
where A(6) is a predictable process with finite variation, null at 0, M (d) is a local martingale null at
0, and AX, denotes the jump size of X at time s. As usual (M, M) denotes the predictable bracket
of two local martingales M and N, if it exists. All these notions are relative to some filtration (Fy)
on our probability space. We also write, for any (possibly multidimensional) process V:

V* = sup [|W]]. (2.3)
tefo,1]

Deﬁnii;ion. Let X" = (X "’i‘)1515d be a sequence of IR%-valued semimartingales, with A(8)™* and
M (8)™* associated with X™* as in (2.2). We say that the sequence (X™) has uniformly controlled
variation (UCV) if for some § > 0 and for each i the sequence

1
(M), @)1 + [ 1AGZE N+ T IAXP L axriisey
0<s<1

is tight. This notion does not depend on the particular choice of § > 0 (recall that our time
interval here is [0, 1]; it is important to emphazise that this notion does depend on the underlying
filtrations (F7)). O

It turns out that this property is equivalent to the notion of uniform

tightness (UT) as introduced by Jakubowski, Mémin and Pages [5], and its usefulness derives
from the following fundamental set of results (see for example [9]). Below, we denote by H - X
the stochastic integral process of H w.r.t. X, and it is understood that these two processes have
matching dimensions.



Theorem 2.3. Let X" and Y™ be two sequences of IR%-valued semimartingales, relative to the

filtrations (F7).

a) If both sequences X™ and Y™ have UCV, then so has the sequence X™ +Y™.

b) If each X™ is of finite variation and if the sequence fol |dXT| is tight, then the sequence X™ has
Ucv.

c) Let H™ be a sequence of (Fy)-predictable processes such that the sequence H™ is tight. If the
sequence X™ has UCV, so has the sequence H" - X".

d) Let H™ and H'™ be two sequences of (F}')-predictable processes such that the sequence H™ is
tight and that (H™ — H™)* % 0. If the sequence X™ has UCV, then (H™- X" — H'™. X™)* »F 0.

e) Suppose that X™ weakly converges. Then UCV is necessary and sufficient for the following
property (called “goodness”):

For any sequence H™ of (F}')-adapted, right continuous and left-hand limited, processes such
that the sequence (H™, X™) weakly converges to a limit (H, X), then X is a semimartingale
w.r.t. the filtration generated by the process (H,X), and we have (H", X" H" - X™) =
(H,X,H_ - X).

We finally turn our attention to stochastic differential equations. General
results are available (see e.g. [9] or [13]), but we confine ourselves to linear equations of the
type:
t
Xe= o+ / X,_H,dY,, (2.4)

where Y is a given semimartingale, and J is an adapted cadlag process, and H is a predlctable
process. All these terms can be multidimensional, with matching dimensions.

Let us begin with a comparison lemma, where X' is the solution of another

equation (2.4) associated with J', H', and with the same semimartingale Y.

Lemma 2.4. For alle > 0 A > 0 there is a constant K

depending on €, A and on the semimartingale Y, such that for elln > 0, u > 0, v € (0, 4],
w € (0, u] we have

uv +w K.

(2.5)
Proof. Let us introduce first a notation: if Z is a cadlag process and T a stopping time, we write
ZT~ for the process Z1 ~ = Zilpo,1)(t) + Z7-1[7,1(2)-

We will use the “slicing technique” of Doléans-Dade (see [11]), which says three things: first,
for any semimartingale Y and any o > 0, € > 0 there is a stopping time T such that the semi-
martingale YT~ is a-sliceable and that P(T < 1) < . Second, if Y is a-sliceable for some o then
E(sup, | fg H,dY;|) < Ky E(H*) where Ky only depends on Y. Third if Y is a-sliceable for some
a and if we consider Equation (2.4) with |H| < A, then E(X*) < K4,y E(J*) for a constant K4 y
depending on A,Y, provided a < C4 for some C4 > 0 depending on A only.

P((X-X"Y*>n) <e+P(H*> A)+P(J* > u)+P(H-H")* > v)+P((J-J)* > w)+

Now we fix A > 0 and € > 0, and we take & = C4. Then we choose a stopping time T such
that P(T < 1) < ¢ and that Y = YT~ is a-sliceable. Then we set § = inf(¢ : |Hy| > A or |J;| >
wor |Hy — Hi| >vor |J;—J{| >w) AT and J = J5~, J = J'S—, and define the it" component of
HasH =H AAV —A, and similarly for H. These last two processes are predictable, and we
can consider the solutions X and X of (2.4), associated with (7, ,Y) and



(7’,7’,?) respectively. Note that
X=X, X'=X  ontheset {S>1}. (2.6)

Note also that X = X — X is the solution of (2.4) associated with (7 ,H,Y), where J, =
T, =T+ N (H, —H,)X,_dY,. Using the properties of sliceable semimartingales recalled above,
we get if v < A and w <.w:

—x

EX

—%

y<KEJT"™), EJ™)<w+KvEX"), EX™")<(@+wk < (u+AK

where K only depends on A and Y, so indeed on A and € and Y. (2.5) re adily follows from these
estimates and from (2.6), once observed that P(S < 1) is smaller that the sum of the first four
terms on the right of (2.5). O

Now we consider a sequence of SDE’s like (2.4):
¢
Xt =Jp +/ X H}dY,, (2.7
0

all defined on the same filtered probability space and with the same dimensions. Let also p,, be an
auxiliary sequence of random variables with values in some Polish space E, all defined on the same
space again.

Theorem 2.5. a) Tightness of both sequences J™ and H™* implies tightness of the sequence
X,

b) Suppose that we have another equation (2.7) with solution X'™ and coefficients J™ and H'™.
If the sequences J™ and H™* are tight and if (J" — J'™)* =F 0 and (H™ — H™)* - 0, then

c) Let V* = fot HZdY,. Suppose that the sequence H™ is tight and that the sequence (J™, V™, p™)
stably converges to a limit (J,V, p) defined on some extension of the space. ThenV is a semimartin-
gale on the extension (w.r.t. the filtration generated by the pair (J,V)), and (J™, V™, X", p") =>stably
(J,V, X, p), where X is the unique solution of

14
X =J + / X,_dV,. (2.8)
0

The statement (a) above seems to be new, while (b,c) are variations on the so-called “stability”
results for SDE’s ((c) is recalled from [13], while (b) has a slightly new formulation). We have stated
this theorem in a simple form, which is enough for our purposes, but instead of linear equations
we could have more general (Lipschitz-continuous) coefficients. Also Y might be replaced by a
sequence Y™: in this case it is necessary to add the assumption that the sequence Y™ has UCV,
which implies that in fact it is “uniformly” sliceable in some sense.

Proof. a) (2.5) applied with J' = 0 and H' = 0 yields
P(X™ > ) <&+ 2P(H™ > A) + 2P(J™ > u) + %KA (2.9)

where K. 4 is a constant-depending on €, A and Y. If we choose first ¢ arbitrarily, then A, u big,
then 7 big, we obtain that the left side of (2.8) is smaller than 2¢, hence (a) holds.

b) Similarly,
P((X™ = X"™)* > 1) < e+ P(H™ > A) + P(J™ > u)

+P((H™ — H™)* > v) + P((J" = J'"™)* > w) + 2K, 4.



So we obtain the result by choosing first €, n arbitrarily, then A, big, then v, w small, then n big.

¢) The assumptions ensure that the sequence V™ has UCV. Thus if we do not introduce the
variables p™ and if we replace stable convergence by ordinary (weak) convergence, this result is
well known (see e.g. [11]). Since stable convergence is just weak convergence of (U.J™, V™, p") to
(J,V, p) for any random variable U on the original probability space, our statement is proved. O

3 The Fundamental Result on the Error Distribution

Welet Y = (Y*)1<i<q be a semimartingale on a stochastic basis (2, F, (F;), P). We always assume
that Yo = O (this is of course not a restriction here). The time interval is [0,1]. We consider the
g-dimensional SDE:

dXt = f(Xt_)dYt, Xo = Zy- (31)

Here 2o € IR? and f is a continuously differentiable function from R? into IR? ® R* with linear
growth (i.e. ||f(z)|| < K(1 + [|z||) some constant K).

One knows that (3.1) has a unique (strong) solution. We consider the Euler continuous ap-
prozimation X" given by

where ¢, (t) = [nt]/n if nt ¢ IN and gon(t) =t —1/n if nt € IN, and the Euler discontinuous
approzimation x" given by .
X, = X[?lt]/n' (3.3)

The corresponding error processes are denoted by

Up =X —Xs, Up =X; — Xpnt)yn = Ulsy/me (3.4)

Theorem 3.1. If f is locally Lipschitz continuous and with linear growth, then U™ and U™ tend
to 0 in probability.

Proof. The second statement follows clearly from the first one. The first claim is proved in [8]
(Theorem 3.3) if f is bounded. In the general case we consider functions h, € C}(IRY) with
Yjzicm} < Am(T) < l{jg|<mt1}, and set fr(z) = f(z)hm(z). Let X(m) be the solution of
Equation (3.1) with the coefficient f,, and X™(m) be the corresponding Euler approximations.

Observe that X = X (m) is X* < m and that X" = X"(m) if X"(m)* < m. Hence U™ =
X™(m) — X(m) on the set {X* <m —1,(X™(m) — X (m))* < 1}, and thus for € € (0,1] we get

P(U™ >e¢) < P(X* 2m—1)+ P((X"(m) — X(m))* > ¢).

Since X™(m) — X(m) in probability uniformly on [0,1] as n — oo for each m > 1 and since
lim, P(X* > m — 1) = 0, the result follows. O

Next, let us examine rates of convergence. By this, we mean a sequence a, of constants going
to 400, such that the processes a,U™ or o, U are tight, with non-trivial limiting processes. If
this is the case, we also are interested in the “error processes” which are the limits of either one of
these two sequences. Indeed, as far as apphcatlons are concerned, the usual Euler scheme gives us
X" and thus we would prefer to have results on U but mathematically speaking the processes
U™ are easier to handle.

