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Abstract

The purpose of this article is to study the empirical Bayes theory of two-stage tests for
the two-action problem in a discrete exponential family. An empirical Bayes two-stage test
is constructed by resembling the behavior of a Bayes two-stage test. Asymptotic optimality
of the empirical Bayes two-stage test is investigated and the rate of convergence of its
associated regret Bayes risk is established. It is shown that the proposed empirical Bayes
two-stage test is asymptotically optimal at a rate of convergence of order O(exp(—nc)) for
some positive constant ¢, where n denotes the number of historical data at hand when the

present decision problem is considered.



1. Introduction

The empirical Bayes theory, as pioneered by Robbins (1956, 1964), deals with a se-
quence of independent repetitions of a given statistical decision problem, where each com-
ponent problem in the sequence involves the same unknown prior distribution G on the
parameter space. Since Robbins (1956, 1964), empirical Bayes procedures have been ex-
tensively investigated in the literature. To name a few, Johns and Van Ryzin (1971, 1972),
Van Houwelingen (1976) and Liang (1988) have studied certain empirical Bayes tests; Lin
(1972, 1975), Singh (1976, 1979) and Singh and Wei (1992) have investigated empirical
Bayes estimation problems. Among all the works referenced precedingly, the empirical
Bayes methods are dealing with components having one sample, fixed sample size and
identical statistical decision problems. Recently, Karunamuni (1988, 1989, 1990) have
developed empirical Bayes sequential procedures for certain statistical decision problems
and investigated the associated asymptotic properties. However, due to the difficulty of
determining Bayes stopping rules, the asymptotic optimality established in Karunamuni
(1988, 1989, 1990) is with respect to, for example, a one-step-look-ahead Bayes procedures

instead of the Bayes sequential procedure.

In this article, our purpose is to study the empirical Bayes theory of two-stage tests
for the two-action problem in a discrete exponential family, particularly, the asymptotic
optimality of an empirical Bayes two-stage test relative to a Bayes two-stage test. In
Section 2, we introduce the notations and the statistical model of the two-stage test with a
weighted linear error loss for the two-action problem and derive a Bayes two-stage test. The
related empirical Bayes framework is described in Section 3. By resembling the behavior
of the Bayes two-stage test, an empirical Bayes two-stage test is proposed in Section 3.
We then investigate the asymptotic optimality of the empirical Bayes two-stage test in
Section 4. Several useful lemmas are introduced in Section 5. The rate of convergence
of the empirical Bayes two-stage test is established. It is shown that the empirical Bayes
two-stage test is asymptotically optimal, with a rate of convergence of order O(exp(—nc))
for some positive constant ¢, where n denotes the number of historical data at hand when
the present decision problem is considered. In Section 6, two examples are provided to

demonstrate the asymptotic optimality of the empirical Bayes two-stage test.



2. Two-Stage Tests
2.1. An Introduction to Two-Stage Test

We let (X,Y) be a pair of independent random variables belonging to a discrete

exponential family with probability function
f(2|0) = a(2)B(6)6*, 2=0,1,...; 0<6<Q, (2.1)

where a(z) > 0 for all z = 0,1,..., and where Q may be finite or infinite. Here, X
denotes the random observation obtained at the first stage and Y stands for the random
observation observed at the second stage. We want to test the hypotheses Hy: 6 > 6y
against Hy: 0 < 6y using a two-stage test where 6y is a known constant such that 0 <
0o < Q. For each i = 0,1 let ¢ denote the action deciding in favor of the hypothesis H;.
Let ¢ denote the termination action: ¢ = 1 means terminating sampling and taking an
action immediately after observing X; ¢t = 0 means going to second stage sampling, and
then taking an action based on the observation (X,Y’). For the parameter 4, action 7 and

termination action ¢, we assume the following weighted linear error loss

L(9, (3, 8)) = L1(8,1) + (2 — )e, (2.2)
and 0—86 6 0
L1(0,i) i(ﬁ—‘((,)"—)fwo,@ 0)+(1- i>(g(—;))f<o,ao><e>, (2.3)

where 14 is the indicator function of the set A, and ¢ > 0 is the cost per sampling. In
(2.3), the first term is the loss due to wrongly accepting H; when 6 > 6, and the second
term is the loss of wrongly accepting Hy when 6 < 6. The second term in (2.2) is the cost

of sampling.

Let X and )Y denote the sample space generated by X and Y, respectively. A two-
stage test consists of three parts, say, § = (d1,d2, 7), where d; is the decision rule at stage

1,4 =1,2, and 7 is the stopping rule. They are defined as follows:

(a) 7 & — [0,1]. For each z € X, 7(z) is the probability of stopping sampling and

making a decision immediately when X = z is observed.

(b) di: X — [0,1]. For each = € X, d;(z) is the probability of accepting Hy when X = z

1s observed.



(¢) d2: X x Y — [0,1]. For (z,y) € X x Y, da(z,y) is the probability of accepting H,
when (X,Y) = (z,y) are observed.

It is assumed that the parameter § is a realization of a random variable © having an
unknown prior distribution G over (0,Q). It is also assumed that [ %dG(Q) < 00 S0
that the Bayes risk of a two-stage test (dy,d2, 7) is finite.

In the following, we introduce some notations. Let
/ f(z]0)dG(6 / B(6)6°dG(0) : The marginal probability function of X,

/ B(6)6°dG(8) = Ex)
h(z) = / 624G (0),

G(0|z) : the posterior distribution of © given X = ,

Wy(z) = afa)hla)ffo — “ 1)
Wa(z,3) = a(a)afy)k(e + )60 — “p LD

¢ (z) = /L1(9, 1)dG(6]z).

Let R(G, (d1, d2, 7)) denote the Bayes risk of the two-stage test (d1, d2, 7). Then, with
the loss function (2.2)-(2.3) and by Fubini’s theorem, we have

R(G, (d]_, d27 T))
— Z 7(z)[d1(z)W1(z) + £ (z) f(2) + cf (z)]

+Z 1-71(z ]{Zdz z,y)Wa(z,y) + £ (z)f(z) + 2¢f(z)}
= Z )da (@)Wi(x) = > da(z, y)Wa(z, y) — cf ()] (2.4)

+ YD da(e,y)Wa(z,y) + Dt (z)f(z) + 2.



2.2. A Bayes Two-Stage Test

Define
U(z,dy,ds) = di(z)W(z) — Zdz (z, y)Wa(z,y) — cf(z). (2.5)

Y

We then consider a two-stage test ¢ = (d1g, dag, T¢) Which is defined as follows:

_ 1 if W1 (:L’) S 0,
dig(z) = {0 otherwise; (26)
_ 1 if Wa(z,y) <0,
doc(2,y) = {0 otherwise; (2.7)
and
_ 1 lf \If(:l?,dlg,dzg) S 0,
Ta(z) = {0 otherwise, (2.8)
Since a(z), h(x) and k(z) are positive for all z = 0,1, ..., dig and dpg can also be
written as:
- h(z+1)
dig(z) = {1 if S 2 bos (2.6')
0 otherwise.
-0 k(z+y+1)
doc(z,y) = {1 if Sty = 00 (2.7
0 otherwise.
From (2.7'), the second stage decision rule dzg(z,y) depends on (z,y) only through
r+y.

It should be noted that the two-stage test (dig, Dag, 7c) is the Bayes one-step look
ahead procedure truncated at two. Thus (dig, Dag,7g) is a Bayes two-stage test. For
detailed discussion about one-step look ahead procedure, see Berger (1985).

