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Abstract

We consider correlations between a parametric function and an estimate as an index of
goodness of the proposed estimate. The results include a general formula, which specializes
to neat forms for unbiased estimates and Bayes estimates induced by the joint probability
space. The correlation criterion is shown to have connections to other criteria and various
positive properties of unbiased and Bayesian estimates are established by consideration
of their correlation with a parameter. Also presented are a nonparametric Bayes risk
identity with an application to confidence set estimation in Exponential families and several

examples that illustrate a number of interesting phenomena related to the topic.

1. Introduction

In this article we present an intuitively interesting criterion of goodness of an estimate
of a parameter: correlation between the parameter and the estimate. Naturally, this makes
sense only in a formally Bayesian framework. That is, one must have a joint probability
space of the observable and the parameter and furthermore the estimate and the parameter
each must be a L, function in the joint probability space. Thus, at the very starting point,
one has, in addition to a sampling model a prior distribution on the parameter as well.
One may or may not want to think of it as a subjectively elicited prior, depending on
taste. Actually, the correlation between the parameter and any linear function of a given
estimate is the same as the correlation between the parameter and the estimate itself; thus,
correlation is a possible criterion to assess only equivalence classes of estimates, all affinely
equivalent estimates being treated as the same. In a given context, one member of an

equivalence class should be the natural estimate. For example, for estimating a location
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parameter, the median seems a better choice than twice the median.

If one thinks of Bayes estimates with respect to squared error loss as the regression
of the parameter on the observation, then consideration of correlation comes in naturally;
after all, the square of the correlation is an index of how useful the regression was. Going
one step further, one then looks at correlations between the parameter and a general
estimate, not merely the Bayes estimate with respect to the specified prior. This seems
even more natural when many different priors are considered feasible and one wants to
look for estimates that are highly correlated with the parameter under all or many of these

feasible priors.

As our calculations will clearly show, correlation is intimately connected to other
established criteria of statistical theory. In particular, our calculations will show its con-
nection to the minimax and the Bayes criteria. A nice thing about considering correlations
is that we see these connections to other accepted criteria, and in addition it is necessarily
between —1 and 1. Indeed, for reasonable estimates, it will be between 0 and 1. Thus
it 1s more easily interpretable, unlike a full risk function or a Bayes risk, which have no

theoretical universal bounds in general.

In section 2, we give a general correlation formula and exhibit that it simplifies to
two pretty formulae for unbiased estimates and Bayes estimates. In the process, we give
a nonparametric Bayes risk identity connecting the Bayes risk to the bias of the Bayes
estimate. An old theorem about the impossibility of Bayes estimates being unbiased follows

immediately from this identity.

In section 3, we establish a variety of connections of the correlation criterion to other
criteria. We show, in particular, that all unbiased estimates are always positively cor-
related with the parameter. Bayes estimates have a slightly weaker property. We give
a general result on the multiparameter Exponential family, and we show that in general
compact parameter spaces, the Bickel-Levit prior has a certain minimum correlation prop-
erty. We also show that a UMVUE is always more correlated with the parameter than any
other unbiased estimate and give a general result on automatic construction of a posterior
credible set in the multiparameter Exponential family by making use of the nonparametric

Bayes risk identity in section 2.



Section 4 gives illustrative examples of a number of different phenomena.
The principal contributions of this article are the following:

a. We present an intuitively interesting index of goodness of an estimate and present

some apparently novel calculations;
b. We establish connections to other criteria;

c. We show positive properties of unbiased and other types of estimates vis-a-vis this

criterion;
d. We show a general correlation minimizing property of the Bickel-Levit prior;
e. We give a number of illustrative examples that show various interesting phenomena;

f. We give a nonparametric Bayes risk identity and an application to automatic con-

struction of posterior credible sets in the general multiparameter Exponential family.

2. Four Identities

In this section, we will first derive a general correlation formula between a parameter
and an estimate in a general probability space L2(X @(H ), P). We will apply the formula to
unbiased estimates and the Bayes estimate corresponding to the prior distribution induced
by the probability measure P on the joint space. It will be seen that the correlation formula

takes a nice form for each of these two cases.