Here we give an improvement on a result by Kurtz-Protter, who essentially proved the im-
plication (a)=>(b) below. For this, we need to introduce some notation. For any process V we



write

AV =Vipn —Vicym B = Vs = Ving/n- (3.5)

For any two semimartingales U,V , we write

i
ZMU, V) = / UimMay,. (3.6)
0

Theorem 3.2. Let Z™ = (Z™% := Z™(Y?,Y7))1<i j<a, and let (a,) be a deterministic sequence
of positive numbers. There is equivalence between:

a) The sequence a,Z™ has UCV and (Y,0,2™) = (Y, Z).

b) For any starting point zo and any C* function f with linear growth, the sequence a,U™ has
UCV and (Y,a,U™) = (Y,U).

In this case, we can realize the limits Z and U above on the same extension of the space on which
Y is defined, and they are connected by

d q d
Ui =3 3 £ (X)) |URaY? - 3 f*(X)dzf? |, Ug=0, (3.7

(fi7 is the kth partial derivative of £9), and (Y, 2", U™) = (Y, Z,U) and also the sequence U
stably converges in law to U.

Remark 3.1. In view of Lemma 2.1, in (a) and (b) above we also have stable convergence in law
of ,Z™ and a, U™, but these stable convergences are not enough to imply the convergences in (a)
and (b).

Note also that we do not have (Y,U") = (Y,U) (except when Y or Z are continuous) in the
last claim. O

Remark 3.2. We will see later than when Y is continuous, then the assumption (a) is satisfied
under mild hypotheses on Y. It is also satisfied when Y has jumps and each jump time is contained
in an interval of constancy of Y, provided the “continuous part ” of Y satisfies again the mild
assumptions refered to above. In all other cases, we conjecture that indeed either the limits in this
theorem are all 0 (i.e., the rate a, is not the correct rate), or the sequence a,Z™ is not even tight
for the Skorohod topology: This conjecture is supported by the results of Section 4-2 and 6 below.
O

Remark 3.3. As we shall see in the proof, (a) is in fact equivalent to the property (b) stated for
a single (judiciously chosen) equation: Namely, let A € IR\ {0} be such that
P(AY; = —) for some i < d and ¢ € (0,1]) = 0. (3.8)

Then it is enough to have (b) for the d?-dimensional equation
.. . t .. .
Xy = 0i; + (1 - 673.7')Ytj + /\/ X;J_dY;z, 1<4,j<d. O (3.9)
0
Proof. 1) The implication (a)=>(b), as well as (3.7) is proved in [8] in the case when Vf is

bounded. The fact that a,U™ satisfies UCV immediately follows from Equation (3.21) in [8] and
from the fact that o, Z™ satisfies UCV.



When f is C' with linear growth, let f,, and X (m) be defined as in Theorem 1.1, and U™(m)
be associated with X(m) by (3.4). Then Vf,, is bounded. We know that (Y, a,Z", a, U™(m))
weakly converges to (Y, Z,U(m)) for all m where U(m) is the solution of (3.7) written for f,, and
X (m).

Denote by U the solution of (3.7) for f and X. As in Theorem 3.1 we have U = U(m) and
U™(m) = U™ on the set {X* <m — 1,U"(m)* < 1}, while U?(m)* =% 0 as n — oo, hence

limlimsup P(U # U™ or U™ # U™(m)) = 0.

Then (Y,a,Z",o”U™(m)) = (Y,Z,U(m)) for all m readily implies that (Y,0,Z", a,U") =
(Y, Z,U), and we have (b) and (3.7). The last claim is obvious by Lemma 2.1, since from what
precedes we have stable convergence of U™ to U.

2) Suppose now that we have (b) for Equation (3.9). We have U™ = (U™¥)1<; j<4 and
X™ = (X™%4)1<;j<d. A simple calculation shows that

t n,it i 2 vn,ii n,ii . .

|5 [upfayy - e xps, azp] if j=1i,
U = ; y . (3.10)

n,i 1 n,i Jii n,jt - .

i [,\U,,_JdY; XX dz ] AZPI if j i

Observe that for each i, X% = £(AY?) (the Doléans-Dade, or stochastic exponential). Thus (3.8)
implies that a.s. X* does not vanish, and X™% does not vanish either on [0, 1] for n large enough
(because of Theorem 3.1). Hence (3.10) can be “inverted” to yield

t n,ii n,ii i K1 Jid e s s
Zn’ji _ fO [(Ua— /AXq,:(s))dY; - (1/’\2Xg,.z(s))dU? 1,1,] ’ if i= 7 (3 11)
t . = o i, .
S [Uf_’”dY; AX2H n] UM, if i j.

One deduces from the hypothesis that (Y, a,U", X (] /n) = (Y,U, X), and the pair (Y, a,U") has
UCYV, so (a) readily follows from Theorems 2.3 and 3.1. O

In view of Remark 3.2 above, the following result has some interest: although not providing
the limit of the error process, it actually gives the convergence rate (recall that if a sequence V™
has UCV, then a fortiori the sequence V™* is tight).

Theorem 3.3. With the notation of Theorem 3.2, there is equivalence between:

a) The sequence anZ’i has UCV.

b) For any starting point zo and any C* function f with linear growth, the sequence a,U™ has
Ucv.

Proof. Assume first (b) and consider Equation (3.9) for a A having (3.8), so (3.11) holds. We have
seen that 1/X7 iy 1(1 ) goes to 1 /X ¥ uniformly in s, in probability, while X% does not vanish, hence

the sequence (1/X :n“.))* is tight. Then UCV for (U™) yields that (U™ "/XZ"".))* also is tight,
and Theorem 2.3(a) applied to the first part of (3.11) yields that (Z™%) has UCV. Then apply the
same result to the second part of (3.11) to get that (Z™*) has UCV for i # j, and (a) holds.

For the converse, we need to introduce the equation satisfied by U™, which is (with matrix
notation):

dUP = (F(XP) - F(X))dY; — (F(X) = (XD )dY.



Now, with any cadlag process V we set

1
kE(V)E = f(V, ..(t))/0 ViVene) + 2 (Vie — Vo, (1)) du, (3.12)

which is left-continuous. Apply Taylor expansion and the fact that X* — on @ = FxX on (t))(Yt— —
Y,.(t)) to get the following, where X is in between X;_ and X7 :

d(anU™)s = (anU™)— V(X )dY; — k(X™)Pd(anZ™);. (3.13)

The sequence k(X")™* is tight by Theorem 3.1, hence the sequence [; k(X™)?d(an,Z™); has UCV

as soon as (a) holds by Theorem 2.3. Since the sequence Vf(X™)* is also tight, Theorem 2.5 gives
the tightness of the sequence (a,U™*), and another application of Theorem 2.3 yields (b). O

4 Processes with finite variation

We treat here the case where the driving process Y in (3.1) is of finite variation, with the rate
1/n in view. In this case (3.1) is truly an “w-wise” (or deterministic) equation, and the reason for
looking at this case is not practical importance but rather methodological implications. When Y
is continuous, we find a necessary and sufficient condition for getting this rate 1/n, and this seems
to be new even although it concerns only “ordinary differential equations”.

However, when Y has jumps together with a non-trivial continuous part, the picture changes
radically: the rate is still 1/n, in the sense that nU™ and nU "~ remain tight, but in the deter-
ministic case these processes have no limit. In the random case, rather mild conditions imply the
convergence of these processes to a limit involving “additional randomness”.

For simplicity we only consider the 1-dimensional case. Extensions to several dimensions are
straightforward and left to the reader.

1) The continuous case. Here we assume that Y is of finite variation and continuous. Remember
that Yo = 0. We write Z” = Z™(Y,Y) (see (3.6)). An integration by parts shows that

[nt

]
1
Z =5 D (APY)? + (472 ] > 0. (4.1)
i=1

Theorem 4.1. Assume thatY is continuous with finite variation. There is equivalence between.:

a) We have
t 1
Y,;:/ ysds, / y2ds < oo as. (4.2)
0 0

b) The sequence of random variables (2"Z%" )p>1 is tight.
c¢) The sequence of random variables (nZ1),>1 is tight.
d) sup,, 2 < © a.s.

e) The processes nZ™ converge a.s. uniformly in time to a process Z.

10



Moreover in this case we have Z; = %fg y2ds and sup,, fol |dZ?| < o0 a.s.

Note that (e) and the last claim imply Condition (a) of Theorem 3.2, with a;, = n, while the
latter implies (c): hence the above result completely solves the question of whether the rate for
U, is 1/n or not, for processes Y as above. Note also that all statements above are “w-wise”
(a.s.), that is this result is deterministic in nature, and indeed we begin with two lemmas which
are concerned with the deterministic case.

Lemma 4.2. Assume thatY is continuous with finite variation and deterministic. Only two cases
are possible:

i) (4.2) holds and sup, nZ}* < co.
ii) (4.2) does not hold and 2"Z}" — oo.

Proof. Consider the following measures on (0,1]: A(dt) = dt, u(dt) = dY;, p'(dt) = |dYy|, and
set p =1+ p'((0,1]). Then v = %(,u’ + )) is a probability measure, and we introduce the Radon-
Nikodym derivatives:

A v=

dv’ dv’

which satisfy {V = 0} C {|U| = p}. With the convention a/0 = +0co (resp. —o0) if @ > 0 (resp.
a<0),wealsoset L=U/V.

