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Introduction

The issue I wish to consider is whether ideas and methods of Bayesian inference should be
presented in a first statistics course for general students who must later read and sometimes
employ statistics in their own disciplines.

This is a quite specific question. I agree that Bayesian methods are increasingly impor-
tant and should form part of the training of professional statisticians. I also agree that a
course for liberal arts students on e.g. “risks and decisions” structured around subjective
Bayesian ideas can be stimulating. These are quite different settings from that I have in
mind, one more specialized and the other less constrained by student needs. I do not wish
to join the foundational debate over whether Bayesian inference is in some sense uniformly
preferable to standard inference. That prejudges our question, forcing us to teach what is
“right” regardless of customer needs or pedagogical barriers. Most statisticians remain eclec-
tic, willing to employ Bayesian methods where appropriate but unconvinced by universalist
claims. That being the case, I am unwilling to settle the content-of-instruction issue by
appeals to one or another side in a debate among professionals.

I will offer, as my title says, some down-to-earth reasons to hesitate to present Bayesian
ideas in a first course in working statistics.

e Bayesian methods are relatively rarely used in practice. Teaching them has an op-
portunity cost, depriving students of instruction about methods that are in common
use.

e It is unclear what Bayesian methods we should teach. Those who advocate them have
not yet agreed on standard approaches to standard problems. And of course, lacking
standard methods, we also lack standard software for implementing them.

e A conceptual grasp of Bayesian methods rests on some understanding of conditional
probability, a notoriously difficult idea. Although Bayesian conclusions are simple in
form, the simplicity disappears when we ask “What do you mean by probability?”

*It is a pleasure to dedicate this paper to Shanti Gupta, who offered me my first position and contributed
in many ways to my statistical education.



There is of course no easy path to understanding inference. Nonetheless, the fact that
standard inference consistently asks “What would happen if we did this many times?”
and answers by displaying a sampling distribution makes standard reasoning more
accessible.

e Inference is only part of statistics in practice. Data analysis and the design of data
production were always important and have become more so in the past generation.
For various reasons (emphasis on inference, ambiguity about the role of designed data
production, dependence on conditional probability), Bayes-for-beginners tends to im-
pede the trend toward greater emphasis on developing students’ data sense. I like the
trend and don’t want to impede it.

It seems to me that the weakest conclusion possible is that it is premature to make
Bayesian methods the focus of basic methodological courses. They haven’t sufficiently
evolved, been sufficiently widely accepted by users, or even been sufficiently routinized by
experts. That situation may change in the future. In the present, academic researchers ought
not to impose a still-primitive version of how we think things should in principle be done.
Advocates of Bayes for beginners should ponder the similar theoretical cases for basing our
first courses on decision theory, or nonparametric methods, or robust inference. To adopt
any of these is simply to invite our customers to go elsewhere for beginning instruction.

Are Bayesian Methods Used in Practice?

Our beginning students come to us from other fields of study. They come because their own
fields employ statistical ideas and methods. Their first need is to be able to read literature in
their own field. We ought to be attentive to our customers’ expressed needs, rather than offer
them what we imagine they ought to need. What statistics do knowledgeable practitioners
in various fields apply? Let us search for data. There follows, in roughly descending order
of statistical sophistication, a survey of recent empirical studies on the use of statistics in
practice.

Professional statisticians working on applications in the physical sciences may be thought
to employ up-to-date and effective methodology. Rustagi and Wright (1995) carried out a
census of statisticians employed in Department of Energy National Laboratories. Remark-
ably, they obtained responses from all 103 members of this population, 100 of whom hold a
master’s or doctorate degree. Table 1 records the responses to a request to choose from a long
list “the three statistical techniques that have been most important to your work /research.”
Only four of this sophisticated group mentioned Bayesian methods, although 37 reported
training in these methods during their university careers. When asked to choose the three
most important techniques that were not part of their academic training, 19 named Bayesian
methods—sixth place behind quality control, reliability, simulation, exploratory data analy-
sis, and graphical display.