2.3. Alternative form of (dig, dsg, 7¢)

For each z =0,1,..., let

_h(z+1) _ [0*TdG(9)
pr(2) = =y = [62dG(6)

and
_B(+1) _ [ B(0)0°dG ()
#2(2) = k(z) [ B(6)6=dG(0)
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It is easy to see that both ¢1(z) and ¢3(z) are increasing function of z. Since ﬁ =

Y~ 0%a(z), B(9) is decreasing in 6 for § > 0. By Theorem 2 of Wijsman (1985),
z=0

©01(2) > @2(z) for all 2 =0,1,2,...,. (2.9)
For each 1 = 1,2, let

Az(go) = {Z|Q02(Z) < 90} and Bz(eo) = {ZIQOZ'(Z) > 90}

Define
s = { S—uf Ai (o) ii szZ()J)jg, (2.10)
_ Jinf Bi(6o) if By(6o) # ¢,
M; = {oo Y B0 = b (2.11)

Note that m; < M; < m; +2, i = 1,2, and when B;(0y) # ¢, m; < M; < co. By the
inequality (2.9), m1 < my and My < M,. In the following, it is assumed that B;(6y) # ¢,
i=1,2.
Note that
r <my iff Ooh(z) —h(z+1) >0 iff Wi(z)> 0

x> M iff Goh(z) —h(z+1) <0 iff Wi(z)<0;
my <z < M iff Qoh(m)—h(x—l—l):o iff Wl(il,‘):O,

and
z+y<my ifft Gok(z+y)—k(z+y+1)>0 iff Wy(z,y) >0;
T+y> M, iff Ook(z+y)—kz+y+1)<0 iff Wy(z,y) <O0;
my<z+y< My iff Gk(z+y)—-kiz+y+1)=0 if Wy(z,y)=0.
It should be pointed out that the set {z|m1 < z < M;} = {z|¢1(2) = 6y} may be an
empty set if ¢1(z) # 0y for all z = 0,1,...; or it may not be an empty set which occurs

only when ¢1(m; +1) = 0y in such case My = m; + 2. Similarly, the set {z|my < z < M>}
may be an empty set if pa(2) # 6p for all z = 0, 1,...; or it may not be an empty set which

occurs when @a(mg + 1) = 6y in such case My = mo + 2.

6



Therefore, the Bayes decision rules d;¢ and dag can be represented as:

0 ifx<ms,
dlg(x) = {’)’1 ifmy <z< My,
1 lf.TZMl,

0 if Boh(z) — h(z +1) > 0, (2.12)
= Y1 if 00h(a:) - h(x + 1) = 0,
1 if 6ph(z) — h(z +1) < 0;
and
0 ifz+4+y<msy,
dzg(flf,y):{’YQ ifm2<33+y<M2,
1 ifz+4+y> M,
v==2 (2.13)

v2 if Gok(z+y) —k(z+y+1)=0,
1 ifbok(z+y)—k(z+y+1) <0,

where 7; and v, are any values between (including) 0 and 1.

{0 if ok(z +y) —k(xr+y+1) >0,

Now consider the function

\I’(:L', dig, dzg) = dlg(.’r)W1(l‘) - Zde(l', y)Wz(IB, y) —cf(x)

= dlg(a:)a(:v)h(at)[eo - %]
—.; dac (x, y)a(z)aly)k(z + y)[fo — k(zj(:—i;)l)]
— cf(a).

(a) As z > m..

By the inequality (2.9) and the definitions of m; and mg, ms + 1 > M. Thus, as
T >mg, dig(z) = 1 and da(z,y) = 1 for z+y > Ma. As z+y = ma+1, either dy(z,y) = 1
or Ook(ma + 1) — k(mg + 2) = 0. In either cases, we always have
lI’(.’L‘, dia, dz(;) = —Cf(.’L‘) < 0. (2.14)
Thus, 7¢(z) = 1.
(b) As 0 <z < m;.
As 0 <z <my, dig(z) =0 and

0 1f1:—|—y§m2,
dag(z,y) = {72 ifme <z +y< M,

7



It should be noted that if there is any pair (z,y) such that my < 2 +y < M>, it must be
that My = ma +2, z +y = my + 1 and Ook(my + 1) — k(m2 + 2) = 0. With the preceding

results, a straightforward computation leads to

\I’(.'L', lea dZG')

= (@) b+ 1)~ Boh@] + Y a(@)a(y)lbok(@+y) - Kz +y+ 1)]  of (2),
= \Ifl(CL‘, mz). (215)

It can be shown that ¥(z,dic,d2q)/f(z) is increasing in . However, it is not known

whether ¥(z, d1g, d2g) is positive or negative when the prior distribution G is unknown.
(c) As mi+1<z < mj.

It is possible that the set {x/m;+ 1 < z < m2} be empty. When it is not empty, as
m1+1 < z < mg, by the definitions of dy ¢, dag, m1 and ms, a straightforward computation

leads to

V(z,dia, d2c)

ms—I

> a(@)a®)bok(z +y) — k(z +y+1)] — cf (z) (2.16)

= \I’z(.’lt, mz).

It is not known whether ¥(z, d;¢, d2g) is positive or negative when the prior distribution

G is unknown.

According to the preceding analysis, the Bayes stopping rule 7g can be represented

as:
1 if (x > my) or (z < my and ¥(z,d1g,d2g) < 0),

7a(z) = {0 if (x < mg and ¥(z,d1g,d2g) > 0). (2.17)

3. Construction of Empirical Bayes Two-Stage Test

3.1. Empirical Bayes Framework

In the empirical Bayes framework, we let (X;,Y;,©;) denote the random vector oc-
curring at time j, j = 1,2,..., where ©; is a random parameter following the unknown

prior distribution G; X; and Y; denote the random observations obtained at the first and
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second stage sampling, respectively, and conditioning on ©; = 0;, X; and Y; are mutu-
ally independent, with the probability function f(-|6;) of (2.1). It should be noted that
the random parameter is unobservable while X j 1s observable. Also, Y; may or may not
be observed depending on at time j the second-stage sampling is made or not. It is as-
sumed that (X;,Y;,0;) (j =1,2,...,) are mutually independent. Therefore, (X;,Y;,0;),
3 =1,2,..., are iid. At the present time n + 1, let (Xpt1, Y1, Ons1) = (X,Y, 0).
We are interested in testing Ho: 0,41 > 6y against H;: On+1 < Op with the loss function
L(6n+1, (,t)) of (2.2), where 6,1 is a realization of the random parameter ©,_,,. We let
X(n) = (X1,...,X,) denote the accumulated historical data obtained at each first-stage

sampling during the previous time.

Since the prior distribution G is unknown, it is not possible to implement the Bayes
two-stage test (dig,d2q,7g) for the testing problem. The empirical Bayes approach is
adopted. We attempt to incorporate useful information from the accumulated historical
date X(n) to improve the decision for the current testing problem. A two-stage test
(din,dan, 7n), called as an empirical Bayes two-stage test, is a function of the present
observation (Xy,41,Yn41) = (2,y) and the past data X (n) such that 7,(z, X(n)) is the
probability of stopping sampling and making a decision immediately when X,,.; = z and
X(n) are observed. When X,;; = z and X(n) are observed and the decision to stop
sampling is made, di,(x, X(n)) is the probability of accepting Hy. When the decision of
taking the second-stage sampling is made and Yn_;_i = y is observed, dan(z,y, X(n)) is the

probability of accepting Hj.

Let R(G, (din,d2n, )| X (n)) be the Bayes risk of the empirical Bayes two-stage test
(din, d2n, T) conditioning on X (n). Also, let R(G, (din,don, ™)) = EX(n) R(G, (d1n, d2n,
Tn)|X (n)) denote the overall Bayes risk of the empirical Bayes two-stage test (d1,, dan, Tn),
where the expectation E X(n) is taken with respect to the probability measure generated by
X(n). Since R(G, (d1g,d2c,7¢)) is the minimum Bayes risk, R(G, (din, dan, 7n)| X (n)) >
R(G, (d1g,d2q,7¢)) for all X(n) and for all » = 1,2,.... Hence, R(G, (din, don, 1)) >
R(G, (dig, d2¢,7¢)) for all n = 1,2, .. .. The nonnegative regret Bayes risk R(G, (d1n, don,
™)) —R(G, (d1g, d2g, 7)) is used as a measure of performance of the empirical Bayes two-
stage test (din, da2n, 7n). A sequence of empirical Bayes two-stage tests {(d1n, don, )}

