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Abstract

We study the behaviour of cyclic Iy projections between two classes of probability
measures. It is then shown that some convergence problems arising in Statistics can
be viewed as convergence of cyclic Iy projections. One such problem arises while using
the EM algorithm for estimating the mixing distribution. We derive a basic inequality
which says that the Iy divergence distance of the true mixing distribution (or M.L.E.
when we are working with a data) from the iterate is reduced by at least the distance
of the true marginal from the marginal using the previous iterate at each iteration.
Proof of convergence of the algorithm in the weak topology follows by exploiting this
inequality in the generality of locally compact parameter spaces. This inequality also
provides some intuition as to why the EM algorithm in the mixture problem gets to a
neighborhood of the MLE in the first few iterations and then the speed of convergence
slows down considerably, an empirical observation seen in the literature. There is some
overlap of our results with that in the literature. The other problem we dealt with is
the convergence of the data augmentation method of Tanner and Wong. We give a
simple proof based on an inequality of the type discussed above. The convergence is

proved in the total variation norm.

*Research supported by Purdue research foundation grant and partially supported by the National Science

Foundation, Grants DMS-8923071 and DMS-9303556.



Key words and phrases: EM algorithm, Mixing distribution, Empirical Bayes, Data Aug-

mentation Method.

1 Introduction

This paper studies the iterations of operators defined on the space of probability measures
and establishes convergence results and provides characterization of the limit points under
certain conditions. To define the operators we study in this paper we need the following
notations.

Let (X, A) denote the sample space which we assume to be Polish with its associated
Borel o field. Let (©,B) denote the parameter space which also we assume to be Polish
with its associated Borel sigma field. Let P(.,.) be a Markov kernel, by which we mean that
P(.,.) is a mapping from (X, A) x O to the unit interval such that for each fixed value of
8, P(.,0) is a probability measure on (X,.A) and for each fixed set in A it is a measurable
function in §. We assume that the support of P(.,#) is invariant with respect to 8. Further
assume that, for each 8, P(.,0) is dominated by a sigma finite measure ¢ and let the Radon-
Nikodym derivatives be denoted by f(z,8). For n a probability measure on (0, B), by n(.,.)
we shall denote the regular conditional probability of the measure induced by the Markov
kernel P(.,.) and 7 conditioned on the sigma field A ® {©, ¢}. Statisticians call 7(.,.) the
posterior induced by the Markov kernel (model) P(.,.) and the probability measure (prior)
n. By the measure m, we denote the marginal probability induced by the above Markov
kernel and 5. Note that in what follows we have denoted the Radon-Nikodym derivatives by
the measures themselves.

Let 7 be a probability measures on (0, B) and m a probability measure on (X, A). We
first study the behavior of the iterations of the following operator which we denote by T,
an operator which takes probability measures on (0, B) to probability measures on (0, B).
The action of T}, on 7 is the probability measure [ 7(.,z) dm(z). More explicitly,

dTm(7)(0) = f(2,9) dm(z) - dn(9).

mq(z)



That this is a probability measure is clear from the definitions of the quantities involved and
the fact that a convex combination of probability measures is also a probability measure.
The n-th iteration of T}, on 7 will be denoted by 7% (x). Here we study convergence of the
iterations in the weak topology on the space of all probability measures on (©,B). We shall
denote this by simply writing 7, — m. That this operator has infinitely many fixed points
under non-trivial conditions is easy to see. So one might wonder if one can get nice results
on convergence of the iterations. Such results, in particular, form part of the contents of this
paper.

To define the second operator we study, we need some more notations. Let v be a o-
finite measures on (©,B). By Px and Pe we denote the set of all probability measures on
(X,A) and (0, B), respectively. Let G(.,.) be a Markov kernel on (©,8) ® X. We assume
that G(.,z) is dominated by v for each z in X'. We shall denote by g(.,z) their respective
Radon-Nikodym derivatives.

We define K{(.,.), a kernel on © x ©, by

K(8,7) = [ 9(6,2)f(,7) du(z) V6,7 €8,

and W is defined as the operator,

W(x) ) = [ K@, 1)r(z)du(7) VOo€O.

We study the behavior of the iterations of the operator W on Pg. As observed in the earlier
papers on this subject, for eg. Tanner and Wong (1987), we see that the operator W is
a Markov transition operator and hence an L; non-expansive mapping. This is the way
that the previous papers have tackled this problem. Here we adopt a different approach
mentioned below.

Both the above operators can be visualized naturally as a part of an alternating projection
scheme between two convex classes of probability measures, the projections in terms of the
I divergences. Such a visualization gives many properties of the operator for free, in some
sense. Csiszar & Tusnady (1984) prove a general theorem for alternating projection schemes

under some geometric conditions on the projections. They then go on to show that these
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conditions are satisfied by the I-divergence projections and then study the above operator
under conditions when the parameter space is a finite set. Here we take a slightly different
approach. We first prove an inequality which implies that the distance between the iterate
and the limit is monotonic non-increasing in the number of the iteration. The key fact that we
use to prove such an inequality is a result which gives necessary and sufficient conditions for
Iy projections, very similar to results for the general f-divergences of Liese and Vajda (1987)
and Riischendorf (1984). Then by using some basic facts from the theory of f-divergences
(see Liese and Vajda (1987) and Vajda (1989)) we are able to deduce all the results in Csiszar
& Tusnddy (1984) pertaining to the operator of our interest. Moreover, we also deal with
the case when the parameter space is not a finite set. We hope that this paragraph beckons
the reader to at least browse through Csiszar & Tusnady (1984) as their general theorem on
alternating projections is certainly a deep and powerful result.