Medical research is a major and quite sophisticated consumer of statistical analyses. The
surveys by Altman (1991) and Emerson and Colditz (1992) document the nature and growth
of the use of statistics in medical journals in roughly the decade of the 1980s. In partic-
ular, Emerson and Colditz inventory the methods employed in the 115 “Original Articles”
appearing in the New England Journal of Medicine in 1989, and Altman does the same
for the 100 articles appearing in 1990. Table 2 presents some of the findings of Emerson
and Colditz. Techniques and ideas from a standard first course predominate—Emerson and
Colditz say (referring to a longer time period) that acquaintance with descriptive statistics,
¢ procedures, and contingency tables would give “full access” to 73% of the articles. They
identify increasing use of ANOVA, multiple regression, and survival analysis as notable re-
cent trends. Altman points to meta-analysis, new techniques for design of clinical trials, and
editorials in several medical journals encouraging more frequent use of confidence intervals.
Neither paper contains any mention of Bayesian approaches. Some use could lie hidden in
the “other methods” category of their tables, though Emerson and Colditz enumerate several
of the “other methods” without using the word Bayes.

In psychiatry, Everitt (1987) reprints a table from DeGroot and Mezzich (1985) that
surveys 597 papers in the 1980 volumes of three major journals. Of these, 156 were surveys
or contained no data. The remaining 441 use statistical methods to some degree. One paper
among these 441 employed Bayesian methods. Everitt mentions more recent trends toward
use of clustering, logistic regression, structural equation models, and Cox regression. Dunn
et al. (1993), focusing on depression, point to some of the same innovations along with meta-
analysis and an emphasis on controlled clinical trials. Neither they nor any of the discussants
to Everitt’s survey mention Bayesian approaches as either in use or promising.

Emulating Emerson and Colditz, Hammer and Buffington (1994) survey all articles pub-
lished in 1992 in six veterinary medicine journals. About half contained statistics beyond
simple numerical descriptions. The authors summarize: “Knowledge of 5 categories of statis-
tical methods (ANOVA, t-tests, contingency tables, nonparametric tests, and simple linear
regression) permitted access to 90% of the veterinary literature surveyed. These data, may be
useful when modifying the veterinary curriculum to reflect current statistical usage.” Mul-
tiple regression, epidemiological methods, confidence intervals, and survival analysis fill out
the authors’ list. Bayesian methods are again unmentioned.

As we move away from the areas that most often involve professional statisticians in
their work, the statistical methods employed of course become more traditional. Moreover,
the newer techniques that are considered promising vary with the area of application. It
would certainly be desirable to have comparable data for other fields, especially the social
and behavioral sciences. Nonetheless, the available data suggest that Bayesian methods are
rarely used in any field to which statistics is applied. Paul Velleman points out that the
absence of Bayesian procedures in commercial statistical software is strong evidence of lack
of use, as these packages respond quickly to customer demand. Velleman says, “Both the
features and the advertising of software packages offer a good measure of what people who



actually analyze data really want.” The most recent new version announcement I have seen
(as of July, 1995) is Minitab Release 11. Minitab claims to have added logistic regression,
reliability /survival analysis, polynomial regression, gage R&R, and correspondence analysis.
Several of these techniques appear in the lists I have cited. Minitab appears to find more
demand for even gage R&R and correspondence analysis than for Bayesian procedures.

The fact that even sophisticated users rarely turn to Bayesian methods deserves atten-
tion. Statistical research journals are full of papers advancing and applying Bayesian ideas.
Statisticians—especially Bayesians—therefore imagine that use of these ideas in practice is
advancing rapidly. I can find no empirical evidence that this is true. The research papers
are in the nature of demonstration pieces that suggest the possibilities of Bayesian analyses.
These analyses have not yet passed the “Box test” that assesses the usefulness of a method
by whether it is actually used.

This survey of empirical evidence for use in practice raises another issue beyond the
question of why we should teach beginners an approach that appeals to us in principle but
lies unused in practice. Teaching Bayes to beginners has an opportunity cost. If Bayesian
ideas displace ¢ procedures, contingency tables, regression, or ANOVA, they bar students
from access to much literature in any field that applies statistics. If we manage to add Bayes
to the list, perhaps by persuading students to elect further courses, we must ask whether
the time might better be spent on logistic regression, simulation, survival analysis, or meta-
analysis. Bayesian methods are not the only hot field in statistics research, and several others
have already passed the Box test.

Are There Standard Bayesian Methods?

The content of a first course that aims to provide understanding and useful tools to students
from other disciplines should, I think, consist mainly of standard material well-accepted
by the profession and widely used in practice. The first section argued that no Bayesian
methods are widely used. This section will suggest that even if we listen only to Bayesians,
standard methods for standard problems are not yet agreed upon.