Proposition 1. Let §(X) be any estimate of 6; then the correlation between 6 and é in
the joint probability space L2(X @ (H), P) equals

V(r) + Cova(6,b(8))
(0,6 = .
o) = Tt 8) + varn(8 + 08) — (P (0))) 21)

where m denotes the prior distribution induced by P, V(7) denotes the variance of § under
7, b(#) = Ex|96(X) — 0 denotes the bias of the estimate 6(X), Cov denotes covariance
under 7, Er(-) denotes expectation with respect to 7, and r(w,8) = EExo(6(X) — 6)?

denotes the Bayes risk of § under .

Proof: We can assume without loss of generality that Er(6) = 0. Then, the covariance
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of 8 and 6 is

Cov (8,6) = E(86(X)) = Ex(8 - Exp6(X)) = E(6% + 6b())
= V(r) + Cov (6,5(8)). (2.2)

Next, the marginal variance of § is

varp(6(X)) = Er varx|g6(X) + varrEx|6(X)
= Ex{Exs(6(X) — 6)" — b*(6)} + varx(8 + 8(6))
=r(m,8) + varr(6 + b(6)) — Er(b*(0)). (2.3)

The proposition is therefore proved. O

Corollary 1. Let §(X) be any unbiased estimate of §. Then,

V(x)
w\Y, = . 2.4
p(8:4) \/V(ﬂ') + (=, §) (24)
Corollary 1 follows immediately from (2.1) as the bias 5(6) = 0. O

To derive a similar nice formula when 6(X) equals the Bayes estimate §.(X) =
Ep(0|X) itself, we first need the following nonparametric Bayes risk identity. We find
the identity quite intriguing in the way it connects Bayes risk to the bias of the Bayes

estimate.

Proposition 2. Let b.(6) = Ex|96-(X)— 8 denote the bias of the Bayes estimate §(X).
Then the Bayes risk r(7) = E;,EXW((S.,,(X) ~ 0)? equals

r(m) = —Ex(0b.(0)). (2.5)
The multiparameter version of (2.5) is

r(m) = —Ex(§'bx(9)) (2.5)

First we point out the following well known fact, which follows as a corollary of our

Proposition 2:



Corollary 2. The Bayes estimate 6,(X) cannot be unbiased unless r(7) = 0.

Other proofs of Corollary 2 can be seen in Ferguson (1973) and Bickel and Blackwell
(1967). We also point out the following new consequence of Proposition 2 before we get

back to our discussion of correlations.

Corollary 3. Let v = E|f] and M = sup |b.(6)|. Then
6
r(r) <vM. (2.6)

(2.6) also holds in the multiparameter case with v = E.||]|s and M = sup||b.(8)||2.
6

Thus, it is useful to use such Bayes estimates whose bias stay small; we find (2.6) quite

interesting. Now we will give a proof of Proposition 2 itself.

Proof of Proposition 2: First note that

r(r) = Ep(6+(X) — 6)?
= ExEx)o(6x(X) —~ )
= ExEx)o(62(X) + 6° —206,(X))
= Ep62(X) + Er6° — 2E.0(0 + b(0))
= Epé2 — E6* — 2E.(6b,(9)). (2.7

On the other hand,

r(r) = Ep(8z(X) — 6)*
= EpEgx(6x(X) — 6)?
= EpEgx(6” — 67(X))
= Er(6%) — Ep&2(X). (2.8)

Therefore, from (2.7), we have

r(m) = —r(7) — 2E(0b.(6))
= (1) = —Ex(6bx(6)), Q.E.D. 0
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Use of Proposition 1 and Proposition 2 results in a neat formula for the correlation between

6 and 6, as is shown below.

Corollary 4.

pr(B,6x) = 4[1— ;((7;)). (2.9)

Proof: We will use (2.1). The numerator

V(r) + Cova(6,b:(6))
— V(1) + Ex(662(6)) — Ex(8)Ex(bx(6))

= V(1) + Ex(65:(6) (a5 En(be(6)) = 0)

= V(x) — r(n). (2.10)

(by Proposition 2)
Also,

r(m,6x) + varx(8 + b(6)) — E(b2(9))

= r(n) + V(7) + E<b2(8) + 2E(6b,(8)) — E(b2(6))

= V() — r(x). (2.11)
(again by Proposition 2)
V() —r(w)

VV(m)(V(x) —r(r))

_r(m)
LY@y

pﬂ'(aa 57“) =

as stated. O

3. Further Consequences

We now use our correlation formulae of section 2 to obtain a number of connections
to other established methods and concepts of statistics. These will all be gathered in a

single proposition stated below.