Let G,, be the o-field of (0, 1] generated by the intervals (%, -%1], and set
_ _du o, U
" dvig,)’ " dv|g,)’ "V
These are finite-valued functions, with V,, = »(V|Gy) and U, = v(U|G,). A simple computation
yields L, (s) = nAPY for s € (&1, 1], so by (4.1):

n'n

V=

nZ = / Lid) = / LiV,dy'. (4.3)

The sequences Us» and Vn are uniformly integrable v-martingales w.r.t. the filtration (G2»),
converging v-a.s. to U and V, hence Li» v-a.s. converges to L (because {V = 0} C {|U| =
p > 0}). On the set {V > 0} we have LZ.Van — L2V v-a.s., while on the complement we have
L2.Van = LanUsn — +00 v-a.s. Then (4.3) and Fatou’s lemma yield

liminf 2" Z2" > / L?d) + oop! (V = 0). (4.4)

If liminf, 2"Z" < oo, we deduce p'(V = 0) = 0 from (4.4), hence the first half of (4.2)
holds true with y = L; another application of (4.4) yields the second half of (4.2). Conversely,
assume (4.2): we have L = y, which belongs to L?(d)), and L, = A(L|G,), hence sup, nZP =
sup,, f L2d)\ < oco. This finishes to prove the lemma. O

Lemma 4.3. Assume that Y is deterministic and satisfies (4.2) with y being piecewise constant.
Then nZ[* converges uniformly in t to Z; = % fot yids.

Proof. We have y, = u; for #;_; < s < ;, where 0 =1, < ... <ty = 1. Let C = sup; |us|, and
Tn(8) = s — [ns]/n. We have |Y,;*| < C/n, and also Y* = u;7,(s) if ¢;-1 < [ns]/n < s < t;. Hence

L tint
nZg =n Z uf/ Tn(8)ds + Ry (%),
i=1 t

i~1AE

11



where |R,(t)| < 2knC?/n® — 0. A simple calculation shows that [’ n7,(s)ds — 5%, hence

k t: A\t k
¢ 1
Z"r=n E uf/ Tn(8)ds — 3 E ui(t; ANt —tio) At) = Z;.
i=1 ¢ i=1

i—1AL

Since Z' and Z are continuous non-decreasing, this convergence is uniform in ¢ over [0,1]. O

Proof of Theorem 4.1. That (e)=>(d)=(c)=-(b) is obvious. Let B be the set of all w such that
the function ¢ — Y;(w) does not satisfy (4.2). By Lemma 4.2, 2"Z}" (w) = oo if w € B, then (b)
implies P(B) = 0 and (a).

It remains to prove that (a) implies (e) and the last claim, so below we assume (4.2). A density
argument shows that there is a sequence y(p) of bounded processes, piecewise constant in time,
such that

1 1 1
[ vwids< [ ids,  npi= [ v~ y@)as 0 as (4.5)
0 0 0

Let Y(p): = fot y(p)sds, with the associated processes Z™(p) = Z™(Y(p),Y (p)), and set Z; =

%fot y2ds and Z(p); = %fot y(p)2ds. By Lemma 4.3, Z"(p) converges for all w and p to Z(p),
uniformly in time, as n — oco. By (4.5) it is obvious that Z(p) — Z uniformly in time as
p — 00, a.8. So in order to prove (e) it is enough to show that u? = sup, |[nZ}*(p); — nZ| satisfies
sup, up, — 0 a.s. as p — oo.

By Cauchy-Schwarz inequality, and with 5 = fol yfds, we get
n 1 n n
uy <0y [Y(®0)7u(D)s — Yy,lds

<n fy Y @2 y®)s — yslds +n [} [V ()7 — Y|y, |ds
1 1/2 1 1/2
<y (3 IY@)22ds) * +myii (Jo 1Y (o) — Y7 Pds)

Now n|Y (®)?| < (n f[fw]/n y(p)2ds)/2, hence

1 1 1 8 1 1 n
Y n2d <_/ / 2 <_/ 2 < L
fwonrassy [ [ voans o [ueian< T,

and similarly fol Y (p)7 ~ Y;*|?ds < n,/n?®. Therefore u® < 2,/7m, — 0 as p — co: hence we have
(e) with Z as above.

Finally fol [dZ?| < Z™(Y',Y’)1, where Y} = fot |ys|ds. Since Y' also satisfies (4.2) we deduce
the last claim. O

Proof of Theorem 1.1. That (b)=>(a) is obvious, and (c) implies (b) and the last claim by
Theorems 3.2 and 4.1.

Suppose now (a). A simple computation shows that X" = X1 []; ((1 + A?Y)exp —A?Y).
By hypothesis 0 < —nU* < K for some constant K (remember that Y is increasing); then if
A" = 3% (APY —log(1 + ATY)) it follows that nA™ < K' for another constant XK', hence

nZE’ﬁ(A?Y)Z < K" for yet another constant K. So (4.1) and Lemma 4.2 give (c). O
2) The discontinuous case. In the remainder of this section, we study the case where Y = A+ B,

12



with A a continuous process with finite variation, and with B as follows:
i21
where Ty = 0, Tj is [0,1] U {oo}-valued, non-decreasing in j, and with T; < Tj41 if Tj < 1, and
also K =inf(j : Tj41 = 00) is a.s. finite, and b; # 0if j < K.
When A = 0, the situation is particularly simple:

Theorem 4.4. If A =0, then Z™(w) =0 for all n large enough (depending on w).

Proof. Let w be fixed. For n large enough, each interval (rn—l, %] contains at most one jump time
of B, in which case the property Z](w) = 0 is readily verified. O

In the above situation, Theorem 3.2 readily applies, but we have even more, namely that
Ur=TU" =0 as soon as n is large enough.

The situation when A # 0 is more surprising, and we will find out that the sequences nZ™
and nU™ do not converge in law for the Skorohod topology, unless the process A is constant on a
neighbourhood of each T;. However, under mild assumptions the processes nU" and nZ" indeed
converge, where

Z; = Zly/m (4.7)
We need some additional notation below:
. ) 1
Te(nj) =inf(~:i21,-2T),  T-(n) =Te(ns) - -, (4.8)
of =n(Ar; — Ar_(ny)y B} =mlAny(ng) — ATy), 7} =of + 67, (4.9)
—n T+ (n.g)
Bi = / |dA,|, (4.10)

j
with of = g7 = ﬁ? =0if j > K. We are not especially interested in the processes n7n, but they
are simpler than nU" and so we start with them.

Theorem 4.5. We have equivalence between

a) nZ® =>stably 7,
b) The process A has (4.2) (with a density a, say), and (v})j>1 =9tably (y.);>1 for the product
topology on RY .

In this case, the limits in (a) and (b) above are connected by
1t
Zy = .2_/ aZds + > bivilir;<s} (4.11)
0 i>1
and furthermore the sequence nZ™ converges stably in finite-dimensional laws along the (dense)

set J = {t : P(AY; # 0) = 0}.

Proof Let us write C™ = nZ"(4, A) and D" = nZ"(4, B) +nZ"(B, A), and associate with these
C" and D" as in (4.7). On the set {2, where each interval (i1, £] contains at most one T}, we
have nZ™ = C™ + D™. Observe also that

D; =) b7z, (nij<ey o0 Q. (4.12)
i>1
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On the other hand, (4.1) shows that Aﬁ%(im) = 3=(y")? on {T; < 1}. Hence
1 .
ATty (n5) = 5 () +b7} on Q) {Ty(m,g) <1}, (413)

1) Assume (a). By (4.9) and the continuity of A, we have 7?'/n — 0 for each j. We also have
Q, — Q. Now, (a) implies tightness for each sequence (4.13) (j being ﬁxed), and since b; # 0 we
deduce that each sequence 77 is tight. Then (4.12) yields that the sequence D" is tight, which in
turn yields together with (a) again that the sequence 6111 = C7 is tight: At this point, Theorem
4.1 gives that A satisfies (4.2) and that C™ converges a.s. uniformly to C; = % fot alds.

By well-known propertles of stable convergence, we deduce from this, from the fact that Q, — Q
and from (a) that D" =@ Z _ C. In view of (4.12), this gives the second half of (b) and the
relation (4.11).

2) Assume (b). By Theorem 4.1 C™ converges a.s. uniformly to C, as given above, so it is
enough (using (), — ) again) to prove that the right-hand side of (4.12) stably converges: in view
of (4.8) this readily follows from the second part of (b).

3) It remains to prove the last claim. Exactly as before, it is enough to prove that the processes
D™ stably converge in finite-dimensional laws to the process defined by the last sum in (4.11). Since
D™ is constant over each 1nterva1 [T4(n,3),T-(n,j + 1)), this is clearly equivalent to the stable
convergence of the sequence D finite-dimensionally in law along J, and this property readily
follows from the stable convergence (for Skorohod topology) of D" to D, as seen before, because
J is exactly the complements of the fixed times of discontinuity of D. O

Now we turn to U™ and U ", for which we give only a sufficient condition.

Theorem 4.6. Assume that the process A has (4.2) with a density a and that each sequence
(ﬂ In>1 is tight. Then the sequences (nZ") and (nU™) have UCV. If further (af ,B)jz1 =>otebly
(aj,B;)j>1, then for any starting point zo and any C' function f with linear growth we have:

a) (nU") =% U where U is the unique solution of the following linear SDE:

= [ F(Xem)Us—dYy — L [F £(X,)F'(X,s)a2ds

= 21y <t 05f (X3 -) (ajf'(XT,._) +B; fy f'(Xzy— + uAXT].)du) . (414
b) (nU™) converges stably in finite-dimensional laws along J (see Theorem 4.5) to U.
Observe that another way of writing (4.14) is as follows:
= Jo £'(Xe-)UsdY, — § i F(X,) f(X,)a2ds .

- Zj:TjSt (AXij’(XT,-—)aj + (f(XT,) - f(XT,—))ﬂJ) .

Before giving the proof, let us provide some comments and examples.