When the parameter space is finite the iterations of the operator T' can be seen to be an
EM algorithm for a suitably defined mixture problem, see Dempster, Laird, Rubin (1977).
So a natural question to ask would be in what way is the approach of this paper different
from that for the convergence of the EM algorithm as given in Wu (1983) (see also Boyles
(1983))? Also, do we differ in conclusions? First of all the proofs for the convergence of
the EM algorithm use the fact that the likelihood is non decreasing as we proceed along
the iterations. From this they try to deduce the convergence of the iterations. Here we get
an inequality which deals directly with the iterations and hence we are able to get stronger
results in the sense that we prove that the iterations always converge and, when we start
from an interior point of the simplex, we always end up with a global maximum. As a
specific example, consider theorem 4.2 of Redner and Walker (1984). This theorem uses the
general result for the EM algorithm as given in Wu (1983). These methods are, in turn,
based on the relevant general theorem given in Zangwill (1969). To get the convergence
of the iterations they assume that the matrix of the second derivatives of the likelihood is
non-negative definite at all points of the simplex. This implies uniqueness of the MLE. Such
conditions and uniqueness of the MLE are not required for the proofs along our lines. We do

agree that this might not be highly relevant to the users of the algorithm but is nevertheless



of theoretical interest. All this is not meant to be a criticism of existing methods of proof
of the EM algorithm but to point out that in some cases of the applications of the EM
algorithm alternative methods of proof might give stronger results.

In the next section we summarize the results from the theory of f-divergences that we
shall be requiring. In the third section we give the main results of this paper relating to
operator T which deal with the convergence of its iterations. We have split this section
into four sub-sections. The results in the third sub-section are the ones which are useful
in practice, at least currently. The results of the second sub-section generalize those of the
first but require the results from Information theory given in the second section. The last
sub-section points towards one of the many applications of the operator T'. In the fourth

section we deal with the data augmentation method.

2 I, Projections

We shall below define Iy divergence and give some results from the literature about I
projections that we shall need in this paper. For two probability measures, P and Q, on a
measure space, we shall denote by Io(P, @), the Kullback-Leibler I divergence between the

two measures, defined by,
d
1o(P,Q) = | og (ﬁ) aQ
where the densities are with respect to some dominating measure. It is easy to see that

this divergence is invariant w.r.t. to the choice of the dominating measure. Here and in the

sequel we understand
log0 = —oco, log (%) =400, 0-(ftoo)=0,

where a > 0. Io(P, Q) is always non-negative and vanishes only when P = Q. If Q <P then
Ih(P,Q) = +00. Just for the sake of general interest we also define the I; divergence, which
also is due to Kullback & Leibler, as

I,(P,Q) =/ log (d_P) dP + oo P{dQ = 0}

{dQ>0}

dQ
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Note that I(P,@) = I1(Q, P). It is important to note that the divergence is asymmetric
and moreover does not satisfy the triangular inequality. The obvious symmetrized version,
used by Jeffreys (1948) does not either gives us the triangular inequality. The triangular
inequality cannot be obtained by any other reasonable modification of the divergence, see
Csiszar (1964). So all this, in particular , implies that there is no reasonable way to derive
a metric based on this divergence. But, never the less, we can talk about the induced
topology, by which we mean the smallest topology containing the balls. In this connection it
is interesting to note the following information inequality which, in particular, implies that
this induced topology is stronger than the one of the total variation metric.

Let us recall that the total variation distance between two probability measures P and
@ is given by

1P = Qll = 2 - sup |P(4) — Q(A)]

where the supremum is taken over all sets in the o-field on which the probability measures
are defined. The mysterious factor 2 is included to make it equal to the L, distance between
the densities of the two measures with respect to any dominating o-finite measure. Note
that the L; metric is invariant to the choice of the dominating measure.

The below given information inequality was independently discovered by many in the
late 1960’s; among them being Csiszar (1967), Kemperman (1967) and Kullback (1967). We
refer to them for its proof which follows essentially from the monotonicity property of the

I- divergence.

Lemma 2.1 Let P and Q) be two probability measures. Then with the above notations we

have

(e —Qly’
L(P,Q) 2 "5

By symmetry the above is true with I replacing Iy.

PROOF. See Csiszar (1967).

O
Now we shall describe what we mean by the I projection of a probability measure, say

Q, on a convex set of probability measures, say 7. We say that P* is the Iy projection of @
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on the set 7 if Io(P*, @) is finite and
IO(P*a Q) = Il,Ielff IO(Pa Q)

If in the above, the other version of the Kullback-Leibler divergence is used then we would
have what is called the I projection of ) on the set 7. In this paper we shall be dealing
with only the former. The existence of P* in general is altogether another question , but if
it exists then it’s uniqueness when 7 is dominated by @ follows from strict convexity of the
Iy divergence. On this point it is of interest to note that the I; projection is unique even if
C is not dominated by (). Moreover, the I; projection exists if the set C is closed under the
total variation metric and there exists at least one measure with finite divergence with Q).

We give some more notations that would be needed. For any space (), B) we shall denote
by P(}) the set of all probability measures on (), B). As we shall never work with more than
one sigma field on a set, this should not cause any confusion. For any subset of 7 of P()), we
shall denote by C(7') the convex hull of 7. We shall say P < @ if P is absolutely continuous
with respect to ). We shall say that a class of probability measures 7 is dominated by @ if
each P in 7 is dominated by Q.