Much of the disagreement concerns the essential element distinguishing Bayesian from
standard models, namely prior distributions for unknown parameters. There is a continu-
ing tension in Bayesian circles between use of priors that try to reflect the actual partial
knowledge of a decision-maker and default priors that are automatically generated from the
sampling distribution, taking no account of what partial knowledge may exist. The former
class of priors are “informative;” the latter are generally chosen to be “noninformative.”
The use of conjugate priors, which specify a parametric family of prior distributions on the
basis of analytic convenience, but allow prior knowledge to choose the parameters of this
family, lies between these extremes. Because knowledge of the mechanism that generates the
unknown parameter is rarely complete enough to determine a prior distribution, informative
priors are usually subjective. Simplifying a bit, we can imagine several Bayes-for-beginners
approaches.



methods for dealing with specific standard settings. It was once common

A. Purist Bayes Relevant prior information is always available and should be
expressed in an informative (usually subjective) prior distribution tailored to the
problem at hand. This view is consistent, easy to explain, and in many settings
intellectually attractive. Expositions of the advantages of Bayesian analysis often
emphasize the use of genuine prior information and the subjective interpretation
of probability. Alas, there can then be no standard Bayesian analysis for standard
problems, because every problem is potentially unique. We are left with a tool
of great power in non-standard problems, but which is unlikely to ever be widely
used in standard settings. Beginners come away with ideas but few usable tools.

B. Accessible Bayes Emphasize the Bayesian Big Idea: express prior infor-
mation in an informative prior distribution, use data to update this information
to form a posterior distribution, base all inference on the posterior distribution.
Restrict the settings considered to those in which beginners can implement the
Big Idea, mainly discrete or conjugate priors. In a binomial problem, for exam-
ple, the prior information just happens to be expressed by a beta distribution.
Emphasize estimation rather than testing, and rejoice that the one-way ANOVA
setting is beyond the scope of the course. We can teach a beginner-friendly course
that does provide usable tools for simple settings. However, the tools taught may
not reflect actual Bayesian practice (let alone prevailing statistical practice). As
Robert (1994, p. 98) notes, “the use of conjugate priors is strongly suspicious for
most Bayesians since it is mainly justified on technical grounds rather than for
fitting properly the available prior information.”

C. Auto-Bayes In practice we do need standard methods for standard prob-
lems. We can get them by employing noninformative default priors that are
determined by the sampling distribution. In effect, we first present beginners
with an explanation of the role of prior information and perhaps even of the
machinery for making use of it in the simplest cases. When we come to prac-
tical settings, however, we tell our students to ignore prior information. If our
students are a bit sophisticated, we may explicitly argue (Box and Tiao, 1973,
p. 2) that “In problems of scientific inference we would usually, were it possible,
like the data ‘to speak for themselves.’ Consequently, it is usually appropriate
to conduct the analysis as if a state of relative ignorance existed o priori.”

There is no Bayesian consensus on the relative place of purist, accessible, and automated

(e.g., Lindley

to begin with axioms for coherent inference, show that these imply the existence of a

subjective prior distribution, and insist that use of these sub jective priors is essential to the

Bayesian approach. Many Bayesians now criticize this purist stance (
198-199).

of “ready-made Bayesian analyses in which 6 is just a parameter.”
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e.g., Berger 1985, pp.
Current opinion among Bayesians seems rather to favor some version of default
priors for common statistical settings. But Lindley (1971, pp. 71) is not alone in his criticism



For practical and pedagogical reasons, Bayes for beginners will almost surely employ some
mix of conjugate and noninformative priors, focusing on procedures that are computationally
feasible. This also reflects a feeling that teaching the Bayesian Big Idea is more important
than teaching methods we would actually recommend in practice. Even assuming this, there
remain many issues on which a Bayesian consensus has yet to emerge.

e There is no agreement as to which noninformative priors we. should use and teach.
“Perhaps the most embarrassing feature of noninformative priors, however, is simply
that there are often so many of them.” (Berger 1985, p. 89) Berger offers four choices
when 6 is the probability of success in the binomial setting, and says, “All four pos-
sibilities are reasonable.” See Robert (1994, p. 119) for an example due to Berger
and Bernardo showing that simply reordering the parameters in the oneway ANOVA
setting leads to four different “reference priors” (all of them too messy for beginners
to grasp, I might add).