Remark 4.1. Equations (3.7) and (4.14) are different, unless b;3; = 0 for all j. This means in
particular that the convergence of nU™ described above is not in the Skorohod sense, otherwise one
could apply Theorem 3.2, and similarly for nZ" in Theorem 4.5. In fact, what prevents Skorohod
convergence is that in each interval [T}, T (n, j)] we have for these processes a “big” jump at Tj
and also a continuous part with a non-vanishing increment.
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In fact, the results obtained in (b) above show that the sequence nU™ converges to U in the
topology of convergence in measure for function on [0,1] (also called Meyer-Zheng topology), and
indeed this sequence also converges in the S-topology introduced by Jakubowski [6]. The same
holds for nZ™. For these topologies, a result like Theorem 2.3 does not hold, explaining why the
limit U satisfies another equation than (3.7). O

Remark 4.2. In a sense, the most interesting aspect of this subsection consists in “negative”
results (no Skorohod convergence for nU™, no convergence at all if the conditions above are not
met...) However if one is interested in “positive” results, one can check as a by-product of the
following proof that the sequence nU is (Skorohod)-tight and the sequence nU™ is tight as soon
as A satisfies (4.2) and all sequences o} and ﬁ? are tight, even if we do not have convergence.

Observe that we may have (4.2) for A and yet the tightness above may fail: takee.g. T3 = 1/2,
Tz = 00, by = 1, and a, = |s — 1/2|7'/3. In this case nZ} — oo, and the rate of convergence (if it
exists) is not 1/n. O

Remark 4.3. As said before, Equation (3.1) is in principle not random. However if Y is really
not random we have no chance of getting a limit in the previous theorem.

Take for example A; = ¢ and B; = l{7<;; for some T = p/q with p and ¢ relative primes.
The conditions of Theorem 4.5 hold, and nZ" converges for the Skorohod topology to Z = %A +
B. However the conditions of Theorem 4.6 do not hold because af takes successively all values
0,1/q,..,(g — 1)/q as n varies. In fact the functions nU™ and nU" have g distinct limit functions,
solutions of the (non-random) differential equations for ¢ = 0,1, ..,q — 1:

UGe= [y F(Xe)U@)sds — 3 f5 F(Xo)F'(Xs)ds

+ (£ (X2 U G)r- = £ (Xr-)AX7 = EH(f(Xr) - f(Xxp2))) Lresy. O

Remark 4.4. In fact the existence of a limit for the sequences aj and (7 is connected with
the asymptotic behavior of the fractional part of the variables nT};. This fractional part is known
to converge (even stably) if T; admits a density regular enough (see e.g. [2]), while of course it
does not converge if T; is deterministic. Another factor which might ensure convergence is enough
randomness in the density a,. In all these cases, the limit U features “more randomness” than Y,
as seen from the fact that U (or sometimes even Z) is defined on genuine extensions of the original

space.

Here is an example where convergence comes from the randomness of Tj: suppose that Y is as
in Remark 4.3, but T is uniform on (0,1]. Then nZ " tends w-wise to Z as above, while nU " stably
converges to the solution of the following equation, where a denotes a random variable, uniform
and independent of T':

U= J§ f'(Xo=)Usds — L 2 F(X,) ' (X,)ds
+(f'(X7-)Ur- — of (Xr-)AX7y — (1 - &)(f(X7) — f(X7-))) L{7<t}-
Here is another example, where convergence comes from the randomness of a,: let W be

a standard Brownian motion and set B; = ly;»1} and a;, = (1 — s)_1/2W1—81{IW1-.|<\/W}'

Observe that |a,| < 1. It is easy, by a scaling argument, to check that here nZ" converges stably
to Z = %A + UB, where U is a standard normal variable, independent of Y. O

Remark 4.5. We have left out the case when Y has infinitely many jumps on (0,1]: nothing

15



is known in general for this case, see however Section 6 when Y has in addition independent
increments.

Proof. 1) First we prove that the sequence nZ™ is UCV. Since Z™" is of finite variation, it suffices
to show that n fol |dZ7*| forms a tight sequence.

With the notation of the proof of Theorem 4.5, nZ™ = C™+ D" on (), so a simple computation
shows that

1 1 K
n/ [dZ}] < 2/ |[dC?| + E |b51(|af | +37) on the set . (4.16)
0 0 i=1

Now 2, — , while fol |[dC?| is tight by Theorem 4.1, so the result immediately follows from

the fact that K is a.s. finite and from the tightness of all sequences (a}). and (B?)n (recall K is
defined just after (4.6)). In view of Theorem 3.3 it then follows that nU™ is UCV, and in particular
the sequence nU™* is tight.

2) Recall that nU™ is the solution of (3.13), with &, = n, and introduce the solution V,, of the
following linear equation:

4V = Vi (X,-)dYs — K(X)Pd(nZ™),, Ve = 0. (4.17)
Theorems 2.2(d), 3.1 and 2.5(b) give that (nU™ — V™)* —¥ 0, so in order to prove (a) and (b) we
can replace the processes nU™ and nU" by V™ and V? = V[Zt] /n respectively.

Let also U be the solution of (4.14), on an extension of the original probability space which
supports the limits (a;, ;). Let us introduce the processes

W@ = V:L/\T+(n,j)7 (4.18)
W)y if ¢<Ty(n,j)
WG =9 WOt + VW~ VE (n) if Ty(n,j) <t< T (4.19)
W0, g T V-~ Vi) if Tjp <4,
R Us if t< Tj+1
W3 = Uiar;, W0 = _ (4.20)
Tj41— it t2>Tj4.

Let us also write p™ for the double sequence (o}, 87);>1 and p = (a;, 8;);>1- Consider the following
property:

(H;) (o™, W (G)™) =2 (p, W (5)).
By hypothesis (Hp) holds. If (H;) holds for all j then (a) follows, because K < o a.s.

3) Suppose that (H;) holds. First if H(n,j) is the interval (T (n,j), Tj+1) we deduce from
(4.17) that
t t
W@ = Wit +/0 W ()l as ' (Xs-)1H(n,5)(8)ds —/ k(X)31H(n,5)(8)dCT. (4.21)
0

Recall that C™ = nZ™(A, A) converges a.s. uniformly to the process C; = f(f a’ds. Further, set

t t
Ji =W(j)?—/0 k(X)51h(n, ) (s)dCT, T =W(j)t—/0 F(Xo) F1(Xa)Lx;,1541)(8)dCs,
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t t
L;-l = / a‘sf,(X.q—)]-H(n,j) (S)ds, Lt = / an,(Xs)l(TJ'rﬂ+1)(s)ds’
0 0

50 (4.21) becomes
t
WG =Jp + / W (5)dL?. (4.22)
0

Now, X is continuous on the interval (Tj,Tj4+1), so (L™ — L)* —% 0 and the last term in
(4.21) converges uniformly in probability to fot F(Xs) f'(Xs)Y(1;,1;41)(8)dCs, and since this process
is continuous, as well as L, it follows from (H;) that (J™, L™, p™) =%t (] L, p). Hence Theorem
2.5(c) yields that (W(5)™, p™) =>**4* (W (j)', p). Using Lemma 2.2 and the fact that W (j)"* and
W (j)' are constant on [T}jy1,1], we finally deduce that if W (j)P = W (5)ftn> then

WG AL- (41 PH WG, ) 252 (WG, 0, W), -)- (4.23)
4) Now, set &, := Vﬁ(n’j_'_l) -V (ng+1)" By (3.13) we have 8, = un+v,, on the set Q,N{Tj;; <
1}, where
Ty (n,j+1) Ty (n,5+1)
U = / VP F(X, )aeds — / k(X)rdCT,
T_(n,j+1) T_(n,j+1)

Ty (n=.7+1)
o = by (Vi X ) = ROORafia = [ K(X)asds).

T+
First, the sequences V"™* and k(X)™ are tight, so one deduces that u, =% 0. Next the sequences
Ty (n,j+1) 1
k(X)’.’ll‘j.,.l - (ffl)(XTj+1_)7 / k(X)?asds ",3?+1f(X71j+1—) / f,(XfT},'+1— +U’AXT;;+1)du
0

Ti+1

converge to 0 in probability. Furthermore |2 W(j)i}:,ﬂ_. Therefore if

1
0= j+1 (W(j)gl‘_.;.}.l—fl(XTj+1—) — Qjt1 (ff,)(XTj+1—) - /Bj+1 / f,(XT_-;+1— + U’AXTJ'+1 )du)a
0
one deduces from (4.23) that

(WG AT 41y, P 8n) 2225 (W (5)', p, 6). (4.24)

ButW(+1)" = W(j)fXT_(n,Hl) +6n 1Ty (n,j+1),1), While W(j+1) = W) Aty s - +OLT540,1)-
Thus (4.24) yields (H;41), and the proof of (a) follows by induction on j.
5) Finally on the set {T%(n,5) <t < T_(n,j + 1)} we have V;» = W(j){* and U; = W(j)L.

Since W (j)'™ =¥ W(j)’ and since U is continuous outside all T}’s, the first claim of (b) is
obvious, and we are finished. O

5 Continuous semimartingales

1) The martingale case. Here we consider the case where the driving process Y = (Y);1<i<q
in (3.1) is a continuous d-dimensional local martingale, null at 0. We denote by C = (Cij)lsgj;d
the quadratic variation process, i.e. C* = (Y% Y7), and we write Z" = (Z™% )i<i,j<d, Where
Z™4 = Z™(Y*,Y7). We introduce the d*-dimensional processes D™ whose components are

Driike _ n{Zm*, Zmity, (5.1)
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The main result is as follows:
Theorem 5.1. Assume that Y is a continuous local martingale. There is equivalence between

a) We have (with ¢ being a d x d symmetric nonnegative matriz-valued predictable process):
t 1
C: =/ csds, / lles||?ds < oo. (5.2)
0 0

b) For each i the sequence of random variables (/nZ™"*),>, is tight.

c) For each i the sequence of random variables (D™%%) is tight.