The following is a result which, in particular, implies the existence of Iy projections on

weakly compact sets of probability measures.

Lemma 2.2 If (V,B) is a Polish space or even if Y is a separable metric space with its
associated Borel sigma-field, then Iy is lower semicontinuous on the space (P(Y) x P(}))
with the product of weak topologies.

PROOF. Follows from a more general theorem of Liese & Vajda (1987).
O
The following result is interesting, in that it is analogous to a well known theorem from

the theory of Banach spaces. For any subset of finite measures 7 and a finite measure ) we

shall denote by Io(7, Q) the quantity infper Io(P, Q).

Lemma 2.3 Let T be a non-empty convezx subset of probability measures dominated by ().



If P* and {P,}n>1 € T satisfy

lim IO(PnaQ) = IO(P*7Q) = IO(T7Q)7

n—oo

then |P, — P*|| = 0 asn — oo.

PROOF. Follows from a result for {-divergences given in Liese & Vajda (1987).

a

Remark 2.1 If, instead, 7 is a convex subset of finite measures dominated by (), then we
would still have convergence in ) measure of p, to p* where the former quantities represent
the Radon-Nikodym derivatives of P, and P* w.r.t. @), respectively. To have convergence in
the total variation sense we would need stronger conditions which would gives the convergence
of the norm of P, to that of P* so that the type of argument using Scheffe’s theorem goes
through.

The following important result is called the monotonicity property of Iy divergence. See

Liese & Vajda (1987) for proof and other implications of this property.
Lemma 2.4 For every 7,7 € P(©) and kernel K : (0,B) = (X, A) we have
Io(n, 7)) > Io(m * K, * K),

where equality takes place iff K is sufficient for (x,7). 7+ K is the measure on (X, A) given
by [ K(.,0)dr(9).

We now prove a result about Iy projection which will play an important role in what

follows.

Lemma 2.5 Let 7 be a non-empty convexr subset of finite measures dominated by Q) such
that Io(T,Q) < co. Then P*, an element of T with p* = %, is an Iy projection of @ onto
T if

sup i*dP =1 and I(P*,Q) < 0.
PeTJs P



PROOF. First we note that, since Io(P*, Q) < oo, we have
I((1 —a)P* + aP,Q) < co,Ya € [0,1).

By using the above fact and that —log(.) is a convex function, one can prove using DCT

that the directional derivative of Iy(., Q) at P* in the direction of P is given by

/p*p:dezl—/Z%dP

where p = %. Now by Whittle’s theorem, see Vajda(1989), the lemma follows.

a

Remark 2.2 It follows from the proof that the “if” part holds even if 7 is not convex.
Also one can conclude as a consequence of the above theorem that 7 < P* and that P* is

equivalent to Q).

Remark 2.3 The above result and it’s proof is very similar to the result for f-divergences
given in Liese & Vajda (1987), see also Riischendorf (1984). But the important difference is
that we do not require that I(P, Q) < oo for all P € 7. Removal of this condition is useful

to us in the fourth section. Generalization to finite measures is obvious.

Kullback-Leibler divergence has been important in statistical theory because of the om-
nipresence of likelihood ratios. This is the main reason for it’s appearance in asymptotic
statistical theory. It also figures in contingency table theory for an altogether different rea-
son. The iterative proportional fitting method, for example, converges to the I; projection
of the starting point. We do not want to dwell on the uses of divergence in statistics, but
should at least mention, Bahadur (1971), Csiszar (1975), Dykstra (1985), Hoeffding (1965)
and Kullback (1959). '

3 Convergence Results for T,

We have split this section into three sub-sections, even though the second sub-section

gives results which generalize that of sub-section one, as the first does not make use of any
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non-trivial results from Information theory. Thus the first sub-section is more accessible.
The third subsection deals with the case when we are dealing with finite measures instead
of probability measures. Of course, here the interpretations of posterior, etc., breaks down
but some of the results do hold in this generality and the goal of this section is to merely

point these out.

3.1 Casel: meC{f(.,0):0¢€06}.

In this sub-section we assume that m € C{f(.,0) : & € ©}. Let 7* be a probability
measure on (0O, B) such that m = m,.. Henceforth in this sub-section the operator T,

defined before shall be denoted by T

Lemma 3.1 Let 7w be a probability on (©,B) and let v be a dominating sigma finite measure

/ log( m” P(de 0)) dv(0)

is well defined. Moreover when Io(w,7*) is ﬁmte the above is finite too.

for © and ©*. Then

PROOF. We shall show the negative part of the integrand is integrable. To this end note

that
/ () [log( :’;’; ((x))P(d:c o))}_dy(o)
< / 0, l—log( ;n;((z))P(d:c,H))]_dy(a)

= / *(8) log( ;";((‘Z))P(dx,o)w) dv(0)

/ - m”(‘”) P(dz, 0)dv(6)

mﬂ-* )

= 1.
This proves the first part. When Io(w,#*) is finite we have

Io(Tps (), 1) = Io(m,7%) — / () log( m”‘(‘”)P(dw,a)) dv(0).

me(2)

This, in particular, implies that the second integral is finite in view of what we showed above.

O
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Lemma 3.2 Let v be a probability on (0, B) and let v be a common dominating sigma finite

measure for = and 7. Assume that Io(w 7*) is finite. Then we have,
To(Tye (), %) < Io(m, %) — To(riey ).
This, in particular, implies that we have equality above iff m = M.

