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SUMMARY

The paper discusses the application of Bayesian techniques to the determination of sample
sizes required for an attribute test of a product in order to demonstrate a target reliability
with a specified confidence. The method is based on analyzing statistical data on similar
products and incorporating them into a Bayesian prior distribution for the unknown
reliability. A mixture prior obtained by combining a beta prior with the uniform
reﬁtangular prior (representing the unknown content of the new product design) is
discussed. The suggested method can significantly lower sample sizes for attribute tests
and thus reduce cost, time, and resources currently being spent on reliability

demonstration testing. A numerical example at the end of the paper illustrates the method.



INTRODUCTION

In the pursuit of high quality and high reliability in a mass production environment, the
automotive manufacturers require their suppliers to prove a target reliability with an
assigned confidence level on a supplied product. This is usually done through a reliability
demonstration test by running a certain number of samples under conditions simulating the
mission life, an experiment which is sometimes called test to a bogey. Most of the time
the sample size is determined only by the required reliability and the confidence level.
Most of the methods currently used in the industry presume no prior information about the
product or its predecessors, though very often this information is available. With the ever
increasing reliability requirements the sample size to be tested is growing out of
proportion and out of economical sense, requiring larger and larger amounts of human
resources and capital equipment. Based on the fact that many new automotive products
are evolutionary and not revolutionary, Bayes method can be one of the approaches to
incorporate prior knowledge about the product, thus reducing the number of test samples

and the amount of resources dedicated to the test programs.

EXISTING TECHNIQUES FOR SAMPLE SIZE DETERMINATION.

Statistical experiments are generally performed to learn more about unknown parameters
characterizing our material of interest. In an automotive setup, the unknown parameter is
the product reliability R, that is, the probability of surviving a specified mission life under
standard condition: an attribute reliability experiment is performed to learn more about it.
The experiment consists of observing N successes out of N reliability test trials. A peculiar

feature is that most often no less than a 100% success rate is required - failing which



corrective actions are to be taken- whereas in the usual reliability trials the success rate,

albeit usually high, is random.

Techniques commonly utilized to calculate sample sizes for reliability demonstration of a
product when a 100% success rate is required are generally referred to as Success Run
Formulae [1,2]. The likelihood function, that is the probability of observing all successes

given a certain value of the unknown product reliability R, is

L(data|R) = R" 1)

Based on this equation, the expression

C=1-R," @)

is known in reliability circles as the “Success Run Formula” (see [2]) and can be obtained
from the classical Clopper and Pearson [3] approach to the determination of confidence
intervals for a binomial proportion. In equation (2), Ry is the lower bound of a one-sided
Cx100% confidence interval for the unknown reliability R. R; is referred to from now on
as the demonstrated reliability. In the automotive industry C and Ry are usually
stipulated by the customer; the Success Run formula is then used for the determination of

the required sample size N.



In a Bayesian approach instead, we use prior distributions on the unknown parameters of a
statistical experiment to exploit useful pre-experimental information, for example the data
from previous test results or similar product usage. For Success Run experiments, the
likelihood (1) has to be combined with the prior distribution on R to obtain a posterior

distribution on R. Such a posterior distribution summarizes all available information about

the unknown product reliability R.

The Bayesian version of the classical Success Run Formula uses a Uniform Prior, also
called a Rectangular Prior, which presumes an equal likelihood for the reliability value to
fall anywhere between 0 and 1 and expresses the idea of “vague” prior information. In
other words, since this prior assigns the same weight to every value of R, we expect it to

produce results similar to the classical Success Run formula.

Combining the uniform prior and the likelihood using Bayes theorem we obtain the
Bayesian version of the Success Run formula from the posterior probability

1

| RYaR

C = p(R,<R<1) = Ze = 1-R}N"
[ RYaR
0

©))
where C is the coefficient of the credible interval [Ry,1]. R;, the (I-C) quantile of the
posterior distribution of R, is still to be referred to as the (Bayesian) demonstrated

reliability. An interpretation of (3) is that, after the successful completion of a Success



Run experiment with N units, the unknown reliability R lies in the interval [Ry,1], with

Cx100% probability.

The sample size calculated using equation (2) is one sample more than what we would get
using equation (3). Some common reliability demonstration requirements and the sample
sizes for Success Run of these demonstrations are given in Table 1. Equation (3) has

been used in the calculation of these sample sizes.