1s sald to be asymptotically optimal relative to the prior distribution G at a rate of con-



vergence of order O(ay,) if R(G, (din, d2n, Tn)) — R(G, (d1g, d2g, 7¢)) = O(a,) where {a,}

is a sequence of positive numbers such that lim «, = 0.
n—ro0

3.2. Estimation of m;, my and ¥(z, d1g, d2c)

In view of (2.12), (2.13) and (2.16), one can see that the Bayes two-stage test
(d1@,d2c, Te) is characterized by the values of mq, my and ¥(z,d;g,d2g) for 0 < z < ma.
Hence, in order to construct an empirical Bayes two-stage test, we first construct empirical
Bayes estimators for my, mg, and ¥(z,d1¢,dag). Before doing so, we investigate certain

properties related to mj; and ms.
For each 2z =10,1,..., let
b1(2) = Ooh(z) — h(z + 1),
ba(z) = Ook(2) — k(z + 1),

and let {w;(2)}52,, 2 = 1,2, be positive weight functions. For each ¢ = 1, 2, define

Bi(t) =) w;(2)bi(2). (3.1)
z=0

Since b;(z) > (=or <) 0if 2 < m(if m; < z < M; or if z > M;), we have: B;(t) is
increasing in t and B;(t) > 0 for 0 < ¢ < my; B;(t) = B;(m;) for m; <t < M;; and B;(t)
is decreasing in ¢ for t > M;. Thus,

m; = inf{m > 0|B;(m) = r?zagc B;(t)}. (3.2)

The property (3.2) will be used to construct estimators for m, and mg, respectively.

Foreachn=1,2,...,and 2=0,1,..., let
1 n
fa(2) = =D T(:3(X;) and kn(2) = fa(2)/a(2).
j=1

Then, EX(n)fn(z) = f(z) and EX(n)kn(z) = k(z).
Define a(z) = 0 if z < 0. Note that for each z =10, 1,. ..,

a(z — z)

a(z)

10
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Za T —z /,6'(0 )0%dG(0)
/GZia (x — 2)B3(6)6°*dG(0)
/QZdG(G
= h(z)

since ziza(x —z)B3(0) 0% = i a(t)B(6)8t =

Based on (3.3), we define, for each n =1,2,...,and 2=0,1,...

n

hn(e) = = > a(X; — 2)/a(X;),

j=1
Note that Ex (, hn(2) = h(z).

According to the form of By(t), we define

Boy,(t Z wa(2)ban (2
where bap,(2) = Ookn(2) — kn(z + 1). Let
m3, = inf{m > 0|Ba,(m) = max Ban(t)}.
Next, define
B (t Z w1(2)bin(z
where b1, (2) = Oohn(2) — hp(z +1). Smce my < mo, therefore, we define

mi, = inf{0 < m < m3, |Bin(m) = O<Igl<ax Bin(t)}.

(3.3)

(3.5)

(3.6)

(3.7)

By the definition of mj,, m}, < m3,. We use m}, and m}, to estimate m; and ma,

respectively.

Since
U(z,dig, dac)

mo—I

—a(z)bi(z) + yz=:o a(z)a(y)ba(z +y) —cf(z) f0<z<m

B mzz_ma(x)a(y)bz(m +y) —cf(z) ifm; +1<z<my,
=0 ‘
_ycf(;c) if £ > mo;

11
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we define an empirical Bayes estimate ¥} (z) of ¥(z,d;g, d2g) as follows:

( g
my, —T

—a(z)bin(z) + y;o a(z)a(y)ban(z +y) — cfalz) H0<z<mi,

(@) = { miue
2. a(z)a(y)ban(z +y) — cfa(z) if mi, +1< e <mj,
y=0
{ —cfn(z) ifx >m3,.
(3.9)
3.3. The Proposed Empirical Two-Stage Test
We propose an empirical Bayes two-stage test (d%,,,d5,,, 7*) as follows:
(1) For each z = 0,1, ...
, 0 ifz<mi,
in(2) = {1 if x> mi (3:10)
-
(2) For each pair (z,y), z,y = 0,1, ...
" _JO ifrx+y<m3,
(3) For each z = 0,1,...,
wion_ J 1 if (x>m5) or (0<z<m}, and ¥ (z) <0).
(@) = {o if (0 < & < m}, and ¥%(z) > 0). (3.12)

The conditional Bayes risk of the empirical Bayes two-stage test (d%,,,d3,, ) given
X(n) is

R(G’ (dim d;nv T;) |)~((n))

B ; 72 (@)[d}, (@) Wi () + £ (2)f (&) + cf ()] (3.19)

+ D [0 =@ i, y)Walz,y) + £ (2)f(2) + 2f ()}
T Y
and its associated Bayes risk is

R(G, (T, Ay 7)) = EX () R(G, (dip, 3, ) | X ().

12



4. Asymptotic Optimality
4.1. Analysis of Regret Bayes Risk

Define events Ey, = {m, = m;}, Ef, = {m}, # m;}, ES, (1) = {m}, < m;}, E5,(2) =
{m; < mj, < M;} and E,(3) = {m}, > M;} for i = 1,2. Also, let J(A) denote the
indicator function of an event A. Note that Ef, (2) may or may not be an empty set. When
Ooh(z)—h(z+1) # 0forallz = 0,1,. ., then E},,(2) = ¢. When 6ph(my+1)—h(m1+2) = 0,
then Ef, (2) = {m], = m; + 1}. Similarly, when 0ok(z) — k(2 +1) #0 for all z =0,1,. ..,
E$.(2) = ¢. When 0pk(mz + 1) — k(ma + 2) = 0, ES,(2) = {m},, = mq + 1}.

Given X (n), the conditional regret Bayes risk of (d%,,,d%,, ;) can be written as:

R(G, (1, d3p, 73)| X () — R(G, (d1g, dag, 76))
[R(G (d1n7 2n> T, n)|X(n)) (G7 (le’d2G77—'r):)lX(n))]

(4.1)
+ [R(G, (dig, d2g, T)| X (n)) — R(G, (d1g, d2c, 7a))]
= I(n) + II(n),
where
I(n) = R(G, (d’{m d2n’ T*)IX(n)) R(G, (dig, dag, 7)1 X (n))
= Z’T‘ dlg( )]Wl((L’) (42)
+ ) 1= @)D [d3n (2, ) — dec(z, y)]Wa(z,y)},
and
II(n) = R(G, (d1G, doc, o)X (n)) — R(G, (d1g, d2c, 7a))
(4.3)

= Z — 176(2)|¥(z, dig, d2c).
4.1.1. Analysis of I(n)

Since on Ein, [df,(z) — dig(z)]W1i(z)J(E1,) = 0 for all z, and on Ea,, [d5,(z,y) —
dac(z, y)|Wa(z,y)J (Eap) = 0 for all (z,y), therefore,

13



Z T, (2)[d1, (%) — dic(z)]Wi(z)J(ET,)
+ Z[l — (@D _[d3,(,9) — dac (@, y)|Wa(=, y) }J(ES,)
= Z T (2)]d}, () dl(x)]wl(x)J(EZnEfn)

+Z n (@)1 (z) — dic(z)|Wi(z)J (B3, (1) E,)

+ an (@)[din(z) — dig(x)]Wi(z)J (E2,(2) EL,)

+ i 70 (@) [d1, (7) — dig(z)|W1(2) J (B35, (3) Et,)

+ Z 1—7;(x) ]{Z [d5n (2, y) — dac (@, 9)]Wa(z, y) } (E3,(1))
+Z[1 — 7p(z)] {Z n(®,9) — d2g(z,y)[Wa(z, y) }J (E2,(2))
+ zz: [1 -7 () {zy:[dzn z,y) — dac(z, y)|Wa(z, y) }J (E3,(3))

= I1(n) + Ix(n) + Is(n) + Is(n) + Is(n) + Is(n) + I7(n).
Since 0 < 73 (z) < 1, [di,(z) — dig(z)] Wi(z) > 0, [d5,(z,y) — dec(z, y)]Wa(z,y) > O for

all z and y, I;(n) >0 forall:=1,...,7.