PROOF. By using Jensen’s inequality and in view of the previous lemma we have

Io(Tre (), 7")

= [y (7(0) f’;ﬁ@)lp(dx 6 )

= [ log<%*)dv—/ log</

< Ip(m,7) — /10 (m“'(x))) drme(z)

P(dac a)) dv(6)

= Io(m,7*) — Io(mg,Mpe)

The case when equality occurs is clear.

O

Remark 3.1 It is interesting to note that, on each action of the operator T+, the Kullback-
Leibler distance from 7* is decreased by at least the amount of K-L distance between the
marginals. This says that, even if we start far away from 7*, we could find ourselves in the

“ball park” of 7* in the first few iterations.

Remark 3.2 The above remark gives the analytical reason as to why most of the change
in the Kullback-Leibler distance is observed within the first five iterations, an empirical fact

known to users of EM algorithms, see Redner & Walker (1984).

Remark 3.3 Note that the above, in some situations does imply a geometric rate of conver-
gence. This can be easily shown, for example, when the sample space and parameter space

are finite. But it is possible that the exponent found in the obvious way can be very close to
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one; this is what happens when we used naive methods to evaluate the exponent in example

1.

Remark 3.4 The monotonicity can, in some situations, let us relax the usual condition on
identifiability if we are just interested in the convergence of the iterations. For instance, when
one can prove that there exists a subsequence which converges in the sense of Iy divergence to
some probability measure, say, 7 which has the same marginal as 7* then by monotonicity
we get the convergence of the whole sequence to this 7’ in the sense of Iy divergence. This

remark has obvious importance in the case when O is a finite set.

Remark 3.5 From the above lemma, one can for the case when the parameter space is

finite, observe the following:

Io(m,r,m,r~) S Io(ﬂ',ﬂ'*) bt IO T,rn-(ﬂ'),ﬂ'*

< suplog (m) .

The last expression says that, from successive iterations, one can get a bound for the I
distance between the marginals. In the case of the MLE, this gives us a bound on how close

we are to the global maximum of the likelihood.

Theorem 3.1 Let
(i) ™ be such that Io(w,n*) is finite.
(it) my, — mq« in total variation metric implies ©, — 7*.

Then we have T (7) — 7*,
PROOF. From the above lemma we have
Io(TE (7)), m*) < Io( (), ™) — Io(mT:*(,,),m,ﬂ) VYn>0.

So either we have Io(T7. (), 7*) decreasing to zero or Io(mgx,(x),Mx+) — 0. In the former

case we have T () — =* in the I divergence sense which, by lemma 2.1, implies convergence
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in total variation sense and hence, in particular, T%(7) — 7*. In the latter case we have
again, by lemma 2.1, that mrr, (r) — My« in the total variation sense which by assumption
(ii) implies that T (7) — 7*.

O

Remark 3.6 Note that, if © is compact and 7* is identifiable, then m,,  — m,» in total
variation metric would imply that =, — 7*, in the case when f(z,0) is bounded continuous

as a function of 4, a.e. pu.

Example 3.1 Let P(z,0) = Bin(2,0)(z) and © = {0,0.5,1} with the usual topology.
Note that & = {0,1,2} and is also equipped with the usual topology. Let #*(0) = 1/6,
7*(0.5) = 2/3 and 7*(1) = 1/6. Further let x(0) = 0.99, (0.5) = 0.005 and =(1) = 0.005.
Since © is compact and the other conditions of the theorem also hold, the conclusions of the

theorem hold for this example. The table below displays the result of the first ten iterations.

n T () mer, (x) (T3 (m), 7*) | I(mgn, (r), mar) | J(n) *
0 | (.990,.005,.005) | (.991,.003,.006) | 3.549 2.593 -

1| (.333,.400,.267) | (.433,.200,.366) | 0.146 0.0508 3.403
2 | (.256,.501,.243) | (.382,.251,.367) | 0.0559 0.0172 0.0903
3 | (.224,.557,.219) | (.363,.279,.358) | 0.0253 0.00730 0.0306
4 | (.206,.590,.204) | (.353,.295,.352) | 0.0123 0.00342 0.0129
5| (.194,.613,.193) | (.347,.306,.347) | 0.00630 0.00170 0.0060
6 | (.186,.628,.186) | (.343,.314,.343) | 0.00331 0.00088 0.0030
7 | (.181,.638,.181) | (.341,.319,.340) | 0.00177 0.00046 0.0015
8 | (.177,.646,.177) | (.339,.323,.338) | 0.00096 0.00025 0.0008
9 | (.174,.651,.175) | (.337,.326,.337) | 0.00053 0.00014 0.0004
10 | (.172,.655,.173) | (.336,.328,.336) | 0.00029 0.000074 0.0002

* J(n) :=I(n - 1) -~ I(n); I(n) := (T (x), 7*)

Table 1: Result of ten iterations
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Lemma 3.3 Let O be a locally compact metric space and we shall denote by oo the adjoint
single point of the one point compactification. We shall assume that we can extend f(.,0)
such that it is bounded upper semi-continuous at oo for y a.e. and { f(z,00)du(z) < 1. Then
my, — My in the total variation sense would tmply the tightness of the sequence {n, : n > 1}.

Moreover if n is identifiable we would have weak convergence of n, to 7.