Proposition 3.

a. The correlation between 6 and any unbiased estimate is always nonnegative and

strictly positive unless the prior is degenerate.

b. If 8 has a UMVUE 6y, then pr(8,680) > px(0,6,) for any other unbiased estimate 6,
and the inequality is strict if 6y is the unique UMVUE and 7 gives support to the

entire parameter space.
c. px(6,6r) is also always nonnegative (but can be zero even for nondegenerate priors).

d. In the general Exponential family, an estimate §(X) of the mean u = E(X) always

has nonnegative correlation with p if § is monotone nondecreasing in the observation

X.

e. If a least favorable prior with a finite variance exists, say g, then 7y always minimizes

px(8,6x) among all # with V(7)) > V(my).

f. If the parameter space is a compact interval [—m,m], then up to the order o(n™?),
the Bickel-Levit prior m,, minimizes p(0,6r) among all 7 with V(7)) > V(rp,) =
m®r®46m?ncos(m?n)—6 sin(_m27r)+3m47r2 sin(m?m) (e.g., V(7T1) — 1307, V(7r5) = 83252)

3m2n2(m2n+sin(m?2m))

g. In alocation parameter model, i.e., if X ~ F(z—0) and § ~ =, and F, 7w belong respec-
tively to specified classes C;, Ca, the criterion of maximizing the minimum correlation
iﬂpf pF,x(6,8) over all estimates § which are unbiased under each F is equivalent to the

) T

common minimax criterion of minimizing sup varg(6).
1

Discussion of Proposition 3. a is a nice property of arbitrary unbiased estimates and
b of the UMVUE. ¢ is expected, but that it can be zero in nontrivial cases surprised us.
We shall see an example in section 4. d is a nice general result in the Exponential family.
e says that if we construct a noninformative prior by minimizing p.(6, 6x), we will get the
least favorable prior 7y if other candidate priors have a variance as large. For example,
take the Binomial problem: the Beta ( 5 5 ) prior is least favorable and has variance
4(1_'_\/—) < .05if n > 16. So the Beta ( 5 5 ) prior is obtained as a noninformative
prior under the very mild restriction V(7) > .05 if n > 16. f is an interesting general

property of the Bickel-Levit prior, not isolated to the bounded normal mean case. g gives
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another connection of correlation between a parameter and an estimate to other established

optimality criteria of statistics.

Proof of Proposition 3: Both a and b are transparent from (2.4) and ¢ follows from
(2.9) as r(m) < V(w). To see (d), observe that for any estimate §(X), covr(,68) =
Ep(68(X)) ~ Ex(6)Ep(8(X)) = Ep(6:(X)8(X))— Ep (6:(X))Ep(8(X)) = covp(be,8) > 0
if 6 is monotone nondecreasing in X, because in the Exponential family é-(X) is always
monotone nondecreasing (see Berger (1986)) and two nondecreasing functions must have
nonnegative covariance. e follows from the inequalities:

2 _,_ ) r(m) r(m) _ 2
pw(e’ 6#) =1- W Z 1-—- V(ﬂ') 2 1- V(?To) - p‘/ro(07 671'0)'

f follows from exactly the same argument and Bickel (1981). g follows on observing that

inf V()

. 2 Ca
= : O
11~£,1£ pra(9:6) iglf V(7) + sup varp(6)

2 c,

At the closing of this section now, we will give another general result on Bayesian confidence
sets for the mean in the general multidimensional Exponential family that follows as a

consequence of Proposition 2.

Proposition 4. Let X ~ e~’3~”_¢(g)(d,u) and let 7 be any prior on 6 with a Lebesgue

density g satisfying

[[Vg(8)l]
S SB (3.1)

where 0 < B < o is a specified number. Then with a marginal probability of at least 1 —¢,
/v B
the ball B(z,r) has posterior probability > 1 — «, where r = B-i_T‘:, where v = E.||8||2

and €, a are any given numbers in (0, 1).