e Noninformative prior distributions are generally improper when the parameter space
is not compact. Shall we expose beginners to improper priors? Berry (1996, p. 339)
wisely lets pedagogical good sense prevail, saying only that the prior for a normal mean
m is “flat over a substantial region of m-values.” He also discusses normal (conjugate)
priors for the mean m.

e How shall we treat hypothesis testing? The gap between estimation and testing is wider
for Bayesian than for standard inference. Bayesians must generally switch priors when
moving from estimation to testing, because the continuous priors used for estimation
problems put probability zero on a point null hypothesis. Moreover, the results of
testing seem to be more sensitive to the choice of prior distribution. The choice of
methods is both quite complex and not at all settled. Finally, Bayesian and standard
conclusions differ more substantially for testing than for estimation. (Ask any Bayesian
about P-values.) Dempster (1971) sees Bayesian “predictive” concepts of probability as
suitable for estimation, whereas frequentist “postdictive” probability better fits testing.
Like many other variations of Bayesian thinking, Depmster’s suggestion seems to have
fallen on stony ground. See Kass and Raftery (1995) for a review of Bayesian hypothesis
testing. They convince me that this topic is not yet ready for the general public.

® Yet other issues lurk beneath the surface, though we may choose to ignore them in a first
course. Some types of noninformative priors depend on the choice of parametrization.
We will hide this rather than admit that choosing between probability of success and
odds ratio to parametrize a binomial setting changes our automated inference. Once we
have made our choice of prior and obtained the posterior distribution, a loss function or
utility function usually enables us to complete our inference. We may assume (silently)
squared error and 0/1 loss functions for estimation and testing. Or we may simply give
posterior distributions and comment informally on what actions they suggest.

It is, of course, possible to give definite answers to these questions. The difficulty is that
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no one set of answers is fully accepted by Bayesians. Even if we abandon the hope of contact
with standard statistical usage, there is as yet no “Bayesian standard” to replace it.

Is Bayesian Reasoning Accessible?

Bayesians generally argue that the conclusions of Bayesian inferences are clearer than those
of standard inference. I suggest that the reasoning of Bayesian inference is considerably less
clear. Consider first this partial outline of a “standard” elementary statistics course.

A. Data analysis. We begin with tools and tactics for exploring data. For a
single measured variable, the central idea is a distribution of values. We meet
several tools for graphic display of distributions, and we learn to look for the
shape, center, and spread of a distribution. We also learn to describe center and
spread numerically.

B. Data production. We now distinguish a sample from the underlying popu-
lation, and statistics from parameters. We meet statistical designs for producing
sample data for inference about the underlying population or process. Ran-
domized comparative experiments and random sampling have in common the
deliberate use of chance mechanisms in data production. We motivate this as
avoiding bias, then study the consequences by asking “What would happen if we
did this many times?” The answer is that the statistic would vary. The pattern
of variation is given by a distribution, the sampling distribution. We can produce
sampling distributions by simulation and examine their shape, center, and spread
using the tools and ideas of data analysis.

C. Formal inference. We want to draw a conclusion about a parameter, a fixed
number that describes the population. To do this, we use a statistic, calculated
from a sample and subject to variation in repeated sampling from the same
population. Standard inference acts as if the sample comes from a randomized
data production design. We consistently ask the question “What would happen
if we did this many times? and look at sampling distributions for answers. One
common type of conclusion is, “If we drew many samples, the interval calculated
by this method would catch the true population mean pu in 95% of all samples.”
Another is, “If we drew many samples from a population for which y = 60 is
true, only 1.2% of all such samples would produce an 7 as far from 60 as this one
did. That unlikely occurrence suggests that u is not 60.”

Inductive inference from uncertain empirical data is a formidable task. There is no
simple path. But there may be relatively simpler and more complex paths. Consider these
characteristics of the “standard” outline above:

e A parameter is a fixed unknown number that describes the population. It is different
in nature from a statistic, which describes a sample and varies when we take repeated
samples.



e Inference is integrated with data analysis through the idea of a distribution. The
central idea of a sampling distribution can be presented via simulation and studied
using the tools of data analysis.