PROOF. If you consider {7, : n > 1} as a sequence of probability measures in the extended
space, we would have a subsequence {7,,} such that ,, — n*. We will write n* as n* =
and + (1 — a)b, where 7§ is a probability measure on ©. Note that this representation is
unique. Below we shall show that a is equal to one, which shall imply the tightness of the
whole sequence. That identifiability implies weak convergence can be shown by a standard
subsequence argument. Assume that a is less than one. By upper semi-continuity of the

function f(z,0) for almost every z, we have
lim sup my,,(z) < amgs(z) + (1 — a) f(z, o0)

But since m,,, — m, in the total variation sense, we have

[ ma(@)dz)
< a [ myg(2)du(@) + (1 - ) [ f(z,00)du(z)

< L

This is a contradiction; hence the proof.

O

Remark 3.7 It is important to note that even though © may have a natural topology ,
it should be given the topology which makes the density functions f(z,.) continuous. This
is the natural topology for © in this problem. This is similar to what one does in the

consistency proofs for the MLE, see Wald(1949). In this regard, Landers & Rogge(1972) is

interesting reading.
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Example 3.2 Let P(.,0) = N(0,02), 7 = N(uo,n2) and 7 = N(u,7n). It is easy to see that

To(r)= N (/w' +pon® 72‘;(2711 = 277;))

The conditions of the previous lemma are satisfied with f(.,00) being defined to be the
constant zero function. Hence condition (iii) of the theorem is satisfied. Conditions (i) and
(ii) are easily seen to be satisfied too. Hence we have convergence of the iterations from the
theorem. In this case, though, it is also easy to see from elementary considerations that the

iterations do converge.

O

3.2 Case 2 : Arbitrary probability measure m.

In this section we shall revert back to the original notation, T, for the operator under
study. In this case the first question to answer is what are the iterations likely to converge

to if they converge? The answer is that they are likely to converge to the m* which satisfies
Iy(mgs,m) = igrlf Io(meg,m).

In other words 7* is such that m,. is the Iy projection of m on C{f(.,0) : § € ©}. So let
us first go ahead and make the assumption that such a 7* exists. We shall also assume that
m dominates C{f(.,0) : § € ©}. Note that the part of the measures defined by f(.,8) and
not dominated by m does not play any role, but if we relax this assumption then we enter
the case where we do not assume that the measures are probability measures but just finite
measures, see the next sub-section. This assumption implies that 7* is unique when we have
identifiability. But we do not assume identifiability.

The following lemma shows immediately that our “guess” is at least a fixed point of the

operator T, and hence a sensible “guess”.

Lemma 3.4 The above defined * is a fized point of the operator T,,.
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PROOF. We have, by definition of 7* and lemma 2.5, that

m

f(z,0)dp(z) <1V0.

Since

/ / mn;(x; f(z,0)du(c)dr™(6) =1

we have

f(z,0)du(z) =17 a.e.
M

Hence, we have T,,(7*) =

O

Let us define

o(r) = /log(/m mOd,ux))dw()

Lemma 3.5 The function v is a well defined functzon on P(O). Moreover, when 7 is such
that In(w,7*) < oo, then 3(m) is finite.

PrOOF.
/ llog ( / % : d,u(:c))]_ dr*(0)
-/ [log( ’::((;)) . m(if ((;"') o)du(m))]_dw*(e).
Now, since

Tz(le):)f(xﬂ)du(z) =1 r*a.e.

by Cauchy-Schwartz, we have

/P%( ma(z) m(2)f(, Mmmﬂ—www

ma(z) Mer (T)
< / [—log( m"(‘; (mlf((;”)o) ,u(:z:))] dr*(0)
/log (1 \Y — (:i) m(x)f((;v) ,0) d,u(:c)) dr*(6)
// mﬁﬁwehmwmwm

IA
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The above implies that () is well defined.Let us assume that 7 is such that To(r,7*) <

0o. Then we have, after some elementary algebra,
Io(Tin(7),7™) = Io(m,®") — 9p(x).

Since Io(T (), ) > —oco we have (7) < co.
O

Lemma 3.6 The function 1 is non-negative on P(@)N {x : Iy(x,7*) < oo} and, moreover,
P(w) > Io(mg,m) — Ig(mgx, m).

The above, in particular, implies that () is zero iff my = My,

PROOF. We have, from observations made above and Jensen’s inequality, that

¥(7)
= /log( n;,:(;c (:zi{((w; )d,u(:c)) dr*(6)

> [ [ (m)) L) iy )i 0)
. / lo (m”‘ dm(z)

= Io(mﬂ-, ) Io(mﬂ-*, m)

The last quantity is non-negative by definition of 7*.

O
Below we state an inequality which, in fact, is a generalization of the inequality given in

lemma 3.2.
Theorem 3.2 Let 7 € P(O) N {r: Iy(r,7*) < oo}. Then

Io(Trn(7), %) < Io(w,7) — (Io(mg, m) — Io(mge, m)).
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PROOF. As we know when © € P(O) N {r : [o(7,7*) < oo},
Io(Th(7),7™) = Io(m,7*) — ¢(n).

The theorem now follows from the previous lemma.

O

Remark 3.8 To get lemma 3.2 from the previous theorem just equate m to m,«. Most of

the remarks made immediately after lemma 3.2 apply here too.

Remark 3.9 It is important to note that in all the above results of this section we have
never used the fact that f(-,0) define probability measures. We just needed that

sup C(8) < oo, where C(0) = /f(a:,ﬂ)du(:c).

0co

The next result is an exception.

Theorem 3.3 Assume that the following hold, in addition to from the assumptions made
in the start of the sub-section.

(i) = is such that Io(m,n*) < oco.