- (I.1) Note on EX,(2), [di,(z) — dig(z)] Wi(z) =0 for allz =0,1,.... By the definition of

the events Fo, ES,(j),j = 1,3, and the decision rules d},, and dig, we obtain
Ii(n) = ZT )din(z) — dic(z)]Wi(z)J (Ean B, (1))

+ Z 7' dln (.’L‘ dlg(x)]Wl (JJ)J(EZnEfn(?’))

mi

=] Y "@Wi(@)]J (BB, (1))

:E:m;‘n+1
TS @ W@ (B (3)

:I:M]_

< [Z W1(2)]J (E2nES, (1))

14



ma

+H Y W@ (BanEf,(3)).

$=M1
Note that when my < M, Es,FEX,(3) = ¢, since on F2,F$,(3), it implies that my =

ms3, > mi, > Mi, which is a contradiction.
(I.2) On E5,(1), m}, < ms3, < ms. Let ap, = min(m},, m1), b, = max(m?,, m;) < mo.

Then
= " 7i(@)[di(2) — dia(z)]Wi(z)J (B, (1) ES,,)

bn

=1 m(@)Wi(2)|T(Bs,(1)ES,)

T=an

< 13 [Wa(@) 1 (ES. (1)),

(I.3) On EX,(2), [d},(z) — dig(z)]Wi(z) =0 for all z = 0, 1,.... Therefore,
= Z 7a (2)[d1,(2) — dic (@)W1 (2)J (B3, (2) EX, (1))
+ Z Tn (2)[d1,(2) — dia ()] W1(2) J (E5,(2) EL,(3))

=[ Y m@Wi(@)]J(E5.(2)Ef, (1)

+[ Y T @)[-Wi(@)]]I(E5,(2) E5,(3))
mao+1
ZW1 N (E5, (2B, (1) +[ ) [-Wi(@)]) T (B5.(2) E5.(3)).

:E:M]_

(L.4)

< [Z Wi(z) + Y [-Wi())]|J(ES,(3) ES,).
=0

Z:Ml
(I.5) On ES5, (1), m3,, < mq. Also, 7%(z) = 1 for z > m3,,. Let
Tl(mZ) = {($7y)l$+ y < my, L,y = 07 1) 27 .- }
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Then,

Is<n>=i1—T W Z [@3(2,9) — dac(z, )] Wa(, 1)} (BLa (1))

(z,y)€T1(ms2)

(I.6) Let Ty(mg, Ma) = {(z,y)|m2 < z+y < M, z,y = 0,1,2,...}. On ES,(2), ms <
ms, < Mj. Also, 1 — 1i(z) = 0 for x > m3,. d}, (z,y) — deg(z,y) = 0 for (z,y) €
T1(ma), Wa(z,y) = 0 for (z,y) € Ta(mz, Ma). Hence, Is(n) = 0.

(L7) Let T3(M3) = {(z,y)lz+y > Ma, z,y =0,1,...}. On E%,(3), m3, > M,. Hence,

By = Y =@ S [n(ort) — daoler)]Waleru)} (5.(3)
T y=Ms—zx

(:I:,y)ET3 (Mz)

4.1.2. Analysis of II(n)

First, we have
II(n) = I1(n)J (E2nErn) + II(n)J(BEan ES, (1)) + II(n)J(Ean ES, (2))
+ II(n)J (E2nE5,(3)) + II(n)J(ES, (1)) + [I(n)J(ES,(2)E1y,)
+ 11(n)J (E5,(2)Ef, (1)) + 11(n)J (E3,(2) E1,(2))
+ 11(n)J (E3,(2)Ef,(3)) + II(n)J (E3,(3))

:ZIIj(n)

(4.5)

(IL1) Let S; = {0 <z < m1|¥(z, d1g, dag) # 0} and Sz = {m1+1 < < m3|¥(z, d1g, d2g)
# 0}. On Fj,,m3, = my. By the definition of 7} and 7¢, 7 (z) = 7¢(z) = 1 for
x > my. Thus,
II1(n) = II1(n)J(EsnE1n)

—Z n () — 76(2)]¥(x, dig, d2¢)J (EonE1n)
:EES]_

+Z (x) — 176(2)]¥(x, dig, d2g) J (E2nFin),
TE S,
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(IL.2)
Iy (n) = 11(n)J(E2nEt, (1))

= [mi(@) = 76(@)]¥(z, dig, dag) J (E2n 5, (1))
€S

<D 1¥(e, dig, dag) 1T (BanEL, (1)),
€S

where S =51 JS,.

(I1.3) Let Sz(my, M1) = {x € S2| m1 < z < My and ¥(z,d1g, dag) # 0} and S§(my, M;) =
{.’L‘ S 52\5’2(m1, Ml)} Then,

- Z ) — 1¢(2)|¥(x, dig, d2g) I (Ean EY,(2))
€S

+ Y (@) - re@)]¥(e, dig, d26) T (Ban B, (2))
:EES;(’ITL]_,M]_)

+ Y (@) — 6(@)]¥(x, dig, dag) J (Ban S, (2)).
TE€Sa(m1,M1)

(IL.4)
II4(n) = 11 (n)J (Eanfn(?»))

= Z —1¢(2))¥(z, d1g, dac) J (E2n EY,(3))
€S

< [Z [¥(z, dig, d2g)|]J (EanEY,(3))-
€S

(I1.5) On ES, (1), m3, < mga. By the definitions of ¥ and 7g, 7(z) = 7¢(z) = 1 for

x > mg. Therefore,

II5(n) = II(n )J(Eﬁn(l))

= Y (2) — 76 (@)]¥(z, dig, d2c) T (E5a(1))
zeS

<[ 1¥(z, dig, dag) 1 (ES, (1)).
z€S

(I1.6) Let S3 = {z|ma < x < M, ¥(z,d1g,dag) # 0}. On ES,(2), ma < mi, < M. Thus,
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Th(z) = 7g(z) = 1 for £ > Ms. Therefore,

Ils(n) = I1(n )J(EC (2)E1n)

= Z — TG \If(x,dlg,dzg)J(Egn(2)E1n)
TESY
RS Z — 1¢(2)|¥(z, dig, dag)J (E5,(2) E1n)
TES,
+ 3 (@) — 16(2)]¥(z, dig, dag)  (ES, (2) Evn).-
TES3

(IL7) On ES,(2)E$,(1), ma < m}, < M, and m%,, < m;. Thus,

II7(n) = I1(n)J (E3,(2) B, (1))
= Y @) - 6(@)]¥(z, dig, dae) T (B, (2)E5, (1))

acesUS3

<[ DY 19z, dig, doo)[| T (5, (2) ES, (1))
a:GSUSs

(I.8) On ES,,(2)E%,(2), me < mb, < Mz, m1 < m}, < My, 7(z) = 7¢(z) = 1 for £ > M,.
Thus,

IIg(n) = 11(n)J (E§n(2)Efn(2))

= Y [m(@) — 76(2)]¥ (2, dig, dac) J (B5, (2) E5, (2))
€S,

+ Y (@) — 76(2)]¥(z, dia, dac) T (ES, (2) ES, (2))
x €55 (my,My)

+ Y [m(e) — e@)]¥(x, dig, d2a) T (ES, (2) B, (2))
2€Ss(m1,M1)

+ Z n(7) — 76(2)]¥ (2, dig, d2) J (B3, (2) BT, (2)).
TES3

(IL.9)
Ils(n) = II(n)J (E5,(2)Ef,(3))

= Y. [m(@) —16(@)]¥(z, dic, dac) I (B5,(2) B, (3))
zeS| JSs
<[ Y0 ¥z, dig, dac) (T (E5,(2) ES, (3)).

zeS|JSs
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(I1.10)
Iho(n) = I1(n)J(E3,(3))

- Z (1" _TG ]\I!(xale,dK;')J(Egn(?’))

= [Z |\IJ($7 lea d2G)”J(E§n(3))

T
4.2. An Upper Bound of Regret Bayes Risk

According to the preceding analysis, we can obtain an upper bound of the regret Bayes

risk of (d3,,,d5,,, 7)) which is given as follows.
R(G, (dip, 435, 73)) — R(G, (dig, d26, 76))

= E)g(n)[ (n)] "‘E)g(n)[]](n)]

< Zlvm(w)] B oyl (Ban 5, (1))] + Z[—chc)]] B ([ (B2 5, (3))]
=0 =DM

va
mz-l-l

> [Wi()]

$=M1

+ [Z W)+ 3 [—Wl(w)]} Ext o7 (B (3) ES,)]

$=M1

N Ex I (B5n(2) BT (1))]

_I.