Remark. If € is small, it will be very unlikely that the ball B(z,r) does not have the
required 1—a coverage for the ¢ that was observed. Therefore, as Proposition 4 allows com-
plete bypassing of any computing whatsoever with the posterior distribution and B(z,r)

is a handy posterior confidence set, it could be used as a matter of practicality if ¢ is small.
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Proof of Proposition 4: First note that (3.1) ensures

16x(z) — 2ll2 < B, uniformly in g,

and hence

16=(6)]]2 < B, uniformly in §.

(see, for instance, Brown and Hwang (1982)).

Let Vz(z) denote E||§ — 6.(z)||2|X = z. Then, by Corollary 3,

PVa(X) > 22

where P(-) denotes marginal probability.

Thus, for any z such that V;(z) < %,

P(||§ — z]l2 > r|X = z)
E(||6 — z|l2|1 X = z)

r

< E(8 ~ éx(2)ll:|X =2) + B

< \/V‘lr(ai)"l‘B

B+ B
<t  —a
-

<

(3.4) and (3.5) now imply the assertion of Proposition 4.

4. Examples and Illustrations

(3.2)

(3.3)

(3.4)

(3.5)

In this section, we will give a few examples that further illustrate either an interesting

phenomenon or a mathematical fact established earlier.

Example 1. Let X ~ Bin (n,p) and let p have the Beta (a,8) prior with density

P a-p)ft

Blag) — Jo<p<i, where a, 8 > 0. Let {P;(p)}j>0 denote the sequence of Jacobi poly-

nomials on [0,1], which form the system of orthogonal polynomials with respect to the
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weight function w(p) = p* (1 — p)?~!. Then, the Bayes estimate for the parametric

function § = P,41(p) is

Jy Per1(p)p®(1 = p)"~*p*~1(1 — p)f~Ldp
JE prte1(1 — p)n-s+6-1dp '

(4.1)

n
However, p®(1 — p)"~® is a polynomial of degree n and so equals ) ¢;P;(p) for some
Jj=0

constants {c;}. Hence,
1
/ Prya(p)p®(1 —p)"*p* (1 — p)? "Hdp
0

=Y ¢ [ Panp)Pi@to)ip
j=0
=0,
as the system {P;} is orthogonal.

Hence, from (4.1) the Bayes estimate 6 = 0 and so px(6,6,) = 0 although 7 is not

degenerate.

For n =1, § works out to the interesting function p(1 —p) = var (X) ifa =g =1.

Example 2. Let X1,...,X, beiid N(6,1) with the sufficient statistic X ~ N(6, 1) and

let 8 have a prior 7 in the class
C={m Er(0) =0, V(r) =1}, (4.2)
Recall from (2.9) that

1- P?r(ea 6x)
_ r(m)
V(r)
= r(m)
1 1

= = 1(m), (4.3)

by the Brown identity on Bayes risks (Brown (1971)), where m(z) = [ 1/2e” 56" dr(6)

and I(-) denotes the Fisher information functional.
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Since the variance of the marginal distribution equals 1 + % for any 7 in C, one has

n
inf T = — 4.4
inf I(m) = ——— (4.4)
as normal distributions have the Fisher information minimization property if the variance

is fixed; see Huber (1981). From (4.3) and (4.4), therefore,

Sup(l - p721'(07 67"))

el

1 11

n nn+1l) n+1l
n

n+1

= inf px(0,6x) = (4.5)
On the other hand, as the operator I(:) is convex (again see Huber (1981)), I(m) <
JI(N(8,1))dn(6) = n. But, if one considers an element of C of the form pé{—c}+pé{c} +
(1 — 2p)é6{0}, where ¢ = \/—12=p and 6{-} denotes point mass, then for the corresponding
marginal my, I(m,) — n when p — 0. Together, these imply

. 2
inf (1~ px(6,6r))
1 1

il

|

[

/2]

fort

[e%e]
~
~~

3
e

= sup px(0,6x) = 1. (4.6)
nel

(4.5) and (4.6) show that p.(8,6r) converges to 1 as n — oo uniformly over 7 in C.

In general, exact minimization or maximization of the Fisher information functional
in a class of probability measures is quite difficult; see Bickel and Collins (1983) and Huber
(1981).