(11) My, — Mg in total variation metric implies m, — 7*.

Then T2 (7) — w*.
PRrROOF. From the above lemma we have
I(T2 (7)), 7*) < L(To(x), ©*) — (Io(man(x), m) — Io(mge,m)) ¥V n > 0.

So either Io(Ty(7),n*) is decreasing to zero or Io(mp(r),m) — Io(mg+,m). In the former

case, T"(r) — «* in the I, divergence sense, which by lemma 2.1 implies convergence in

the total variation sense and hence, in particular, 7% (w) — #*. In the latter case we have
by lemma 2.3 that mzz(x)y — Mg« in the total variation sense. Now by assumption (3i),
Tr(m) — o*.

O
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Remark 3.10 Note that the assumption (ii) in the above theorem is satisfied if the condi-

tions of Lemma 3.3 are satisfied.

Remark 3.11 As a corollary to the above theorem, when f(z, ) is bounded as a function
of 8 for all z, we get Io(mgn(r),m) — Io(mg+,m). This is what gives the assurance of

convergence to the global maximum when applied to the EM algorithm.

We give a simple lemma which establishes the existence of 7* in the case when © is a

compact metric space.

Lemma 3.7 Assume that f(z,0) is bounded continuous as a function of 0 for almost every
z w.rt u. Let ¢(x) = Io(mx,m) for © a probability measure on (©,B). Then ¢ is lower
semicontinuous on P(O) w.r.t. the weak topology. Moreover, when © is a compact metric

space, there exists a ©* such that

Io(mge,m) = _inf  To(ma, m).

PROOF. First note that from Scheffe’s theorem it follows that if 7, — 7o then m,, — mg,
in L'(p). The lower semicontinuity of ¢ now follows from the lower semicontinuity of the
Iy divergence w.r.t. the total variation metric, see Lemma 2.2. The rest follows from the

compactness of P(0) w.r.t. the weak topology.
O

3.3 Case 3: {f(.,0):0 € ©}; Class of Finite Measures.

The main motivation of this sub section is to present results applicable to maximum
likelihood estimation of mixtures. The other example that can be addressed is the maxi-
mization of log investment return. These will be discussed in the next section. We shall
specialize directly to the case when O is a finite set. Let us denote the elements of © by

{6; : 1 <1< K} for some K.

Theorem 3.4 Let 7 be a probability measure with support © and m be a probability measure
which dominates {f(.,8) : 0 € O}. Let T =C({f(.,0) : 6 € ©}). Assume that Io(T,m) < oco.

Then T"(w) converges and the limit point, say ©*, is such that Io(T,m) = Io(mye,m).
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PROOF. Since © is a finite set the condition of remark 3.9 is satisfied. Also since P(O)
is compact, so is 7 and, we have the existence of a unique m* such that Iy(m*,m) =
inf,ep (@) lo(my, m). Let 7 € P(O) be such that m* = ms.. Now since P(0) is compact
there exists a subsequence {I} of {n} such that T (7) — =, for some =" € P(0). From
theorem 3.2 we get either T%(7) — 7* or Io(mri (r), m) — Io(m*,m). In the former case we
are done. Hence let us suppose the latter occurs. From remark 2.1 we get that

*

me’rln(ﬂ-) _m dm

dm dm

But since T% (r) — 7 we have m,, = m*. Now apply theorem 3.2 with n’ instead of 7*.
Then we get that Io(T7(7),#") is non-increasing and since Io(T%, (7), ') | 0 (since © is finite)
we have Ip(T? (), 7 ) | 0. Hence the proof.

a

Remark 3.12 The assumption on the support of 7 is an obvious necessity. Since we are
working with © as a finite set, the convergence of T, () is in all possible senses. Note also

that we have made no assumption of identifiability above.

3.4 Application

We shall discuss the problem of estimating the finite mixture using the method of maxi-
mum likelihood estimation when the distribution of individual types is completely known.

Let us suppose that X;, Xz,..X,, is an iid sample from m,, where

me = [ £(,0)dn(0)

and 7 is unknown. We wish to estimate 7 from the data using the principle of maximum
likelihood estimation. We assume that © is a finite set and that the p densities f(:,6) are
completely known. So the problem is to find a 7 such that

=n

1:_|1:m7r.(:vi) = sup ﬁm,,(xi).

1€P(®) ;=1
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This is the same as finding #* such that

2 log(m+(z;)) = lij log(mx(z;)).

The above 7* can now be immediately recognized as one such that m .« is the Iy projection F,,
the empirical distribution function, on the space of finite measures on the set {z; : 1 <7 < n}
given by the convex hull of the set of measures {(f(z:,8))1<i<n : 0 € ©}. This is so because

1 i=n

Io(mr, ) = ;Z—log(mr(%‘)) — log(n).

=1
It is important to note that in the above expression we are not interpreting m;, as u absolutely
continuous measures but measures on the finite set {z; : 1 < ¢ < n}. Now it is clear that
theorem 3.4 applies and it implies that, by starting with any = which gives mass to every 0,
one can by the iterations of the operator Tr, on 7 converge to one such 7*. Uniqueness of

the limit point holds under the assumption of identifiability. That m,. is an MLE follows

from an argument similar to that in remark 3.11.

4 Data Augmentation Method

4.1 Conditions and Preliminary Results

Denote, by 7o, the initial starting point of the iteration. Assume that there exists a fixed
point of the operator W, whose density w.r.t. v shall be denoted by 7*. The conditions that

we need are as follows:
o (6
(a) M = supy ;",,—%5% < oo.
(b) f(.,.) is a strictly positive and bounded function.
(c) f is continuous in each argument.