+[ > Wz(w,y)J EX [ (E5,(1))]

(z,y)€T1(m2)

+[ > [—Wz(%y)]} Ex ) [J(E5,(3))]

(E,y)ETg (M2)

+ Y [¥(e,dig, d26)|Ex ) [l (®) — 76/(2) T (Ban E1n)]
TEST

+ > 1¥(2,dic, d26)| Ex ) [I7 (%) — 76(2)|J (B2n )]
€S2
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+ {Z I‘M,dla,dza)l} B oy [ (Ban 55, (1)]
zeS

+ ) [¥(2,dig, d26)|Ex (17 () = 76 (2)|J (B2n BS, (2))]
€Sy

+ > ¥ (z, dig, d26)|Ex ) [T (2) — 76 (2)|J (B2 EY, (2))]
z€S85(mq,My)

Y U dio dso) By 17 (E) — 76(@)| (Banlt (2))]
xESq(my,M1)

FIY [9(2, drg, daa) 1B ) [T (Fan 5 (3)]
z€S

- {Z ’\I’(%le,de)@ Ex ol (B5 (1))
zeS

+ D [¥(z,dic, d26) | Ex )17 (2) — 76(2)| T (ES, (2) Ern)]
TES,

£ 3 10, dig, ds) B oyl175(2) — 76 (@) (B0 (2) Brn)]
TES>

+ 3 19z, dig, d26) By o l175 (@) — 76(2) | (BS,(2) Bun)]
rES3

+[ > |‘I’($,d1G,d20)l} B ol (B5, (2 ES, (1))

zeS| ) S, (4.6)

+ D ¥z, dig, d26) | Ex ) I7(2) — 7a (2)| T (BS,(2) ES, (2))]
TEST

+ Y 1Y@, die, dae) | Ex ) [Ima(@) — 0 ()T (BS, (2) B, (2))]
€SS (my,My)

+ ) [¥(z,dig, daG)Ex () I7a (x) — Ta(2)|J (B3, (2) BT, (2))]
€S2 (mq1,M1)

+ 3 |U(e, dig, da6) B [172(@) = 76/(2)|I (B3, (2) BS, (2))]
TES3

+> I‘I’(%le,de”:l Ex (o) (E5,(2) BT, (3))]
_a:GSUSg

+ (D 1¥(s, d1G>d2G)l} EX [ (E5,(3))]-

We claim the finiteness of the following three summations.
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Lemma 4.1. (a) )" |¥(z, d1g,d2g)| < oo;

T

(b) Under the assumption that [ %e)dG (0) < 0o, we have

o0

(b.1) Y [-Wi(z)]<oo  and (b.2) Yoo [-Wa(z,y)] < co.

=M (z,y)€T3(M2)

Proof: (a) By (2.14),

mo o0
D 1¥(e,dig, dac)| = Y [¥(z, g, do)| + Y cf(a)
z =0 z=mo-+1

ma2
< Z |¥(z, d1g, d2g)| + ¢ < oo
z=0

since |U(z, d1g, dac)| is finite for each  and ms is a finite number.

(b.1) By the definition of Wi (z), —Wi(z) > 0 for z > M; and
d_ W@ = Y [h(z +1) - boh(x)]a(z)

a{z)h(z + 1)

z 1

(]2 <8 £[V]e

a(z) / 6*+1dG ()

l‘=M1

- / 03 a(e)67dG(0)

=M,
/92 £)0%dG(0)

(b.2) For (z,y) € T3(Mz), —Wa(z,y) = a(z)a(y)[k(z +y + 1) — Ook(z + y)] > 0, and

Z [—W2($,y)]

(z,y)€T3(M2)

< D a@ak@+y+1)

(z,9)€T3(M2)
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=Y Z [ a@ewers@)ac0)

_ / Za(x)ewﬂ[ S a(y)0UB(0)| dG(6)
x y=Mo—xzx
< / ;a(x)ﬁz“dG(@) since 0 < ﬂ%: ¥)0YB(6) < 1
0
=/WdG(9) < 0. |

For each z and y, [Wi(x)|, [Wa(z,y)| and |¥(z, d1g, d2g)| are finite. Also, T1(my), St,
S2 and S3 are finite sets. In view of (4.6) and Lemma 4.1, to investigate the asymptotic

optimality of the regret Bayes risk of (dj,,d5,, 7)), it suffices to evaluate the following

2n1 Tn

expectations.
(1) Ex ()l (E2n B, (1))],
(2) Ex )l J(E2n BT, (3))],
3) Ex ) [J(E5,(2)Ef, (1)),
(4) Ex () [J(E5,(2)ES, (3))],
(5) Ex(m[J(E5,(1))],
(6) Ex () [J(E5,(3))];
(7) (a) for z € S1, Ex ) [l (2) — 76(2)| T (E2nB1a)),
(b) for z € 83, Ex , [|I73(z) — 76(2)|J (E2nBrn)),
(8) (a) For © € 8y, Ex (I (2) — 76(2)| I (E2n B, (2))),
(b) for 2 € S5(ma, My), Ex ) [I75 (%) — 16(2)|J (B2nE5,(2))),
(c) for z € Sy(m1, My), Ex ) [I7(2) — 76(2)| (B2n Ef,(2))],
(9) (a) For ¢ € 81, Ex ([l (2) — 76(2)| I (E5,(2) E1n)),
(b) for z € Sz, Ex |7 (x) — 76(2) | (E5,(2) Brn)],
(¢) for z € S35, Ex ) [|I753(z) — 76(2)| T (E5,(2) En)),
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(10) (a) For 7 € Sy, Ex o lI72() - 76(2)|J(B5,(2) B5, (2))],
(b) for & € S§(ma, My), Ex[I72(2) — 76(2)| (B5,(2) B, (2)],
(©) for z € Sa(ma, My), ExpI72() — 76/(2) | (B5, (2) ES, ()],
(@) for o € S3, B, [I72(2) — 76(2)|J (B5,(2) B, (2))]

For evaluating these expectations, certain useful lemmas are introduced in Section 5.

4.3. Evaluation of Expectations

Proposition 4.1. EX(n)[J(Egn(l))] < (mg + 1) exp{—nc; },

_ : 1 y2
where ¢; = 20SI£1éI71n2[(00k(z) k(z + 1))/(a(z) ae)l® > 0.
Proof: By Lemmas 5.5 and 5.2,
Ex ol (B ()] < ZP{eok kalz+1) < 0)
< (mz + 1) exp{—nec1 }. O

Proposition 4.2. Suppose that both {WZ(Z) ° , and {au(’isrzl)) ° o are nonincreasing in z
and bounded above by 1. Then,

B )l (B5,(3))] < dexp{—nes}.

where ¢ = 2[L(Mz) min(6y'',1)/4]2, L(M;) = [k(My + 1) — ok (M,)|wz(M,) and d is a
positive constant independent of the distribution function F', the marginal distribution

function of the random variable X.

Proof: By Lemma 5.4 and an inequality of Dvoretzky, Kiefer and Wolfowitz (1956), we

obtain

L(Ms) min(6;*,1) )
4

< dexp{—2n{L(Ms) min(0", 1)/412)

Ex ([ (B5,(3))] < P{sup |Fu(t) — F(t)| >
~ t>0

= dexp{—ncs}. O
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Proposition 4.3. Ex ,\[J(E2nEf,(1))] < (m1 + 1) exp{—nc;}, where
c2 = rréiﬁl{fn [m;(6oh(2) = h(z+1))] 7'} > 0,A={2]0 < 2 <my or M) < z < My}
and the function m,(-) is defined in(5.1).