In this case, and if o is a d x ¢ matriz valued process such that ¢ = oot (ot stands for the transpose;
such processes always exist, for ¢ > d at least), the sequence \/nZ™ stably converges in law to a
process Z given by

i 1 b
th=E > /0 oikaItdw ke (5.3)

1<k,t<q

where (W*)1<; j<q is a standard ¢*-dimensional Brownian motion defined on an extension of the
space on which Y is defined and independent of Y. Moreover, we also have (Y,/nZ") = (Y, Z)
and the sequence /nZ™ has UCV, and the following convergence holds a.s. uniformly in time:

3 g 1 b
ppiikt -, piike =3 > /c;kcgfds. (5.4)
1<u,0<qg 70

Note that (5.2) is the minimal condition under which the process Z of (5.3) is well defined. We
divide the proof into several steps.

Lemma 5.2. Conditions (b) and (c) in Theorem 5.1 are equivalent, and they imply (a).

Proof. Observe that dC; = c¢;dA; for some increasing continuous process A and some d x d
symmetric nonnegative matrix-valued process c¢. This last property readily implies that (a) is
equivalent to the fact that each C* satisfies (4.2). So indeed to prove our lemma we can and will
suppose that Y, hence Z™ and D™ as well, are 1-dimensional.

1) Set S(n,p) = inf(t : /n|Z?| > p) and T(n,p) = inf(t : Dy > p), and also Z} =
\/ESUPsgt |23

Assume first (b). Then sup, P(S(n,p) < 1) < sup, P(Z™ > p) — 0 as p = 0o, while
E(D%, ) < p* hence

2
P(D} > q) > % + P(S(n,p) < 1)

goes to 0 uniformly in n as ¢ — oo, and (c) holds. Conversely (c) yields sup,, P(T'(n,p) < 1) = 0
as p — oo, while Doob’s inequality yields E((Z{,‘,(n’p))z) < 4p, so we deduce (b) exactly as above.

2) From now on we assume (b) and (c). Note that T, = inf(t : C; > p) has P(T, < 1) = 0
as p — oo. If we stop the process Y at time T}, the corresponding processes C, Z™, D™ are also
stopped at T,. So clearly it suffices to prove (a) for the stopped processes: in other words we can
and will assume that € is bounded by a constant.
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For every stopping time T set £(n,i,T) = n Tq,w /i\(zz/f " /n(Y,,("))de, (recall notation (3.5)). Ob-

serve that if V is a continuous martingale null at 0, then
t t
N} =4/ N23dN, +6/ N2d(N,N),.
0 0

If furthermore the variable (N, N); is bounded, the process fot N3dN, is a martingale, hence
E(NY) = 6E(f, N2d(N,N),). Apply this to N; = YiaTn(i/n) — VirTa(i—1/n) t0 get E(€(n,i,T)) =
2E((YiarA(/n) — YeaTA(i—1/n))*)- On the other hand a Burkholder-Gundy inequality yields a
universal constant K such that

E ((Ct/\T/\(i/n) - Ct/\T/\(i—l/n))2) <KE ((Yt/\T/\(i/n) - Yt/\TA(z'—1/n))4) .
Therefore

E ((Ct/\T/\(i/n) - Ct/\T/\(i—l/n))z) < 6KE(£(n,i,T)). (5-5)

Observe that D =n fot (¥{™)2dC,, hence >t €(n, i, T(n,p)) = DYy pp py > P- Letting

[ri]
F? =n (Z(Anc)2 + (C(n) ) = nZ(CtA(z/n) e Ct/\(z l/n))

i=1 i=1

we deduce from (5.5) that E(I'z, p)) < 6Kp.
Finally, let v, =n Y. (A?C)?. Since v, = T%(n,p) OD the set {T(n,p) > 1}, we have

P(ya > 0) < P(T(n,p) < 1) + P(Tnpy > @) < P(T(n,p) < 1) + %’ (5.6)

We have lim, sup,, P(T(n,p) < 1) = 0 by (c), hence (3.6) yields that the sequence v, is tight, and
(a) follows from Theorem 4.1. O

Now we assume (5.2), and we let ¢ be a d X g matrix-valued process such that ¢ = oot, for
some g. Up to enlarging the space, we can assume that there is a Wiener process W' = (W");1<i<q
such that

t
Y = / o, dW,. (5.7)
0

In virtue of [4], if we prove that for all ¢t € (0,1] and all 4,j < d and k < ¢ we have, with notation
(5.1) and (5.4) By
D =P Dy, /n(Z™E W'y, »F 0, (5.8)

then the processes +/nZ™ will converge stably in law to the process Z of (5.3): we deduce that
the pair (Y, +/nZ™) converges in law to (Y, Z) for the product topology on ID(IR?) x D(Rdz) and
since all these processes are continuous we also have convergence for the Skorohod topology on

D(IR%+*). Further (5.4) follows from (5.8), and it implies UCV for the sequence y/nZ". In other
words, to prove Theorem 5.1 it remains only to show (5.8).

We begin with a lemma.

Lemma 5.3. We have (5.8) as soon as the process o has the form

m
Os = Z Ai—ll(ta—l,ti](3)7 (5'9)
i=1
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where 0 = tg < t1 < ... < t;, = 1 and where each A; is a bounded F;,-measurable random variable
with values in d x ¢ matrices.

Proof. 1) Set 7,(u) = u — [nu]/n. By a Burkholder-Gundy inequality we have for some constant
K:
E ((Yt("))“) < K/n?. (5.10)

Recall that Y™ is defined in (3.5). Since Y™ = ATW[L(") for t, < [nu}/n < u < tr41, simple
computations show that for ¢, < [nu]/n < v < v < 41, and with B, = A AL

E(YF™YP™|F, ) = BE 1o (u)L{nul=(nol}> (5.11)
E(YHMYOYIOYIO|F, ) = 1, ()1 (0)(BE ) +7a(w)? ((BY)? + BEBY) Lnuj=fn)}- (5:12)

2) Let us fix 7 and ¢ such that 0 < ¢ < t,41 —t,. We have

L. . . trtt
DK - DL =Bl [ YOS,
t,
i e 1,
D%, — D" = LBitBit,
e . t"+t .
VRE™, W g0 = SRE, W, = B [ YO du,
tn

So it is enough to prove that

t.+1 . 2 t ) tr+t . 2
n / YJ’(") Y:’(") du =T EB:'k’ vn YJ’(") du =T 0.
tr tr

3) Setting s(n) = ([nt.] + 1)/n, we have s(n) - t, and nftt:+t Y mWyEM gy 5% 0 and

. Vs(n) ~ ¥
N f;”\j; t(n) Y™ dy L 0 by (5.10). So it remains to prove that
oAt . , tett )
ap = n/ Yimy k) dy — EB:-k =570, fai= \/7_1/ Yomdu - 0.
s(n) s(n)

Using (5.10) and 0 < 7»(u) < 1/n and the boundedness of B, we get

K 2K
E@32 Sn/ —1pu=mondudv < — — 0
(87) omage T A=t -

for some constant K. Similarly
E(@2) =1 [0y 1o e BEQE VSO YOV dudy
+2E ((B*)?) —nt 55 B(BFYIPYS™)du,
On the one hand, we have by (5.11):
i+t . . t2 X
nt / E(B*ysMykM)dy — 5E ((B¥#?).

s(n)

On the other hand, (5.12) yields

i, {(n n)vyi,(n n % K
|E(Y M YRMYEMYEM) — 1 (u),(0)E (BF)?) | < —5 L{{nul=mol}»
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and thus .
n? / B ybmysmyb®) g - 5 E (B*)?) .
[(n) tr+1]2 4

Putting these results together gives E(a2) — 0, and we are finished. O

Proof of Theorem 5.1. It remains to prove that (a) implies (5.8) in the general case. Let
Tp, = inf(t : fo |lcs||>ds > p). Since (a) yields P(T, < 1) — 0, by localization it is clearly enough to

prove the result for the processes stopped at time Ty, which amounts to assuming that fo |les]|?ds
is bounded by a constant p.

The rest of the argument parallels Theorem 3.1. By a density result, and if ¢ is such that
¢ = oo’, there exists a sequence o(q) of processes of the form (5.9), such that

1 1 1
mo= [ loi—o@ilids > 0, [lo@il'as < [lotds <p (539)
0 ]

Let Y(g): = fo o(q),dW!, with the associated processes Z(g)" and D(gq)" (see (5.1) and D(g) (see
(5.4)). By Lemma 5.3, for each ¢ we have that the following convergence for all ¢:

D(@)F »F D(g),  Vn(Z(@™¥, W) =T 0. (5.14)

We have with ¢(q) = a(q)o(g)':

|D(q)?’ijk£ _ D?,ijkll n| f(f(Y(q)i’(")Y(q)’j’(")c(q)sje _ ni’(")l/;"’(")cgf)dsl
n [ 1Y (@ IPllo(a)s — oall(lo(@)sll + llosl)ds

+ Y@ — YUY @SN+ 1Y Dol 2ds.

IA

By combining Burkholder-Gundy and Cauchy-Schwarz inequalities, we get E(||Y(")||4) < K

f[m] /nllo(@)u [*du), thus fo E(|Yi™||4)ds < X by (5.13) for some constant K changing from
line to line, and also fo E(|Y (@™ |4)ds < X X . The same argument shows that

t
n K
| By @8 - v < T3t

Thus (5 13) and a repeated use of the Cauchy-Schwarz inequality gives E(|D}" ikt _ praike)y <

K nq , 50 by (5.14) we get the first part of (5.8). The second part of (5.8) is proved similarly (it
is in fact a bit simpler). O

Let us now state a corollary of the previous result, which contains Theorem 1.2 as a particular
case.

Corollary 5.4. Assume that Y is a local martingale. There is equivalence between

a) We have (5.2)

b) For g =1 and 7o = 1 and fi(z) = zé;; (i.e. X = E(Y7)) the sequence \/nU™ is tight, for
each j =1,2,..,d.