Example 3. An extremely large literature has now accumulated on robust estimation
of a location parameter; a recent reference is Staudte and Sheather (1990). The common

criterion is the maximum variance of the asymptotic distribution of a candidate estimate.
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Comparatively far less work has been done on the finite sample variance of popular esti-
mates at various sampling models; one reference is Gastwirth and Cohen (1970). Also see
pp. 364 in Lehmann (1983). We will study the correlation of an estimate with a location
parameter in finite samples and see how two different estimates compare. The estimates,

the priors, and the sampling models are as follows:

estimates: X (mean), X (median)
priors: (1-¢e)N(0,1)+¢Q, @ symmetric about 0
(the Huber class) ’ (4.7)

sampling models: ¢ distributions with mean § and m degrees
of freedom, m > 3. )

The quantity to be studied is the minimum correlation in; px,£(0,6) in finite samples for
each of the two estimates X, X. Recall from (2.4) that
inf V()

inf V() + sup vars(8)
l—¢

inf pr,1(6,6) =

- . 4.

1 — ¢+ sup varg(6) (48)
For § = X or X, exact variance expressions for finite n are available and hence (4.8) is
calculable as a function of n and e. Figure 1 plots (4.8) as a function of € for n = 9,
Figure 2 for n = 15, and Figure 3 for n = 25. The median is always on top, although the

excess gradually decreases with n.
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Example 4. An interesting questions is the following: suppose § is a given natural
estimate of a parameter #; which priors give the largest and the smallest value of the
correlation p.(6,6)? If 6 is a Bayes estimate itself with respect to some 7, often 7y will

maximize pr(8,6). What if § is not a Bayes estimate?

Let X ~ Bin (n,p) and consider the estimate 6(X) = & for p. Suppose the prior
for p is an arb1trary unimodal distribution on [0,1]. We will work out sup pr(6,6) and
1nf p=(6,6) and the particular priors at which they are attained.

Denote E(6) by ¢; and Er(6%) by co; from (2.4), it follows that

2(0,8) = 27 G 4.9
S TCR 0
This is increasing in ¢, for given ¢;, by calculus. Now, the moment set
{.(C]_,C2) : m is unimodal on [0, 1]}
={(c1,¢2): 0<e1 <1, & <ep < E(cn)}, (4.10)

where £(c1) = 2¢; if ¢; < 7 and %¢; — 3 if ¢1 > 1 (see DasGupta (1995). Figure 4 gives
the moment set (4.10).
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Frqune 4

2 Forst Two Moments of Unumodol Sistnicutions

From (4.9) and (4.10),

sup pﬂ'(g’ 6) = max{oma,xl h(c1)7 112.&}21 h(l - 61)},
™ scass P Y

where
2— 301
hie) = 4.11
(C]_) (2 + _j’[;) 361 ( )
By calculus, h is decreasing on [0, 1], and thus from (4.11), sup pr(6,6) = TR, corre-

kY
sponding to a prior degenerate at 0 or 1. On the other hand, a prior degenerate at any
interior point gives p(6,§) = 0 and gives the infimum. Thus, in the class of all unimodal
priors on [0,1], 0 < p(6, £) < g2

Example 5. Finally consider the problem of estimating a positive normal mean; i.e., we
have X;,...,X, iid N(6,1) where § > 0. This is an interesting problem on its own, but
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we chose it as an example because the UMVUE and the MLE of 8 are not linear functions

of one another and so a basis exists for comparing their correlations with § under various

priors for the mean 6. Indeed, the UMVUE is X and the MLE is max(X,0) = X, . We will

consider gamma priors with density e_lfé’;:_l, a > 0, for . For X, we have the easy formula

(2.4) and for X, we use the general formula (2.1) in order to calculate correlations. Note

that the bias b(6) of X4 equals

() = 09(6V) + Z=¢(0v/) =B (4.12)

which is used in (2.1) in the numerical computation. Table 1 reports the correlation

between € and each estimate for three values of a and n each.

Table 1: pr(6,6)
n

1 ) 15

X % X X X X
5774 6364 .8452  .8795 .9394  .9527
7072 7404 9129 9235  .9682  .9712
8165 .8274 .9535 .9550 .9838  .9840

N — oo R

Thus the MLE consistently enjoys a higher correlation but the excess is negligible for large

n or large a.
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