Proof: This proposition directly follows from Lemmas 5.3 and 5.6 and the definition of
Ca. ]
From Lemmas 5.7 and 5.3, we can obtain the following result.
Proposition 4.4. If M; > ms, then EX(n)[J(Eanfn(?)))] = 0. If M; < msy, then
EX(n)[J(EZnEfn(?’))] < (mg — My + 1) exp{—nca}.
From Lemmas 5.8 and 5.3, we can obtain
Proposition 4.5. When My = my+1, Ex (n) [J(E$,(2)E$,(1))] = 0. When My = ma+2,
Ex I (E5,(2)Ef,(1))] < (ma + 1) exp{—nca}.
From Lemmas 5.9 and 5.3, we can obtain

Proposition 4.6. When either My = my+1 or My = M, Ex o) [J(E$,(2)ES,(3))] = 0.
When My = mg + 2 and My > My, Ex () [J(E5,(2)E$,(3))] < (M2 — My) exp{—ncs}.

Proposition 4.7. (a) For each z € Sy,
B y[72(@) = 76(@)|(BanBrn)) S exp{—1 0 [z, (¥, da, docs))] )
+ exp{—n ln [my 5 m,(—¥(z, d1g, dgg))]_l}.
(b) For each z € S,

EX (m)I72(2) — 76(2)|J (B2n B1n)] < exp{—n fn [my zm, (¥ (2, dic, d2c))] ™}
+ exp{—n In [My g .m, (—¥(z, dig, d2g))] " 1}.

Proof: (a) On Fy,Ey, = {mEn = mg, mj, = my}, for z € Sy, U(z,d1g,d2g) # 0 and

n
U (x) = + Y u(z, Xj, ma), where u(z, X;, m,) is defined in Section 5. Here, u(z, X;, ms),
=1
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j=1,...,n, are iid and Ex (n) u(z, X;,mg) = ¥(z, d1g, d2g). Therefore, by Lemma 5.10,

EX(n)[lT; (x) - TG(:B)|J(E2nE1n)]
< P{|¥%(z) — U(z, dig, dag)| > |¥(z, dig, dog)| and Bz, Ern}

n
n

1
S P{]E ZU(CE,Xj,mz) — \I}(malead2G)[ Z |\II($L',d]_G,d2G)|}

7j=1
< exp{—7 In [my zm, (¥(z, dig, d2¢))] "'}

+ exp{—n In [My z.m,(—¥ (2, d1g, dzg))]_l}

(b) On Eo,Eqy, for £ € S, ¥(z,d1g,d2c) # 0, ¥i(z) = %Zv(x,Xj,mz), where
j=1
v(z, X;,mz) is defined in Section 5. Since v(z, X;,m2), 7 =1,...,n are iid and

EX (n) v(z, Xj,ma) = ¥(z,d1g, d2c), by Lemma 5.10,

EX(n) [lT;: (CL‘) —7G (IL’) |J(E2nE1n)]

1
< P{|~ > u(@, Xj,ma) — U(z, dig, dag)| > |¥(z, dig, d2g)|}

7j=1
S exp{_n en [mv,z,mz (\I,(ma lea d2G))]_1}
+exp{—n In [my 5 m, (—¥(z, d1c, dgg))]_l}. O

Proposition 4.8. (a) For z € S

E}g(n)[lﬂj () — 16(2)|J (E2nET, (2))]
< exp{—n n [My z.m,(¥(z, dlg,dgg))]_l}

+ exp{—n In [Mmy z.m,(—¥(z, diq, dzg))]_l}.

(b) For x € S5(mq, My),
B o I72(2) = 76(2)|T (Ean B (2))]
< exp{—n {n [Mmy 5 m,(¥(z, dig, d2G))]_1}
+ exp{—n In [My z m, (—¥(z,d1g,d2g))] 1}
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(¢) For ¢ € Sa(mq, M),

Ex mllma(@) — 16(2)|J (E2n BT, (2))]
< exp{—n In [My 5z m, (¥(z, dlg,dzg))]_l}

+ exp{—n In [Mmy z.m,(—¥(z, dlg,dzg))]_l}.

Proof: E,Ef,(2) = {m3}, = mg and m; < m}, < M;}, which is empty if My = m; + 1.
In such a situation, the inequalities hold. Thus, in the following, it is assumed that

My = my + 2, and therefore, Epp E5,(2) = {m3,, = ma and m}, = m + 1}.

(a) On E3,E$,(2), for z € Sy, by definition, ¥%(z) = 2 3 u(z, X;, m;). Thus the proof
j=1
is similar to that of Proposition 4.7 (a). The detail is omitted here.

(b) On ExnF$,(2), for € S§(my, My), U5 (x) = 1 3 v(z, X;,m2). The proof is similar
j=1
to that of Proposition 4.7 (b). The detail is omitted here.

(C) Sz(ml,Ml) = {a:|a: = ms + 1 and \I’(x,dlg,dzg) 7é 0} If \If(ml + 1,dlg,d2G) = O,

Sa(mi, M7) is an empty set. Therefore, the proof is complete. So, assume that
n

U(my+1,d1g,d2c) # 0. On Exn EX,(2), Uk (m1+1) = % u(m1+1, X;, m3y). Since

=1
Ooh(mi+1) — h(my +2) =0, EX(n)u(ml +1,X;,mg) = ¥(mq +1,d1G,d2c)- Then,

by Lemma 5.10, we can conclude the result. (]

Proposition 4.9. (a) For z € Sy,

EX myllTa (@) — 76 (2)|J (B3, (2) E1n)]
< exp{—n n [My,0,m,+1(¥(2, dig, d2c))] ' }-

+ exp{—n €n [My 5 m,+1(—¥(z, dig, dzg))]—l}.

(b) For z € So,

EX(n)“T; (z) — 7a(2)|J (E3,(2) E1n)]
< exp{—n £n [My,z,m,+1(¥(2, dic, d2c))] '}
+ exp{—n In [My g m,+1(—¥(z, d1g,d2c))] "}
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(c) For z € S3,
By o I73(2) = 76(2)|J (B, (2) Bu)]
< exp{—n In [my g m,+1(%(z, d1g,d2g))] "'}

+ exp{—n £n [my g m,+1(—¥(z, d1c, dzg))]_l}

Proof: Ef (2)Ei, = {my < m}, < M, and m},, = m;}, which is empty if My = my + 1.
In such a situation, the inequalities hold. So, in the following, assume that My = my + 2,

which occurs only when 6ok(msg + 1) — k(m2 + 2) = 0.

(a) On E5,(2)Ein = {m}, = ma+ 1 and m}, = my}, for z € Sy, Vi(z) = L

TRINGE

u(x, Xj,my + 1). Since Gok(ms + 1) — k(mz + 2) = 0, Ex (mu(z, X;,ms + 1)
U(z,d1g,d2c). The remaining part of the proof is similar to that of Proposition
4.7 (a). The detail is omitted here.
(b) On E$,(2)E1p, forz € Sy, Uh(z) = £ 3 v(z, Xj, ma+1), where EX () v(z, X;, ma+
i=1 §
1) = ¥(z,d1g,d2¢). The remaining part of the proof is similar to that of Proposition

4.7 (b). The detail is omitted here.

(c) S3 = {z|x = ma + 1 and ¥(z,d1g,dsg) # 0}. From (2.14), U(mg + 1,d16,d2g)

= —cf(m2+1) <0. On ES,(2)E1p, ¥j(ma+1) =1 3 v(ma + 1, X;,mz +1).

7j=1
Since gok(mz +1) - k(m2 +2) =40, EX(n) U(m2+1, Xj, m2+1) = \I/(mz +1,d1g, dzg).
Then the result follows from Lemma 5.10. d

Proposition 4.10. (a) For z € 9y,
Ex myllma(@) — 76(2)| I (E3,(2) EL,(2))]
S eXp{—’n, in [mu,a:,mz-l-l(\ll(m, d1G7 dZG))]_l}
+exp{—n €n [my z m,+1(—Y(z, d1g, dzg))_l}.
(b) For z € S§(my, M),
Ex (myllma(@) — 16(2)|J (B3, (2) EL,(2))]
< exp{—n In [mv,:c,mz—i—l(\ll(x, d1G>d2G’))]_1}
+ exp{_n In [mv,a:,m2+1(_\11(x, le’a dZG))_l}'
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(c) For x € Sy(my, M),

Ex (oyllmn(@) — 1a(2)|J(E5,(2) B, (2))]
< exp{—n €n [My z.m,+1(¥(z, dic,d2c))] "}

+ exp{—n In My z m,+1(—¥(z, dig, dzg))]_l}.