¢) For all starting points zo and all C* functions f with linear growth, the sequences (Y, /nU™)
and (Y,/nU") weakly converge to a limit (Y,U).
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In this case U is the solution of the linear equation (8.2), with Z given in (5.3).

Proof. That (c)=>(b) is obvious, and (a) implies (c) and the last claim, due to Theorems 3.2 and
5.1 (the UCV property for v/nZ" follows from (5.4)).

Assume now (b), and fix j. Then with f, zp corresponding to X = £(Y7), we have (as in
(3.11)):

vz = [ [V 1, )avs = (X5, )07

A sequence of continuous local martingale has UCV as soon as the sequence of their suprema, is
tight, so here the sequence /nU™ has UCV. By Theorgm 3.1, the fact that X does not vanish and
Theorem 2.3(c), we deduce that the sequence /nZ™’ has UCV, and (a) follows from Theorem
51. O

2) The semimartingale case. Now we suppose that Y = M+ A, where A is a continuous adapted
process of finite variation and M is a continuous local martingale, both being d-dimensional and null
at 0. Again C = (C");<; j<a is the quadratic variation process, i.e. C¥ = (Y%, Y7) = (M?, MY),
and we write Z™ = (Z™%),<; j<q, Where Z™% = Z™(Y? Y7).

We do not know what happens in the general case, and only partial results are available, when
A has the form:

i 1
Al = / alds,  with / (at)?ds < 0 as. (5.15)
0 0

Theorem 5.5. Assume thatY is a continuous semimartingale, and that (5.15) holds. Then there
s equivalence between

a) We have (5.2).
b) The sequence of processes (v/nZ™) has UCV and is tight.

In this case, the sequence (\/nZ™) stably converges in law to a process Z of the form (5.8) (where
¢ = oo') and has UCV and we also have (Y,/nZ") = (Y, Z).

Proof 1). We set F™% = \/nZ"(M*, M7), G = \/nZ"(M?, AY), H™Y = \/nZ" (A, M7) and
K™ =, /nZ™(A%, AY), s0 /nZ" = F"+G" + H" + K.

By Theorem 4.1 the sequence K™ tends in variation to 0, a.s., and a fortiori has UCV (more
precisely, the variations of the processes 1/nK™* is bounded a.s. uniformly in n, for each 4, and a
simple extension of Theorem 4.1 shows that it is also true for v/nK™%).

2) Suppose that (b) holds. Each H™% is a continuous local martingale, and
t
(H™4 H™9), =n / (AbM2409, (5.16)
0

By (5.15) and the Cauchy-Schwarz inequality, we obtain n(A¥™2 < fol (a)?du for all n, s. Thus
the sequence of processes ((H™*, H ™)) is tight, and it follows (see e.g. [3]) that the sequence
(H™) is tight and has UCV, and of course all its limiting processes are continuous.

Then, using (1) above and Theorem 2.3(a), we see by difference that the sequence F™ + G™
is also tight and has UCV. Then the quadratic variation processes, which are the same as the
quadratic variations of the processes F™, are also tight: in other words, the local martingale M
satisfies Condition (c) of Theorem 5.1, and (a) follows.
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3) Now we assume that (5.2), as well as (5.15) hold. In view of (1) above and of Theorem 5.1,
it remains to prove that both sequences (G") and (H™) have UCV and weakly converge to 0. Since
this is a componentwise property, we can and will assume that d = 1, and exactly as in Theorem

5.1 we also can and will assume that both random variables fo a2ds and fo c2ds are bounded by
a constant c.

Let us first consider H™. This is a continuous local martingale satisfying, by (5.16):

(H™,H™")1 < Z/ 2d8/ csds < av,
1)/n 1)/n

where v, = Sup; <;<n fii_/;b)/n csds. We have |v,| < /& and y,(w) — 0 for all w. Thus E((H™, H")1) —
0, and thus the sequence (H™) has UCV and weakly converges to 0.

Next consider G™. Let € > 0 and let S, T be two stopping times such that T < S < T +¢ and
S < 1. We have by the Cauchy-Schwarz inequality:

1/2
E( /T ° |dG?|) = E( /T ’ Vnla,M™|ds) < (E( /T ° a2ds) E(n /0 1 |M§">|2ds)) :

We also have

Bio [P =B [ as [ ety =5 ([ euliml +1 - mada) < BGY < Vo

(5.17)
Therefore E(f:,‘? |dG?|) < o'/*\/E(w(e)), where w(e) = sup; tt+5 a2ds. Since lim,_,o w(e) = 0 and
w(e) < a, we have E(w(g)) — 0 and we can apply Aldous’ criterion (see e.g. [3]) and deduce that

the sequence of variation processes of the processes G™ is tight, which implies in particular that
the sequence (G™) has UCV.

It remains to prove that G™ = 0. In a first step we set G; = fot VnM, m ds, which is the process
G™ above when a; = 1 (i.e. A; =1t). So the sequence (G") is tight, and we also have:

1 u
E(@)?) = 2n / du / E(M™ M™)dv.
0 1]

Since M is a martingale, E(M{™ M{™) equals 0 if [nv] # [nu] and E( f[:ﬁ]u/n cgds) if [nv] = [nu).
Hence

—n t u v 2
B (@) = 25( / du / dv / cods) < 2E(C1) — 0.
0 [nu]/n [nu]/n n

It follows from all these that G = 0.

In a second step, we assume that a is of the form (5.9). Then G} = Y+, Ax—1 (E?M,u'—@;;tk_ )
so G™ = 0 by the first step. Finally in the general case there is a sequence a(p) of processes of the
form (5.9) such that

1
0p := E(/ la(p)s — as|>ds) — 0.
0
Setting A(p): = fot a(p)sds and G(p)™ = v/nZ™(M, A(p)), we have G(p)" = 0 for every p. On the
other hand .
E(sup, |G — G)) < E(fy WaM™as - a(p)slds)

(B(fy In(M{M)2ds) V2 /8, < \/ad,
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by (5.17). Thus G™ = 0, and we are finished. O

Remark. Theorem 5.5 puts us in the situation where Theorem 3.2 applies: if Y is a continuous
semimartingale with (5.15) and (5.2), for any starting point o and any C! function f with linear

- growth the processes v/nU™ and \/ﬁﬁn weakly converge to the solution of (3.7), with Z given by
(5.3). O

6 Lévy processes

In this last section we suppose that the driving process Y is a Lévy process, and to simplify
we assume that it is 1-dimensional (an extension to the multi-dimensional situation is rather
straightforward). The characteristics of ¥ are (b,c,F), where be IR, c > 0 and Fis a positive
measure on IR with F({0}) = 0 and [z? A1 F(dz) < co. We denote by p the jump random
measure of Y, and set v(dt,dz) = dt ® F(dz), so Y has the form (see [3]):

Y; = bt+ Y+ alyg<ay *x (B —v) +2lie>1) * by (6.1)

where Y¢ is the continuous martingale part of Y it is 0 if ¢ = 0 and Y/+/c is a standard Brownian
motion otherwise, and its quadratic variation process is ct. Further, the “x” in (6.1) indicates the
stochastic integral of a predictable function w.r.t. a random measure (see [3]). Set

zZ" = Z"(Y,Y), Zy = Zfiyjn- (6.2)

Here, if F' = 0 the process Y is a continuous semimartingale, to which the results of the previous
section readily apply. On the contrary, when F # 0 the situation resembles that of Section 4 for
discontinuous processes: we do not have convergence of (v/nZ") and (v/nU™) in the Skorohod
sense (unless Y = 0), but only finite-dimensional convergence in law, while the sequences (VnZ")
and (v/nU") weakly converge.

Let us first describe the limiting processes Z and U. We take (possibly on an extension of the
space on which Y is defined) the following:

e a standard Brownian motion W,
o two sequences (V!)p>1 and (V)n>1 of standard normal variables,

e a sequence (Xn)n>1 Of uniform variables on (0,1),

in such a way that all these terms are mutually independent, and independent of Y as well. We

also set
Va = VXV + V1 - xa V3 s (6.3)
which gives another sequence of independent standard normal variables.

Let us also denote by (Sp)n>1 an arbitrary ordering of all jump times of Y, consisting of
stopping times taking values in (0,1} U {00}: if F(IR) < oo we may choose the sequence S, to be
increasing and the variable K = inf(n : Sp > 1) is a.s. finite; otherwise the S,,’s cannot be ordered
as an increasing sequence.

Now we are ready to describe the limiting processes for v/nZ" and /mU™. First, the limit of
v/nZ" will be

c
Zt = ﬁWt + \/E E VnAst l[Sn,l] (t) (64)
) n>1

24



Note that Z = 0 if ¢ = 0. Since ¥, ,(AYs,)? < oo a.s., it is not difficult to check that the last

sum in (6.4) converges in IL?, conditionally on the o-field F, and so converges in probability. There
is another (more abstract) way of describing Z: it is, conditionally on F, a Gaussian martingale
null at 0 and with angle bracket (this bracket is not an (F)-predictable process, but conditionally
on F it becomes deterministic)

(Z,2), = = L c) (AY,)? (6.5)
s<t

or equivalently, it is a Gaussian centered process with covariance function (s,t) ~ (Z, Z)sat as
given in (6.5). That these two descriptions characterize the same process (conditionally on F) is
easy, and it shows in particular that (6.4) does not depend on the particular choice of the sequence

(Sn)-
Next the limit of v/nU™ will be the unique solution of the following linear equation:

U = / Fi( X UsdY, — Z(f)s, (6.6)

where

Z(f)e = % o (FF)(Xom )W, + VE T s, < [VXnVa(F ) (Xs,-)

(6.7)
VT =XVl f(Xs,-) fo f'(Xs.— +ulXs,)du] AYs,.
Exactly as in (4.14), we may also write Z(f) as
Z(f)e = 5 o (FF)(Kem )W, + Ve L s, <t [VXnVa S (Xs,-)AXs, 68)

VT = X2V (f(Xs.) — f(Xs,-))]-

Like in (6.4), the series on the right side of (6.7) and (6.8) are converging in measure. As for
Z, another more abstract way of describing Z(f) is that, conditionally on F, it is a Gaussian
martingale null at 0 and with bracket

B 7 =5 [ EXI, + T (K AX + (06) = FE)) . 69)

<t
Here comes the main result of this section. We exclude the following two simple cases:

e F=0and c =0 (ie. ¥; = bt): then by Theorem 4.1 the sequence (nZ™) has UCV and
converges uniformly to Z; = b%t/2, and the sequences nU™ and nU" converge uniformly to
the unique solution of dU; = (U f’(Xt)b F(X3) f'(X1)b? /2)dt starting at 0 (we are here in
the case of an ordinary, non-random, differential equation).

e F =0 and ¢ > 0: then by Theorem 5.5 the sequence (y/nZ™) has UCV and converges
stably in law to Z = cW/v/2 (as in (6.4) with S, = oo for all n, i.e. the last sum in
(6.4) disappears), and the sequences \/nU™ and \/ﬁﬁn converge stably in law to the unique
solution of dU; = U f'(X:)dY; — f(X:) f'(X:)dZ; starting at 0 by Theorem 3.2.