(d) g(0,z) is a bounded function in z for each 0.
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(e) mo satisfies the condition [ log %7‘(’*(0) dv(0) < +oo.

Remark 4.1 Condition (e) can be weakened to condition (€), which is given below.

(€) There exists an ng such that fw*(&)log(w%%r%)%—e—)) dv(0) < +o0

We shall list needed preliminary facts that can be deduced from these conditions. Below

we shall denote by, my,, the y density
ma(z) = / f(z,0) h(d) Yz e X,

where h is any measure on (0, B). We shall in this paper, find occasions when it is convenient
to talk in terms of either the measure or the density, and shall do so without using different

notations. By 7.,(.,.), we shall denote the posterior of the measure given by the p x v

density f(.,.) - ma(.).
Lemma 4.1 The following are true.

(i) For eachn >0,

sup Mwn () (T)
T M (I)

W™ (m0)(6)

<M and sup
9
(it) The sequence of probability measures {W™(mo)}n>o is tight.
(iii) For any h, a v density, my, is a strictly positive continuous function and W(h) has a
strictly positive v density.
Proor.

(i) The argument uses some elementary manipulations and induction.

(ii) This follows from (i) and the fact that a single probability measure on a Polish space

is tight, see Parthasarathy (1967).

(iii) Follows from conditions (b) and (c) above.

O
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In what follows, we shall denote W™ () by 7, for all n > 0.

Lemma 4.2 For every subsequence of {T,}n>0, we can get a further subsequence which
converges in the total variation metric. Moreover, if this subsequence is denoted by {mm tmez
and the limiting v density is denoted by h, then h is strictly positive and m,,, converges in

L, distance, and uniformly, to my,.

PROOF. Let {7, }mez, be any given subsequence. Let us consider the subsequence {7, } mez, -1
(ignoring the index -1, in the case when 7 contains 0). Now this subsequence is tight by the
lemma above; hence we have a subsequence which converges in the weak topology. Let the
limiting measure be denoted by 8 and the subsequence by {7, }mes. Note that, by virtue

of conditions (b) and (c) above,
Mo, (2) = / (@, 0)7,(8) dv(8) — / f(z,0) B(d) as m — co,m € J.
Hence we have, using condition (d), that, for each 0,
W(ra)(0) = [ 4(0,2)men(@) du(z) — [ 9(0,2)ms(z) du(z) asm — co,m € J.

From Scheffe’s theorem we have the L; convergence of W () to W(8),as m — co,m € J.
Denote the v density of W(8) by k. That h is strictly positive follows from Lemma 4.1 (iii).
But note that {W (7))} mes is a subsequence of {W(m,,)}mer,. Hence, denoting J +1 by Z,
we have that {7, }mer is a required such sequence. The second assertion in the lemma follows

by using condition (b), the first assertion and another application of Scheffe’s theorem. O

4.2 The New Approach

Our approach is based on the fact that the operator W can be described as an operator
which is derived from composing two ‘projections’, in quotes because the divergence is not
even a metric. Let C; denote the set of all probability measures on the product measure
space (X x 0, A® B), defined by

C; = {P : P has conditional p density f(.,6) given {¢, ¥} @ B}.
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Similarly, we shall denote by C,, the set of all probability measures on (& x 0, A ® B),
defined by

C, = {P : P has conditional v density g(.,z) given A® {4,0}}.

The theorem below says that, when we operate W on , for some n > 0, we are essentially
projecting the measure with a g X v density f(.,.) -7, on C; and then projecting this resulting

measure on Cy.

Theorem 4.1 For any n > 0,

(i) The Iy projection of the probability with u x v density f(.,.)- 7 on Cy is the measure

with the x-marginal i density m,.

(it) The Iy projection of the probability with p x v density g(.,.)-mx, onCy is the measure

with the 0-marginal v density w,41.

PROOF. It is important to note that C;(\C, contains the probability measure with u x v

density f(.,.) -7 (or g(.,.) - mn=).

(i) The divergence between f(.,.) - m, and f(.,.) - #* is finite, as it is equal to Jo(7*,7,),
which in turn is finite as a consequence of Lemma 4.1 (i). Note that the above diver-

gence is also equal to

To(g(., ) - mne, f(-, ) - )
- To(9(r ) Mg, T 2) - 12,
= Jlog(tmlamnl) 1 (5.0). m, (z) du(e)dv(0)
= [log(2L2) 1, (6,2) - mey (@) du(a)du(8) + To(mye,my,)
= I Io(g(-, %), 1ea (-, 2)) A, (2) + To(mne, M, ).
Note that the second term is finite and the left hand side was observed above to be

finite, hence we have the finiteness of the first term. Now let us look at the projection

problem. Note that it is sufficient to minimize the Kullback-Leibler divergence in the
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sub-class of measures which have a m,., absolutely continuous z-marginal, as otherwise
the divergence would be +o0. Let g(.,.)-m(.) be any arbitrary element of this C;. Then

the divergence of this measure from f(.,.) - 7, would be

IO(g('7 ) ’ m()7 f(a ) ’ Wn)
fIO(g('am)a nﬂ'n('aw)) dmﬂn(w) + IO(m7m7rn)

by similar manipulations as above. Hence the search for the projection reduces to

minimizing the second term w.r.t. m, which is obviously minimized at m.r,.

(ii) The second assertion is proved in the same way as above, the symmetry being clear.