(d) For z € S3,
Ex (ll7a(2) — 7a(2)|J (E5,(2) E1,(2))]

< exp{—n In [Mmy z,m,+1(¥(z, dic, d2G))]_1}

+ exp{—n n [My gm,+1(—¥(z, d1c, dzg))]_l}.

Proof: ES, (2)E$,(2) = {ma < m}, < M2 and m; < mj}, < M} which is empty if either
My =ms+1o0r My =my+ 1. ES, (2)FE5,(2) # ¢ when My = ma + 2 and My = m + 2
which occur iff ph(my + 1) — h(mq + 2) = 0 and Ogk(ma + 1) — k(m2 +2) = 0.

(a) On ES, (2)E$,(2) = {m}, = ma + 1 and m},, = my + 1}, for z € Sy, Vi (z) =
L Zl u(z, X;,ma + 1). Since Opk(ma + 1) — k(mo +2) = 0, EX(n)u(x,Xj,mz +1)

J:
= U(z,d1g,d2c¢). The remaining part of the proof is similar to that of Proposition

4.7 (a) and hence is omitted.

n
(b) On E%,(2)Ef,(2), for @ € S§(ma, Mi), ¥ri(z) = 3 v(z, Xj,mz + 1) and Ex,
j=1 2
v(z, X;,my+1) = ¥(x,d1g, dag). Then, analogous to that of Proposition 4.7 (b), we
can conclude the result.

(c) S2(my, My) = {z|z = my + 1, and ¥(z,d1g,dac) # 0}. On ES, (2)E$,(2), Uk (m; +
1) =21 % u(mi+1,X,,mz+1). Thus, the remaining part of the proof is similar to

n .
J=1

that of Proposition 4.8 (c). The detail is omitted.

n
(d) S3 = {z|z = ma+1}. On E§,(2)E5,(2), ¥i(me+1) = 1 3 v(ma + 1, Xj,ms + 1).
j=1
The remaining part of the proof is similar to that of Proposition 4.9 (c). The detail

is omitted here.
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4.4. Rate of Convergence

Define
Ca = néinmin{ﬁn [Meo 2.ms (U (2, drg, dag))] Y, In [M0 2 me (=¥ (2, d1g, d2g))] ™1},
2
cs = Sntj% min{fn [my z m,+1(¥(z, d1g, d2g))] ™%, In My, 2,mpp. (¥ (z, dig,d2g))] Y,
2 3
ce = min min{¢n [my z m, (‘I’(.’L‘,dlg,dzg))]—l, in [mu’z’mz(—\:[f(.’li,dlg,dzg))]_l},
51 Usz(mhMl)
cy = min min{fn [My z m,+1 (\Il(x,dlg,dzg))]_l, n [mu,w,m2+1(_q]($,le,de))]_l}.

S1 Usz(ml,M1)

Since S1, S2 and S3 are finite sets, ¢; > 0 for each j = 4,5,6,7. Let ¢ = 11<Illl<17 Cje Soc> 0.
<<

We now give the main result of the paper, the rate of convergence of the empirical

Bayes two-stage test (d7,,, d5,,, ¢), as a theorem as follows.

Theorem 4.1. Let (df,,,d3,,7,) be the empirical Bayes two-stage test constructed pre-

viously. Suppose that

0
a) [ ﬁ(edG
(b) Both {“’2(2) }2,, and {;‘(’25:1) o2 o are nonincreasing and bounded above by 1, and,
(C) My < oo.

Then, R(G, (d},,d3,, T, n)) R(G, (le,dQG’TG)) = O(exp(_nc))'

5. Lemmas

The following lemmas are helpful for evaluating the expectations listed in (1)—(10) of

Section 4.2.

Lemma 5.1 is from Liang (1991).

Lemma 5.1. Let {an,} be a sequence of real numbers and {b,,} be a sequence of nonin-
n

creasing, positive numbers with b; < 1. Then, for a fixed constant d > 0, sup | > ambm,| >
n>1 m=1

(>)d implies that sup| > am| > (>)d.
n>1 m=1

2
Letc; =2 min [(eok( ) — k(z+1))/ [a(z) a(;ﬂ)” Since Gok(z) —k(z+1) > 0
for all z=0,1,...,m2, ¢c; > 0.
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Lemma 5.2. For each z =0,1,...,my,

P{0ok,(2) — k(2 + 1) <0} < exp{—nc1}.

Proof: Let c¢(z,X;) = %I{z}(Xj) - ﬁI{z_,_l}(Xj), j =1,...,n. Then c(z, X;),
j=1,...,n, are iid, —ﬁ < c(z,X;) < %, EX(n)c(z,Xj) = Ook(z) — k(z + 1), and
Ookn(2) — kn(z+1) = 2 3 c(2, X;). Thus, by Hoeffding’s inequality,

7j=1

P{0okn(2) — kn(z+1) <0}
- P{% 3 lelz X;5) - Bok(2) + bz + 1)] < ~[0ok(z) — k(= + )]}

< exp{—2n[Ook(z) — k(z + 1)]2/[(1?(;) + a(zl_}_ 1)

< exp{—nec1}. O

Let b(z, X;) = GOG(XJ'_Z)(}‘;()XJ'_Z_I), 2z=0,1,...,and j = 1,2,...,n. Then, for each z,

b(z,X;),j=1,...,n, areiid, E'X(n)b(z, X;) = 0oh(z) —h(z+1), and Ophyn(2) —hn(z+1) =
. A

> bz, X;).

7j=1

Let M, (t) denote the moment-generating function of b(z, X;) — [6oh(2) — h(z + 1)].

S|~

For each real value v, define
m,(v) = iI%f e VEM,,(t). (5.1)

Following an argument analogous to that of Lemma 3.6 of Gupta and Liang (1991), we

have: for each positive constant c,

0<my(c)<land 0 <m,(—c)<1. (5.2)

Lemma 5.3. (a) For each 2 =0,1,...,mq,

P{0ohn(z) — hn(z + 1) < 0} < exp{—n £n [m,(6oh(z) — h(z +1))]"'};

(b) For each z, M; < z < My,

P{Bohn(2) — hn(z +1) > 0} < exp{—n ¢n [m,(6oh(z) — h(z +1))]7'}.
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Proof: By the definitions of m; and My, Oph(z) — h(z+ 1) > (<) 0 iff z < my(z > M).
Then, by a direct application of a theorem of Chernoff (1952), we have: for each z =

0,1,...,mq,
P{0ohn(2) — hn(z+ 1) < 0}
_ P{% i[b(z, X;) = Boh(2) + h(z +1)] < —[0oh(2) — h(z + 1)]}
< [mz(;o_hl(z) — h(z+1))]"
= exp{—n fn [m(8oh(z) — h(z + 1))},

and for each z, My < z < M,
P{0ohn(z) — hn(z +1) > 0}
= P{% > _[b(z, X;) = Boh(2) + h(z +1)] > ~[6oh(2) — h(z + 1)}

< [m2(6oh(z) — h(z + 1))]"
= exp{—n €n [m,(Ooh(z) — h(z +1))]"*}. O

We let co = min,ea{¢n [m,(6oh(z) — h(z + 1))]7'}, where A = {2]0 < z < m, or
M, < z < Ms}. Note that ca > 0 by (5.2).

Lemma 5.4. Suppose that both {u;"’((zz)) }2, and {au()i-(:l)) }S2, are nonincreasing in z and
bounded above by 1. Then,

B5.(8)  {sup |Fu(t) = F(&)| > L(My) min%, 1)/4},

where L(M;) = [k(M2 + 1) — Ook(M2)|w2(M>), and F,(t) is the empirical distribution

based on X(n), and F(t) is the marginal distribution function of the random variable X.