Theorem 6.1. Assume that Y is a Lévy process such that F # 0. Let xo be any starting point
and f be any C* function with linear growth, and consider Equation (8.1). The sequences (v/nZ™)
and (y/nU™) have UCV, and we have:
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a) If c =0, the sequences (v/nZ™), (v/nU™) and (vnU") weakly converge to 0.

b) Ifc > 0, the sequence (vRZ " ,+/nU ) stably converge in law to (Z,U), as given by (6.4) and
(6.6)-(6.7), and the sequence (v/nZ™,/nU™) stably converge in finite-dimensional laws to
the same limit.

In case (b) above, the sequence v/nZ" is not tight: if it were, by taking a convergent subsequence
we could apply Theorem 3.2, but then the limit of (/rnU™) would be given by (3.7), which is not
the same equation as (6.6).

The proof of Theorem 6.1 will go through several steps.

Step 1: Suppressing big jumps. Here we assume that Theorem 6.1 holds for Lévy processes
having bounded jumps. Let ¥ be an arbitrary Lévy process, and set for any p > 1:

' Y(p)t =bt+ th + 1?1{1,;]51} * (p, — 1/) + .'1:1{1<|z|5p} * [

Let X(p) be the solution of (3.1) relative to Y(p), and let Z(p)*, U(p)", Z(p) and U(p) the
processes associated with Y (p) and X (p). Observe that in the definition of Z(p) and U(p) we can
use the same sequence of stopping times (S,) and the same terms (W,V,;,V,, x») as for Z and U.

Let also Q, = {w : |AY;| < p Vs € (0,1]}. Then €, increases to (2, while on (2, we have the
following equalities between processes: X (p) = X, Z(p)* = Z", U(p)" =U", Z(p) = Z,U(p) = U.
Since our theorem holds for each Y (p), it follows that it also holds for Y.

Therefore, from now on we assume that the jumps of Y are bounded by a constant, i.e. the
measure F' has compact support.

Step 2: The UCV property. For a moment, let M, N be two martingales with angle brackets
(M, M); = ot and (N,N); = t, and set A; = at. Then

B4, N), 27, W)} = 8 [ B =af [ (6= praljmye = 55, (610
B(Z"(4,N), Z(A,N ) = a* [ (s = [nsl/mds = 55, (611)

B[ 1z, A = bl [ Qs <o [ (o~ sl < L 12
012

1 1

P / dZ™(A, A),|) = a® / (s — [ns]/n)ds = 2= (6.13)

0 0 2n
Let us come back to Y. Since F' has compact support, we can set
b = b+/ zF(dz), a=c+ /:1:2F(d:1:), Bi=bt, M=Y°+zx(p—v),
|z]>1

so that Y = B + M, while (M, M); = ot. Then Z" = Z"(M,M) + Z"(M,B) + Z™(B,M) +
Z™(B, B). The two sequences of local martingales (v/nZ"(M, M)) and (v/nZ"™(B, M)) have UCV
by (6.10) and (6.11), and the two sequences of processes with finite variation (/nZ"(M, B)) and

(v/nZ™(B, B)) have UCV by (6.12) and (6.13). Hence the sequence (v/nZ") has UCV, as well as
(v/nU™) by Theorem 3.3.

Step 3: Suppressing small jumps. 1) For ¢ > 0 we set

M® =zlgg<y * (B —V), NE=zlzsex(p—v), A =zl>e*p,
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be = b — / cF(dz), p.= / 22F(dz), Bf = bt.
2| >e || >e
Then (6.1) readily yields
Y=B+Y°+M +N°=B°+Y°+ M°®+ A°.

A simple computation, using the bilinearity of (U, V) ~» Z™(U,V), gives
VnZ™ = F™* + G™*, (6.14)

where
Fve = HV 4+ In,s, G™eE = Jme + K™E +Ln,s’

and
H™ =\/nZ™(B* +Y° B° +Y°),

I™ = /n(Z"(A°,Y°) + Z7(Y°, A7),
= n(Z"(M*,M® + N°* +Y®) + Z*(N® + Y° + B, M*)),
K™ = /RZ*(N°+B,N° +B), L™ =/n(Z"(M¢,B) - Z"(B°, B")).
2) Observe that (N¢,N¢); = p.t and (Y, Y°); = ct and (M*,M*®); = (po — pe)t. We deduce
from (6.12) and (6.13) that E(f0 |[dL™2)) < 2|b'|v/po — pe/3 + b2/+/n, s0

hm lim supE |dL” ) =0. (6.15)
e—0
Next, use (6.10) and (6.11) to obtain that the local martingale J™¢ has (J™¢,J™); < 6(po —
pe)(po + ¢ + b?)t. Therefore, using Doob’s inequality,
lim sup E((J™*, J™)1) = 0. (6.16)
=0 o
Next, the process B + N¢ is the sum of a continuous process with ﬁmte variation having (4.2)

and a process of the form (4.6), and the associated variables o and B; (see (4.9) and (4.10)) are
bounded by a constant independent of n, and the number of jumps of this process is a Poisson

random variable. Then sup,, E(y/n fo |dK;¢|) < oo, and
1
lim E( / [AK™[) =0 Ve > 0. (6.17)
0
Putting together (6.15), (6.16) and (6.17), we readily deduce that if 6™ is a sequence of pre-
dictable processes such that §™* is tight, then
lim limsup P((6" -G™*Y* >n) =0 Vn>0. (6.18)
e—0 n
3) We can now prove (a): suppose that ¢ = 0. Then Y°¢ = 0, so I™* = 0 and H™* =
/nZ™(B*, Bf) converges weakly to 0 by Theorem 4.1 for each € > 0. Then F™¢ = 0 as n — oo,

and combining this with (6.14) and (6.18) with 6™ = 1 yields that /nZ™ = 0. Then we can apply
Theorem 3.2 to obtain /nU™ = 0, and thus (a) holds.

4) From now on we suppose that ¢ > 0. Recall that \/nU™ is the solution of (3.13), with
an = y/n, and introduce the solution V,, of the following linear equation:

dVP =V f'(X-)dY: — k(X)Pd(v/nZ™), Vg =0. (6.19)
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As in the proof of Theorem 4.6, Theorems 2.2(d), 3.1 and 2.5(b) and the UCV property of YA
give that (yaU™ — V™)* =F 0.

- Next, we introduce the solution V™ of the following linear equation:
dv;* = V2* f1(Xe-)dY, — kK(X)MdF®, Vo =0. (6.20)
Set also R = fy k(X)pd(y/nZ™); and Ry = JEB(X)pdF*. Lemma 2.4 yields

P((V" — V™) > 1) <€ + P(F(X)* > A) + P(R™ > u) + P((R" = E™)* > w) + %KA,E,

for a constant K . depending on A,e’. Since /nZ"™ has UCV, and k(X™)* is tight, Theorem
2.2(c) shows that R™ is tight. On the other hand, Rf" — R} = f(f E(X)2dG}¢, so (6.18) implies
that lim,_o lim sup,, P((R™ — R™€)* > w) =0 for all w > 0. Thus one readily deduces, by taking
¢' arbitrary, then A and u big, then w small, that

lim limsup P((V™ - V™%)* >n) =0
e—0 n
for all 5 > 0. In view of what precedes, we thus obtain
lim lim sup P((v/nU™—=V™)* >n) =0 V0. (6.21)
€ n
On the other hand, define Z(e) and Z(e, f) by (6.4) and (6.7) (or (6.8)), except that in the sum
of the right side we add the indicator function of the set {|AYs,| > €}. It is easy to check that

lim P((Z ~ 2©)* + (B(5) = Ze. ) >n) =0 ¥n > 0. (6.22)

Then if U(e) is the solution of (6.6) with Z(e, f) instead of Z(f), we also have by (6.22) and
Theorem 2.5:
11_1}1(1) P(U-UE)*>n =0 Vn>0. (6.23)

Putting together (6.18), (6.21), (6_%25) and (6.23), we > see that in order to obtain (a), it is enough
to prove that for each ¢ > 0, and if F," = F™  and V,;* = V™, | then

[nt]/n [nt]/n?
(FV°, V) =519 (Z(e), U (e)), (6.24)
(F™*%,V™*) stably converges in finite-dimensional law to (Z(e), U(€))- (6.25)

Step 4: From now on we fix ¢ > 0. We denote by 0 < Ty < ... < T, < .. the successive jump times
of Y with size bigger than £. The number of T\, with T, < oo (or equivalently T, < 1) is a Poisson
random variable K, with parameter F(IR \ [—¢,¢]). The processes Z(¢) and Z (¢, f) are given by