¢ Probability ideas are motivated by the design of data production, which uses balanced
chance mechanisms to avoid bias. The issue of sampling variability arises naturally, and
leads naturally to the key question, “What would happen if we took many samples?”

e Probability has a single meaning that is concrete and empirical: “What would happen
if we did this many times?”

e Inference consistently asks “What would happen if we did this many times?” Although
we use probability language to answer this question, we require almost no formal prob-
ability theory. Answers are based on sampling distributions, a concrete representation
of the results of repeated sampling.

e For more able students, study of simulation and bootstrapping is a natural extension
of the “do it many times” reasoning of standard inference.

This simple outline of standard statistics can legitimately be criticized as lacking generality—
standard inference is limited by acting as if we did proper randomized data production, for
example. For beginners, however, it is clarity rather than generality that we seek. I find
that the reasoning of Bayesian inference, though purportedly more general, is considerably
more opaque.

A parameter does describe the population, but it is a random quantity that has a dis-
tribution. In fact, it has two distributions, prior and posterior. We usually avoid calling
p “random” in the same sense that Z is random, because a distribution for 1 reflects our
uncertainty, while the sampling distribution of T reflects the possibility of actually taking
several samples. So in a specific problem setting, the random T could vary but the random
p can’t? Gotta think about this for a while.

Probability no longer has the single empirical meaning, “What would happen if we did
this many times?” Subjective probabilities are conceptually simple, but are not empirical
and don’t lend themselves to simulation. Because we hesitate to describe the sampling model
for the data given the parameter entirely in terms of sub jective probability, we must explain
several interpretations of “probability.” Worse, we often mix them in the same problem.

The core reasoning of Bayesian inference depends not merely on probability but on con-
ditional probability, a notoriously difficult idea. Beginners must move from the prior distri-
bution of the parameter and the conditional distribution of the data given the parameter to
the conditional distribution of the parameter given the data. (Run that by me once more,
will you?)

Garfield and Ahlgren (1988) survey research on the difficulties that probability ideas in
general present for students. They note (p. 55) that conditional probability is particularly



difficult because “an important factor in misjudgment is misperception of the question be-
ing asked.” Students find it very difficult to distinguish among P(A|B), P(A and B), and
P(B|A) in plain-language settings. Bayes-for-beginners must either shortchange the reason-
ing of inference or (a better tactic) use two-way tables to very carefully introduce conditional
probability ideas. Conditional probability and Bayes’ theorem, at any level of informality,
are certainly less accessible than “What would happen if we did this many times?” at a
matching level of informality. Moreover, the need to introduce more probability theory has
an opportunity cost in coverage of statistics.

Bagyesian conclusions are perhaps not as clear to beginners as Bayesians claim. It is
certainly true that users do not speak precisely. They often confuse probability statements
about the method (standard inference) and probability statements about the conclusion
(Bayesian inference). “I got this answer by a method that gives a correct answer 95% of the
time” easily slides into “The probability that this answer is correct is 95%.” If we regard this
semantic confusion as important, we ought to ask whether the user of Bayes methods can
explain without similar confusion what she means by “probability.” Given the multifaceted
meanings of probability in Bayesian statistics, a semantically correct interpretation of a cred-
ible region may reflect no better understanding than a semantically incorrect interpretation
of a confidence region.

There are numerous other complexities that the teacher of Bayesian methods must face
(or choose to ignore). The use of default or reference priors opens a gap between Bayesian
principle and Bayesian practice that is not easy to explain to beginners. The need to abandon
what seemed satisfactory priors when we move from estimation to testing is annoying. After
explaining subjective probability, we may need to deal with the oft-noted conflict between
personal probabilities and physical probabilities, and even with the conflict between personal
probabilities and the laws of probability. Tversky and Kahneman (1983) show that, “intuitive
judgments of all relevant marginal, conjunctive, and conditional probabilities are not likely
to be coherent, that is, to satisfy the constraints of probability theory.” (p. 313) They also
dispute Lindley’s claim that coherent personal probabilities can be elicited: “we suspect that
incoherence is more than skin deep.” And so on.

I understand and have some sympathy for Bayesian claims to employ a single coherent
approach that works in very general settings. It is a priori unlikely that such a general and
powerful method will also be simple. Adding data (years of teaching experience, consid-
erable reading of Bayesian expositions, and the findings of research on such topics as our
understanding of probability), I am a posteriori convinced that Bayesian reasoning is even
harder than the already hard reasoning of standard inference.