¢
Proof: For z > Ms, k(z + 1) — 0ok(z) > 0. Therefore, for t > Ms, 5= wa(2)[k(z+1) —

Z=M2
Ook(2)] > L(Mz).
By the definition of E§,(3) and m},, and by Lemma, 5.1,
Egn(g) = {m;n 2 Mz}
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C {Ban(t) = Bon(Mz — 1) = Y wa(2)[fokn(2) — kn(z + 1)] > 0 for some ¢ > My}

(> 2@ o pe - 3 28 p G - fe )] 2 L)
=M.

u:(z) [fn(z) = F(2)]| 2 L(2];/.(l)2) for some t > Mo}

U{| Z wa(z) [fn(z+1) = f(z+1)]| > L) for some ¢ > My}

a(z+1 2
c {| Z [fn(2) — f(2)]| > L(TM(:Z) for some t > M,}
U{ Z [fnlz+1) = fz+1)]| > L(]2W2) for some ¢t > M>}

ZMz

= {|[Fa(t) — F(t)] — [Fn(Ms — 1) — F(My — 1)]| > L(];@) for some ¢ > M,}

U{[ (t+1) = F({t+1)] — [Fo(M2) — F(M)]| > L(]2W 2) for some t > M}
L( 2)

c {sw IR0~ PO > “gE s 17,0 - POl > 232
C {sup |Fa(t) — F(£)| > L(TZ) mm(1,0l)}. 0
£>0 0

Lemma 5.5. E5,(1) C U {Bokn(2) — kn(z +1) < O}
z=0

Proof: By definitions of ES,(1) and m3,,,

E3,(1) = {m3, < ma}
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m2

C {Ban(mz) — Bon(t) = > w2(2)[0okn(2) — ka(z +1)] < 0 for some t < mp}
z=t+1

M2
& UHB0ka(z) — halz+1) < 0},
z=0
since ws(z) is positive. O

Lemma 5.6. EynES (1) C U {fohn(2) — hn(z +1) < 0}.
z=0

Proof:
Eanfn(l) = {m;n = mq and mIn < ml}
C {Bin(m1) — Bin(t) = Z w1 (2)[Bohn(2) — hn(z + 1)] < 0 for some ¢ < m;}
z=t+1

C |J{00hn(2) — Ba(z+1) < O}
z=0
since w1(z) > 0 for all 2 =10,1,2,... O

Lemma 5.7. (a) F2,F%,(3) = ¢ when my < M.

(b) When mo Z Ml,

EanES (3) C Tfj {Bohn(2) — hn(z +1) > 0}.
z=M;

Proof: F,,FE$,(3) = {m2 = m}, > m}, > Mi}. Thus, E3,FEf,(3) = ¢ when My > ma.
When mqo > Mj,

E9nE7,(3) C {Bin(t) — Bin(M1 — 1)

t
= Y wi(2)[fohn(2) — hn(z +1)] > 0 for some My <t < mo}
Z=M1

c TCJ {0hn(2) — Bn(z +1) > 0} O
z=M;

Lemma 5.8. (a) When Mz = my + 1, E,(2)Ef,(1) = ¢.
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(b) When Mz = msq -+ 2,

ES (2)ES, (1) C U{eo hn(z +1) < 0}.

Proof: E$,(2)E5,(1) = {m2 < m}, < M3 and m}, < m1}. When My = my + 1, it is
clear that F§, (2)E%, (1) = ¢. When My = mgy + 2,

E5,(2)Efn(1) = {m3, = ma + 1 and mj,, < m}

mi

C {Bin(m1) — Bia(t) = > w1(2)[fohn(2) — hn(z+1)] <0
z=t+1

for some 0 <t < mq}

C G{Gohn(z) — hn(z+1) <0} 0O

Lemma 5.9. (a) When either My = ma + 1 or My = My, ES, (2)E$,(3) = ¢.

(b) When M3 = mo + 2 and My > Mj, then,

Ma—1

n Eln U {00 h’n(z + 1) > 0}
= M]_

E3(

Proof: F5,(2)E$,(3) = {m2 < m},, < M and m3, > m}, > M;}. Therefore, if either
My = ms + 1 or My = My, ES, (2)ES, (3) = 6. When My = ma + 2, and My > M,

E5,(2)ET,(3) = {m3, = ma + 1 and mj,, > M1}
t

C {Bin(t) = Bin(M1 —1) = Y wi(2)[f0hn(2) — hn(z+1)] >0

Z=M1
for some M; <t <mj, = My — 1}
Ms—1
c | {6ohn hn(z+1) > 0}. O
z= M]_
For each positive integer £ and each x =0, 1,..., 7, define
l—z
90[{m+y}(Xj) Tizy+13(X5)
X;,0) = — —cli (X
v Z;a a@+y) aeryr) ) @)
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and
a(z)[boa(X; —z) —a(X; —
a(X;)

Note that v(z, X;,€), j =1,...,n, are iid, and u(z, X;,£), j =1,...,n are iid. Let

-1
’U,(CL‘,Xj,Z) = — )] + 'U(.'E,Xj,E).
po(z, £) = EX(n)u(m,Xj,E), o (z,£) = Ex(n)v(a:,Xj,é),

and let My 4 ¢(t) and M, 4 ¢(t) denote the moment-generating function of u(z, Xj,£) —
pu(z, £) and v(z, X;,£) — py(z, £), respectively. For a real value b, define

May,z,0(0) = irgf e_bt./\/lu,m,g(t),
My z,0(b) = iIgf e_bt./\/lv,m,g(t).

Then, analogous to (5.2), we have: for a positive constant b,

0< mu,m’g(b) <1, 0< mu,w,g(—b) <1
0 < myze(b) <1, 0 < myge(—b) <1

By a theorem of Chernoff (1952), we have

Lemma 5.10. For a positive constant b,

S ED 3 S G EL B0
) ~ exp(n tn [ e (57,
B P Y X0 (e8] < ) £ e
a = exp{n £ [ (D)),
© %Z (@ X5,0) = b, 0] > b} < [ eB))"
) = exp{n [ (9]},
@ %Z (@, X5,) = (2, 0] < —b} < e ()"

= exp{—n £n [my z0(—0)]"'}.
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6. Examples

We use the following examples to demonstrate the asymptotic optimality of the em-

pirical Bayes two-stage test (d},, d5,, Tn)-
Example 1. (The negative binomial distribution.) Suppose that

£(z]0) = (xjif)em—o)r, £=0,1,2,...; 0<0<1;

where 7 is a fixed, positive value. Then, 8(8) = (1 — 8)" and a(z) = (*1771).

If we let wa(z) =1 for all 2 =0,1,2,..., then both wz((z)) and aw(zz( +)1) are decreasing

in z for z=0,1,..., and bounded above by 1.

Suppose the prior distribution G is a member of the family of beta distributions with

parameter (¢, 8) for which 8 > r+1. Then, fol E%d@ = % fol 6%(1-0)P~"1df < co.

Also, ¢o(z) = kgf(;';)l) = s72+%4 which tends to 1 as z — oo. Therefore, for a fixed

0 <0y <1, My = inf{z|pa(z) > 6} < co. Thus, by Theorem 4.1, the empirical Bayes

two-stage test (d3,,, d5.,, 7») is asymptotically optimal, having a rate of convergence of order

O(exp(—n7)) for some 7 > 0.
Example 2. (The Poisson distribution.) Suppose that
f(z]9) = e 6% /! z=0,1,2,..., 0<f<oo.

Then, 8(6) = e~% and a(z) = (z!)~?

If we choose ws(z) = a(z + 1), then u;z((zz)) g ;‘(’;—_(:1)) = 1. Both are nonincreasing

in z and bounded above by 1.

Suppose the prior distribution G is a member of the family of gamma distributions

with parameter a, B) for which 8 > 1. Then, 0dG(0) = [° 0ef Lopo—le=F0dp =
0 5(9) 0 [a)

(ﬂ_—m < 00. Also, pa(z) = kg: (':)1) = iig, which tends to infinity as z — co. Therefore,

for a fixed 6y > 0, My = inf{z|p2(z) > 6p} < co. Thus by Theorem 4.1, the empirical

Bayes two-stage test (d},,, ds,,, 7 ) is asymptotically optimal of order O(exp(—n7)) for some

7> 0.
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