2E)e = 5 Wet Ve X AV Im () (6.26)
n>1

Z(e, e = 55 Jo FF) (XKoo )AWs + VL g, <o [VEaGn (F 1) (X, -)

(6.27)
VT= &l f(Xr,-) fo J' (X1, — +ulAXr,)du] AYr,,
where the family (W, &, ¢, ¢}f) has the same properties as (W, Xn, Va, Vo) and
(o= EnCL +vV1-6n ;1’ (6.28)
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(this comes from relabelling the xn, V., Vs).
Now, we associate with each Tj the times T}y (n,j) and T—(n, j) by (4.8), and replace (4.9) by

of = VAAYz (Y, = Y ng)s BF = VRAYG(Yf, gy~ YE), 77 =of +47,  (629)

these quantities being 0 if T; = co. We also write p, = (a7, ﬂ;’) j>1. Finally, set

a; = & (AYr, B =1/c(l— &) AL, v=aith= Ve(jAYT, (6.30)
and p = (0, B5)>1-
Lemma 6.2. We have (H™*, p,,) =220 (HW.p)-

Proof. For simplicity we write H = VC_EW Let Y/ =Y —Y°— A%, and
R =Y = S iy gy — Yintpma)r S8 = H* = 2 H G, 0y~ Hikry )
i1 i<1
In order to prove the result, we need to show that
E(h(Y)g(H™, ps)) = E(WY)g(H, p))

for all bounded functions A and uniformly continuous bounded functions g. By the same density
argument as in Lemma 2.1, it is enough to prove this when h(Y) = w(Y")v(Y¢)w(A®), where u,v,w
are bounded functions, with in addition v continuous. Now, clearly (R" —Y*)* — 0, and Theorem
5.5 yields H™¢ =*tt¥ H so (S™ — H™*)* —P 0. Hence it suffices to prove that

E(u(Y"w(R™w(A%)g(S™, pa)) = E(u(Y V(Y Yw(A%)g(H, p)) (6.31)

In fact it is even enough to prove (6.31) when w depends only on the k first jump times and
sizes of A%, and g depends only on S™ and on the k first variables o] and By Further, the set €1,
(depending also on k) on which each interval (&2, %] contains at most one Tj tends to 2, hence
we can put the indicator function in the left expectation of (6.31). So it remains to prove that

Eu(Y")o(R™w((Tj, AYr,)i<i<k)g(S™ (0 B i<i<w) la.]
- Efu(Y")o(Yyw((Tj, AYr, )1<i<k)9(H, (@5, Bii<i<k)]-

Now, (6.29) and the independence of the increments of Y over all the intervals (T—(n, j), T+(n, 5)]
from all the other random terms appearing in the left side of (6.32) yield that in this left side we
can replace of and 87 by /€ ¢;AYT; and \Je(l =€) Ay, where ¢ = n(T; — T-(n,j)) is
the fractional part of nTj. Using once more (R” —Y)* = 0 and (8™ — H™¢)* —»F 0, we then see
that this left side has the same limit as

E[u(Y"v(Y ) w((Tj, AYT)1<i<k)g(H™, (\/—CE—?C;-AYT,-, Vel = EMG AYT h<i<r)la, ]

(6.32)

Now if F, and G denote the laws of the k-uplets (AYT))1<j<k and (Tj)1<j<k (Which are indepen-
dent), the previous expression becomes (with {u} denoting the fractional part of u):

f Fy(dzy, -, dz)Gr(dt, ., dtk)1nl<.~<;,{[nt.-]<[nt.-+1]}
E[u(Y )oY O)w((ts, z5)1<i<k)g(H™, (Velt5mY e, /e = {ti/nP ¢ zihi<ice)]
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Now we can use the property H™¢ =%y H and the uniform continuity of g to get that the
above has the same limit as

f Fy(dzy,..,dzg)Gr(dts, .., dtk)101<.-<,,{[nt,-]<[nt.-+1]}
Elu(Y" (Y Yw((t;, zi)h<i<k)g(H, (Velti/n}Gzi, /o1 = {t;/n}){izi)1<i<k)]

= Elu(Y")v(Y)w((T;, AYT; )1<i<k)9(H, (\/057}‘ iy /el = € T )i<i<n)]-

At this point, we need to prove that the above converges to the right side of (6.31). Because
T1,.., Ty is independent of Y°,Y’, H,(}, ¢/, AYr;, this amounts to prove that (§])1<j<k =4
(é;)1<j<k- But, since G} has a regular density on its support, a trivial extension of 1-dimensional
results of Tukey [15], see also [2], gives this property.

Step 5: Now we turn to the proof of (6.24) and (6.25), which will reproduce the proof of Theorem
5.1 in a more complicated situation.

1) The sets 2, on which each interval (¢=1, £] contains at most one T; tend to €. Then
similarly to (4.18)-(4.20) we set .
W(J)? = Vt/,\T+(n,j),

w3 if t<T,(n,j)
WE = W(j)?#(n,j) + V" - V;f(n,j) if Ty(n,j) <t<Tjn
Wit () + Voo- — Voitng if Tjpa<t,
Ule): if t<Tj
WG =U(e)inty;, W3 = _
U(e)Tj+1— if ¢ > Tj+1-

We also denote by F(j5)", F(j)™, F(j) and F(j)' the processes obtained by replacing above
(V¢ vme Ule)) by (F 5, F™<, Z(g)). We consider the property (recall that H = %W):

(Hj) (pn,Hn,s’ (F(J)n; W(])n)) = stably (,0, H, (F(])1 W(J)))

Observe that (Hp) holds by Lemma 6.2. If we have (H;) for all j then (6.24) holds, because
K < o0 as.

2) Suppose that (H;) holds. Let H(n,j) be the interval (T (n, j), Tj+1). Then (see (6.21)):

t
FG)m = FG)? + /0 Lit(ng) (S)AH, (6.33)

i t
W =W(E)P + / WY F'(Xam) Liz(n gy (8)AYE — /0 E(X) L rn gy (S)AHDS. (6.34)

Then (4.22) holds with
¢ ¢
Ji =w3y —/O k(X)s1a(n,j) (8)dH S, Jy = W(j)e —/0 F(Xe-)f' (X )L(1;,154) (8)dHs,

t t
L =/0 fl(Xs—)lH(n,j)(s)dY;c’ Lt =/ f,(X"_)l(Tj,'IB‘H)(S)dY:'
0

Clearly (L™ — L)* =¥ 0, while the sequence k(X)? is bounded (in n and t) by a finite ran-
dom variable and converges to (ff')(X,—) at each continuity point of Y, while the sequence
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H™¢ has UCV and these processes are continuous: so (J* — J™)* —F 0 if J» = W(5)? -
fot(ff’)(Xs_)lH(n,j) (s)dH™¢. Then (H;) yields (J™, L™, p", H™¢) =>*tablv (J I p H), so Theo-
rem 2.5(c) and (6.33) give ((F(j)'™, W(j)™), p", H™¢) =% ((F(j)',W(j)'), p, H). Therefore if
F(jt = F(]')ﬁlt]/n and W(j)} = W(J-)gw]/n we get

((F(])n/\T_ (n,j+1)aW(j){xT_ (n,j+1))a F(J){;‘Z_H — W(j)lﬂ-_‘_l_, p", H"’,E)

3y (6.35)
atably (F(G), W), FGr,,oms W), s 0, H)-

8) Set i 1= Fp'%, i1y = Fr jeny a0 0n =V oy = Vil iqy- Onthe set Q,0{T; < 1}

we have ptn, = an + 7%, and &, = uy + vy, where (with Y =Y — A°):

an —_ Hn,s _ Hn,e

Ty (noj+1) Ty (ng+1)
Ty (n,j+1) ~ HT (n,g41) ""z/

Vorf f1(Xs-)dY s — k(X)gdH*,
T_(n,j+1) T_(n,j+1)

. T+(TL,_7+]_)
f (XT.i+1_) - k(X)?Il'j+1a;'l+1 _/ k(X):’;dY:gc).

Ti+1

Vp = AYTJ._'_1 (V/}-"_’E

it1—

First, the sequences V™* and k(X)™* are tight, and Y is continuous at time Tj,and H™* = H
with H continuous, so one deduces that a, =¥ 0 and u,, =% 0. Next the sequences

, T+(n,j+1) 1 ,
KOO0 = EF) )y [ RORYS = B f Xy a) [ /(X + u X )

2
Tj41

converge to 0 in probability. Furthermore Fr0 _ = F(j)7,,_ and V£.7 _ = W(5)F,,_. Thus if

1
6= A}/T;;+1 (W(j)ljwj+1—fl(XTj+1'—) — Oj+1 (ffl)(XTj+1—) - /3.7'-!-1 /0 fI(XTj+1— + UAXTj+1)du)a
one deduces from (6.35) that
((F(J)Ix’_r_ (n,j.*_l)aW(j){’/tT_ (n,j+1))a Hns 5n,Pn; Hn,e)

=stably ((F(5), W ()", Yj+1,9, p, H).

(6.36)

But F(] + l)n = —F(j){XT_(n,j+1) + ;u'n]-[T+(n,j+1),1] and W(] + 1)n = W(j){;l\T_(n,j+l) +
6n1[T+(n,j+1),1]a while F(.7+1) = F(j){/\il‘j+1—+7j+1l[T_-,'+1,1] and W(J+1) = W(j){ACI’J-+1—+61[Tj+1,1]-
Thus (6.36) yields (H;+1), and the proof of (6.24) follows by induction on j.

4) Finally on the set {T}(n,j) < t < T_(n,j + 1)} we have F;** = F(j){*, Z(e): = F(j);,
Vi = W(4)* and U(e)s = W(j§);. Since (F(j)™, W(j)"™) =*blv (F(j)’, W (j)') and since Z(e)
and U(e) have no fixed times of discontinuity, we deduce (6.25), and the proof of Theorem 6.1 is
finished.
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