]

4.3 Main Results

The following theorem gives the crucial inequality on which this section is based. The

intuition for the inequality from the previous subsection.

Theorem 4.2 For alln > 0,

To(nt1,5) < T, 7) = Tol [ 1, (1, 2)mes(@) dp(e), 7)

PROOF. We shall prove this only for for n = 0. From the proof and Lemma 4.1 (i) it is clear
that the result holds for all n > 0. Note that

To(mr, 7) = Io(mo, ©*) + / log(:l) 7*(8) dv(8).

We now deal with the second term of the above equation.

[ log(Z2E)m*(6) dv(8)

= J1 () *(8) dv(6
w0 (8)-f £(z,0)- 222D dy(z)

=20y (0) dv(6)

< Jlog(
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mo (82)mpx (2) du(z *
= flog(fn ( 3‘_.(6)( ) N( ))ﬂ' (0) dl/(@)

=l e 2)mae(2) (), 7).

The inequality above follows by the use of Jensen’s inequality. Combining we get

Iy(my, 7)) < Iop(mo, 7") — Io(/ Nro (s T)Mps(2) du(z), 7).

a

Theorem 4.3 If
i o e 2ae() di(e), 77) = 0,

then we have Ly convergence of the iterates to ©*, i.e.

lim ||[W"rg — 7| = 0.

n—oco

ProOF. Let {7, }mes be any arbitrary sequence. We shall prove that the above has a
further subsequence converging in L, topology to 7*. Let {7}, be the subsequence
with index set J = J — 1, with deletion of negative indices if necessary. From Lemma 4.2
and Lemma 4.1 (iii), we have for the subsequence {7, },,c 7, a further subsequence {7, }mer

and a v density h satisfying
(i) limm—comez ||mm — k|| = 0.
(1) imp—oomet ||Mn, — mi|| = 0 and m,,, — m; uniformly.
(iii) my and m,,, are continuous and strictly positive.

(iv) h and ,, are strictly positive.

In the sequel it will be assumed that the index always belongs to the set Z. Consider the v
densities 7, (0, z) and 95 (0, z). We have pointwise convergence for each z and 0 respectively,

from (i) & (ii) above. Since these are densities, Scheffe’s theorem yields

lim [ (2) = ()| =0, Ve

m—00,m
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Moreover, the above limit is uniform on compact subsets of X'. To prove this, let K C X be

a compact set. By using (ii) & (iii), we can choose a ¢ > 0 and N > 0 such that
me.(z)>c Ve e K, meZIm2>N.

By using the uniform boundedness of f(.,.), the above fact and some elementary manipula-

tions one can get

lim o1 72 (s 2) — ma(.,2)]| =0, uniformly on compacts of X.

m—00,m

For convenience, denote by @),, the measure

| 1rn(es2ymae(2) du(a)

and by @) the measure
/nh(.,:v)m,r*(a:) dy(z).
Next, we shall prove that
Tim [|Qm — QI = 0.
Fix an ¢ > 0 and let € = ¢/4. Let K be a compact set such that m.(K) < €. Choose N

large such that
”n‘lrm('ax) - nw‘('vx)” < el Vz € K,Vm > N.

Then for an arbitrary set A C © and m > N,

|Qm(A) — Q(A)|

|/ N (A 2)Mre(2) dpp(2) — [ 0(A, T)mne () dpp(z)|

| [ e (A, @) (2) dp(2) — [5 mi(A, T)mae(2) dpp(z)|

+ | e T (Ay 2)ms (2) dpp(@) — fge Mi(A, T)mae(z) dp(z)]
Jic 1 (A, ) — (A, @) M (2) dps(z) +2- €

Jic 1M (- ) = M4 (s @) [[me () dps(2) +2- €

3-€ <e.

IA

IN A

IA
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Hence we have L, convergence of Q,, to Q. But this and the hypothesis of the theorem,
along with the lower semicontinuity of the divergence w.r.t. the total variation distance,
Vajda (1989), implies that

Q) =02 [m(sa)me(a) du(a) = =" [4].

But, this implies that

e (2)

h(6) [ f(2,0)"2% du(a) = x°(6) [v).

mi(z)

Hence,

2*((00)) _ / f(:z:,@)% du(z) > (/ f(x,e)gﬂ’i((?) dp(z))™.

The last inequality follows from Jensen’s inequality. The above inequality implies

[ #(z.9) )

(0)
Integrating the above w.r.t. #* measure yields one on both sides. Hence this implies that all

mh(

z)
@ du(z) >

(7]

along the inequality was an equality, for almost all v. This implies mq+ = ms [u]. Hence,
W (h) = 7*. But, since {W(mm)}mer is a subsequence of {7 }mes, by L1 continuity of W

there exists a subsequence with L; limit 7*. Hence,

lim ||W"rg —7*|| = 0.

n—oo

a

Theorem 4.4 Under the conditions (a)-(e),

lim ||W"r — 7*|| = 0.

n—eo
PROOF. From condition (e) and Theorem 4.2, Io(m,, 7*) is non-increasing in n. This implies
the existence of the limit of Iy(7,,7*) as n — oco. Let this limit be ¢. Now c is either strictly
positive or zero. If it is zero, then we are done, as convergence in the Kullback-Leibler

distance implies L; convergence. If it is positive then we get from Theorem 4.2 that

lim Jo / trn (oy @) mne (2) dpp(z), 7%) = 0.

n—r00

This, by Theorem 4.3, implies L; convergence of the iterates. Hence the proof. O
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