Table 1 : Some Common Reliability Demonstration Requirements

Reliability to be Confidence Level Sample Size

Demonstrated (Success Run formula)
0.95 0.9 45
0.97 0.7 40
0.99 0.5 69
0.99 0.9 229

FROM BETA PRIORS TO MIXTURES OF BETA PRIORS FOR PRODUCT
RELIABILITY.

A generalization of the Success Run formula (3) can be obtained from priors other than
the uniform. In Bayesian statistics, it is well known that for a binomial likelihood such as

(1), a beta prior distribution on R, with density

RA—] (1 _ R)B—l

T ®="20B

if 0<R<I1 4



I[(AI'(B)
I'(A+ B)

Where B(A,B)=
is particularly convenient; the constants A and B (sometimes called hyperparameters) have
a nice interpretation - 4 being thought, sometimes, as the number of successes out of A+B
trials in a similar pre-experiment, real or imaginary. More importantly, the beta prior
distribution is conjugate to binomial sampling, that is, the posterior is a beta distribution as
well. This allows for a continuous updating of the posterior within the same general class

of distributions. The uniform prior is a special case of (4) for 4=B=1.

The posterior density on R obtained by combining (1) and (4) through Bayes theorem is

(RNRA—I(I _ R)B—l]
" (Rldata) = p(4,B) S Ul O )
( [s¥sA(1- S)B“dS] B(A+N,B)

B(4,B)

that is, a beta density with parameters (4+N) and B. The use of beta priors for binomial
sampling has a long history, starting somewhere in the prehistory of modern Bayesian
statistics. For an account of the uses of beta distributions in attribute reliability trials, see
for example Martz and Waller [4,5]. As in the case of the standard Success Run formula

(3), the immediate use of posterior (5) is to establish a reliability level Ry above which



there is a high Bayesian credibility C that the reliability R will be met. For this purpose,

we use equation

co j' RAN-L 1- R)B—l IR ©
r B(A+N,B)

which tells us that there is a C posterior probability that R will be greater than R;.

If, before the experiment, we require a certain Bayesian credibility C based on the
contractual specifications, for given A and B the only unknown in expression (6) is the
sample size N. For a given prior (4) we have to solve (6) numerically for &, in order to
know how large a sample size we have to observe, with 100% success rate, to satisfy the

required C and Ry,

The choice of the parameters of the prior A and B is a crucial one. It seems reasonable, in
automotive reliability applications, to base such a choice on failure data, which are easily
available and contain a lot of relevant information bon past models or similar products. In
the presence of information on the success rate of # previous life tests, a possible way to
obtain A and B is based on an empirical Bayes approach discussed in [6]. See, for
example, Martz and Waller [4] where empirical Bayes estimates of 4 and B are derived

(see Appendix A).



Beta priors of the form (4) have a long history and are mathematically convenient, but for
our purposes they are too restrictive. The best way to understand this is observing that an
industrial product is in continuous evolution and, although a lot of similarity exists
between old and new models, we always have a margin of novelty which should be
accounted for. On the other hand, we do want to use prior information on similar
products in our research; this is the reason why we want to use Bayesian methods in the
first place. The right compromise between these conflicting goals seems to be
generalizing the class of beta priors to the larger class of finite mixtures of beta priors. The
plan is then to put together a prior distribution derived from failure data, and a margin of
uncertainty intrinsic to the new model. The latter margin of uncertainty can be expressed

as a uniform prior on the reliability.

Our proposal is therefore the use of a two-component mixture of beta distributions, with

density

R*'x(1-R)*!
B(4,B)

The first component of the mixture is a beta prior with parameters A and B to be derived

z(R)=p +(1-p) if 0<R<1 (7

from failure data. The second component of the mixture is a uniform prior (a special case
of the beta) representing uncertainty about the new product reliability. The two
components are combined according to weights p and (1-p), where p is a "knowledge
factor" representing how similar the new product is to the old one, and (1-p) is an

“innovation factor", reflecting the proportion of new content in the new product. Notice



that the use of a uniform prior alone would lead to the Bayesian version of the Success
Run formula; the use of mixtures represents therefore a reasonable compromise between

Bayesian and classical methods.

The idea of using mixture priors in the context of product reliability could be generalized

to the case of heterogeneous prior information, in particular to the case where failure data

is available for different past products, some more similar than others to the new product.