What Do We Want Our Students to Learn?

Let me conclude with a less specific—but perhaps more important—objection to basing a
first course on Bayesian ideas. The teaching of elementary statistics has only recently moved



from an over-emphasis on the parts of our subject that can be reduced to mathematics
(probability and formal inference) toward a balanced presentation of data analysis, data
production, and inference. See the report of the ASA/MAA joint curriculum committee
(Cobb 1992) for a clear statement of trends that I and many others think are healthy. In
particular, I believe that introductions to statistics ought to involve constant interaction
with real data in real problem settings. Real problem settings often have vaguely defined
goals and require the exercise of judgment. This puts me at odds with those who describe
the subject matter of statistics as “making decisions under uncertainty.”

What do we want our students to learn? In our more realistic moments, we recognize
that many students will not take away from our first courses any clear conceptual grasp of
formal probability or of the more subtle varieties of inference. 1 would place all flavors of
hypothesis testing and all Bayesian reasoning in the “more subtle” category. They will, if we
provide the opportunity, take away a number of more valuable messages: Always examine
your data carefully, starting with graphs and simple calculations. Always ask what your
data say in the context of the setting they describe. Be aware that faulty data produc-
tion (voluntary response, confounding) often yields worthless data that no fancy analysis
can rescue. Understand that an observed association does not imply causation, and that
randomized comparative experiments are the gold standard for evidence of causation. Be
sure that the data take priority over any model (such as a normal distribution or a linear
relationship) used to analyze them. “Data sense” might summarize my primary objectives
for a first statistics course.

Intelligent supporters of standard inference recognize that formal inference is not always
appropriate. They also recognize that, even when appropriate, inference often plays a “con-
firmatory” role, confirming by calculation what examination of the data suggests. This
understanding contributes to a willingness to reduce the traditional first-course emphasis on
inference in favor of hands-on work to develop data sense.

There is, on the other hand, some tendency among Bayesians to neglect data analysis
and design of data production in favor of more attention to inference. No doubt this ten-
dency reflects in part the opportunity cost of the need to explain the Bayes machinery. It
may also reflect the decision-theoretic bent of many Bayesians, which is clearly reflected in
the leading advanced texts, Berger (1985) and Robert (1994). More substantively, Bayesian
inference is not as well integrated with the design of data production and with data analysis
as is standard inference. Many Bayesians deny the importance of randomization in data
production, whereas standard inference sees randomization as validating standard sampling
models. The spirit of data analysis (derived from John Tukey) is to minimize prior assump-
tions and allow the data to suggest models. This spirit fits uneasily with Bayesian emphasis
on the importance of prior (prior to the data) distributions and clearly structured outcomes.
Bayesian thinking seems to start with models rather than with data.

Pursuit of the Bayesian Big Idea is not in principle incompatible with developing data
sense. In practice, however, it is likely to turn elementary statistics courses back toward
probabilistic formalism and to leave our beginning instruction less accessible, less in contact
with practice, and less in contact with data. As George Cobb so nicely puts it, “Bayesian
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inference offers a way to make a probability course deal with statistics.”
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Table 1. Responses of 103 DOE statisticians asked to
name the three techniques most important in their work.

Statistical Technique Top 3 Responses
Regression analysis 63
Basic statistical methods 37
Analysis of variance 26
Design of experiments 26
Probability modeling 22
Sampling, survey sampling 17
Simulation 16
Graphical display and data summary 12
Multivariate analysis 12
Quality control, acceptance sampling 12
Exploratory data analysis 11
Reliability, life data analysis 11
Nonlinear estimation 7
Biostatistics, bioassay 6
Nonparametric methods 5
Numerical analysis 5
Bayesian methods 4
Time series analysis 4
Categorical data analysis 3
Variance components 3
Ranking, paired comparisons 1
Other 5

Source: Rustagi and Wright (1995).
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Table 2. Statistical techniques most commonly used
in 115 New England Journal of Medicine articles, 1989.

Statistical technique Number of articles
t-tests 45
Contingency tables 41
Survival methods 37
Epidemiologic statistics 25
Nonparametric tests 24
Analysis of variance 23
Pearson correlation 22
Multiple regression 16
Multiway tables 11
Simple linear regression 10
Multiple comparisons 10
Adjustment and standardization 10

Source: Excerpted from Table 4 of Emerson and Colditz (1992).
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