In that case, the analysis could be generalized to the consideration of prior densities of the

form

R4 x (1- R)%™
p(4;,B,)

7(R) = Z(p,- ) +(1-p) ®)

where p=)" p,

and the different knowledge coefficients p, reflect different degrees of similarity between
the new and the old products. Another reference to the use of mixture priors in Bayesian

reliability is the article by Savchuk and Martz [7].

Only mixtures with two component are considered here. Combining (1) and (7) using

Bayes theorem we obtain the posterior density,

RA+N—1 X (1 _ R)B—l

(1-p)R" +p

_ B(4,B)
F(Rldata)_ (l—p) , ﬂ(A-i— N, B) (9)

N+l PB4 B




and the corresponding expression

1
C= [#(R|data)dR - (10)
Rr

where a required demonstrated reliability Ry and credibility C can be achieved. The

solution of equation (10) has to be found, in general, by numerical methods.

AN EXAMPLE TO DEMONSTRATE APPLICATION OF THE TECHNIQUE

The sample size determination technique described in previous sections of this paper has
been applied to a real life example to demonstrate a significant reduction in sample size.
Table 2 shows failure data for an electronic vehicle control product (slightly modified from
actual data for security reasons) in terms of IPTV (Incidents Per Thousand Vehicles).
Table 2 shows breakdown by model years and body styles, totally constituting 12 test sets

(n=12). The observed failure rates R;, are calculated from the IPTV data using:

IPTV
R = 1-2-2
J 1000 (1

Using equations from Appendix A, the values of 4 and B for the data in Table 2 are found

" to be 769.34 and 2.53 respectively. The cumulative distribution functions (CDFs) of the
uniform, beta, and mixture distributions are shown in Figure 1 for the crucial range of

0.98<R<1

10



Using equation (10) and solving numerically for the sample size, N, for a demonstrated
reliability of Ry = 0.99 with C = 90%, the sample sizes for various knowledge factors are
as shown in Table 3. Using the classical Success Run formula (no prior knowledge about
the product or knowledge factor p = 0), 229 samples of the product 4 will have to be
tested with no failures to demonstrate a 0.99 reliability with 90% confidence. From Table
3 it is seen that with only a 10 % prior knowledge of the product (knowledge factor p =
0.1), the sample size reduces to 54 and as the knowledge factor increases, the sample size

decreases.

CONCLUSION:

The method presented in this paper has great potential for cost reduction in reliability
demonstration testing in a mass production environment like an automotive electronics
industry. The failure data on similar products used to build a “prior” can significantly
decrease the number of test items to a bogey. Even in cases with a low knowledge factor
such as 0.2 or 0.3 (20-30% prior knowledge about the product), the method may present

significant sample size reductions.

In cases with a favorable prior, the sample size may sometimes go down to zero or even
become negative. The zero or negative sample sizes would mean that the required
reliability has already been demonstrated during the previous stages of product

development and no further testing is needed.

11



In instances with an unfavorable prior the number of samples to be tested may actually
exceed the number computed using the classical method. This means that the product’s
prior has already shown that the product’s reliability is most likely less than the desired
outcome and no further testing should be performed without appropriate design

corrections.
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Table 3. Sample sizes for various knowledge factors at
R=0.99 and C=90%

Knowledge Factor (p) | Sample Size N
1 0
09 1
0.8 2
0.7 4
0.6 6
0.5 9
04 13
03 19
0.2 30
0.1 54
0 229
1 - — [ — - = - — F —
Uniform
0.8 /
0.6 yd
3 Mixture (50%Beta/50%Uniforn) ~
- . S cp—
0.4
0.2- 4
: Beta /
0 A A A A A A e e 2 1 ' Iy N
0.98 0.985 0.99 0.995

Reliability R

Figure 1. CDFs for Beta, Mixture and Uniform Distributions
with A =769.34, B =2.53
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APPENDIX A

Martz and Waller [4] derive empirical Bayes estimates of A and B as follows:

P(ER-YR)
J=1 J=1

A+B=—— n n 0
n(né R} - K; R)~(n- K)(g1 R)’

and

A=(A+B)R

Where R is a number of life tests
) . . st
) ; is a number of units in ]t test.

Number of failures in the j” test

R is the J™ observed failure rate =

When 7 is small, sampling error may cause equation (i) to yield negative estimates. If this

occurs, Martz and Waller [4] suggest using the following form of this equation

17



_(n-1 n) R, - (X R)" _
A+B"( ” )(nZRj-(Zij] : &

These equations can be applied to processing real life data, where 7 would be the number

of test sets for the similar products and R; would be the reliability data from each set.
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