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Abstract

In the literature on robust Bayesian analysis which deals with uncertainty with
respect to the prior, it is usual to model this uncertainty in the form of a class of priors.
It is then natural to ask under what simple conditions on the class does the normalized
posterior converge in some sense to a normal distribution uniformly over the class of
priors. We observe such a simple sufficient condition and discuss its utility in defining
classes of priors when one has vague knowledge about his prior. Examples will be
discussed where robust Bayesian analysis can be easily done with such asymptotically

well behaved classes.
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1 Introduction

The theory of Bayesian Robustness involves assessment of the sensitivity of the posterior

measures of interest to uncertainty in some or all of the elicited quantities. It is common in
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the area to restrict oneself to uncertainty in the prior. In this case one usually embeds the
best guess prior in a class of priors, which may or may not be topological in nature, and tries
to find the range of values that the posterior measures of interest assumes when-the prior
is allowed to vary in the chosen class. Common such classes are the epsilon-contamination
class with unrestricted or restricted contaminants, density ratio classes and quantile classes.

It is shown in this paper that if we model prior uncertainty by some of the above men-
tioned classes, the range of the posterior measure of interest might not converge to zero,
even as we let the sample size to grow to infinity. We give a simple condition, which when
satisfied by the class of priors, guarantees convergence of the range of posterior measures to
zero with increasing sample size.

Specifically we consider the case of posterior credible intervals. The asymptotic behavior
desired not only depends on the class of priors, but also on the likelihood and the loss
function. Here, as usual, we restrict our attention to squared error loss and we assume
that the likelihood satisfies the usual regularity conditions. Under such assumption we
observe that the proof of asymptotic normality of the posterior given in Walker (1969) can
be modified to yield a simple condition for the classes of priors to satisfy in order to get the
desired asymptotic behavior of the ranges.

We note that, for the case of the density ratio neighborhood, C(p1, p2),

Clpr,pa) = {2 pa(8) < w(0) < pal0),¥0; [ m(df) < oo},

where p; and p, are two continuous functions, the range of the posterior probability of , say,
the 95%, posterior confidence interval under a fixed prior in C (p1,p2) tends to 0.95, if and
only if p; and p, are identical at the true parameter. The above fact can be derived from
results in De Robertis (1978). Hence the density ratio neighborhoods are too big to give us
the behavior we desire.

On many occasions it is difficult to come up with the best guess prior. In these cases
one has very vague knowledge about the prior and the classes should contain reasonably
flat priors. It is clear that an attempt to ignore the robustness question and the use of

non-informative priors has it’s own perils and so does using small classes of improper priors.



In Pericchi & Walley (1991) a strong case is made for the use of the class of all double
exponential distributions, with the scale parameter bounded away from zero by a constant,
when there is very little prior information. One of the properties of this class is that it
is translation invariant. This class is reasonably tight to allow the range of the posterior
probability of credible intervals to converge to a singleton. In fact it is, in some sense,
the family with the sharpest tail among all translational invariant families with the above
property. We suggest some other classes, which like the above, are translation invariant and

which behave in the desired manner.

2 Results

Let © denote the parameter space, which we assume to be a subset of the real line.
We denote the sample density w.r.t. a o-finite measure u, by f(z, ), when the parameter
value is §. In the sequel we deal only with priors which are absolutely continuous w.r.t. the
Lebesgue measure on the real line.

The proof of the following result is based on the proof of asymptotic normality of the
posterior given in Walker (1969). The set of needed conditions is split into three sets of
which the sets A and B are identical to that of Walker(1969). These latter conditions are
given at the end for the sake of completeness. Condition C is given below.

Condition C
The class F satisfies the condition that for each fixed 6y in © and ¢ > 0, there exists a
neighborhood N(6p) around 6y such that

m(6)
7srl€1§>:|7r(00) —1|<e V@€ N().

Theorem 2.1 Suppose that the conditions A-C hold. Let 6y be an interior point of © and
let the data X1, Xs,..., X, be i.i.d. with density p(z|0o). Let o, be the positive square root of
—l/LZ(én) whenever this exists. Then, for real constants, a and b, the posterior probability
of the interval 9n +bo, < 0 < én + ao,, converging in Py, probability to the standard normal

probability of the interval (a,b), uniformly over the class of priors F, as n — oo.



PROOF. An outline of the proof is given in the last section. O

Lemma 2.1 Under the same conditions as the above theorem,

sup [ |m1(0]gn) — m2(0lzn)|d0 — 0
7\‘1,7[‘26.7:

in Py, probability.

PROOF. The proof of this stronger statement follows in the same way as that of the above

theorem. O

Remark 2.1 The above result is similar to one in Ghosh et al (1992). They prove almost

sure convergence, unlike our weaker, in “probability” convergence.
Lemma 2.2 If the class of prior densities, F, is contained in the set of densities
{r: |%,| < K} for some K > 0,
then F satisfies condition C.
PRrOOF. By a Taylor series expansion,
[7(8) — 7(80)] < 10 — o] - [<'(6%)] < K [0 — Go| (6",
Using the gradient condition in the above yields,
[7(6) = 7(60)] < K |0 — ] m(00) exp{ K [0 — 0|} < K |0 — G| m(80) exp{ K |9 — o]}

It is clear that, by choosing a positive § such that K §exp{K 6} < ¢,

— 1] < € V 0 satisfying |6 — 5] < 6.
O

Remark 2.2 It is interesting to note that, under such a condition on the prior and some
conditions on the tail of the likelihood, it was shown in Mukhopadhyay and DasGupta
(1993) that if 7,(6) = Im(Z), then the posterior converges uniformly over the sample to the
likelihood as ¢ — oo0. The convergence is in L,, but they also show that uniform convergence

is possible if we assume further conditions on the likelihood.
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Example 1: Let F be the class of all double exponential densities with arbitrary median
and scale parameter which is bounded away from zero. That is, for some ¢ > 0,

—16—n|
e o

F={r:7(0)= ,o0>cpu€R}L

This class would satisfy condition C, in view of Lemma 2.2. Similarly, the class consisting
of Cauchy densities defined in a similar way,

0.2

"(oTF (6= w2)

F=A{r:7(0) = o>c, p€RY},

would satisfy condition C. The above two facts can be proved by checking that the gradient
of the densities in each case is bounded by a finite constant, which would depend on c,
uniformly over each class, and then appealing to the above lemma. The former class was
considered by Pericchi & Walley (1991). O

The above classes have the property that they are translation invariant. This is a nice
feature for a class to have, when you are trying to model very little prior information on
the parameter. The gradient condition of the lemma says that the sharpest tails allowed are
exponential. In a sense, these families are extremal. Note the lemma gives only a sufficient
condition. So one could possibly take any density function satisfying the above gradient
condition, create a location scale family and bound the scale parameter away from zero to
obtain a translation invariant family with the desired asymptotic behavior.

Note that the condition in the above lemma is global whereas condition C is local in
nature. Below we prove that a suitably defined sub-class of the normal family satisfies
condition C, whereas the condition of the above lemma is clearly seen to be violated.

Example 2: Consider the class of densities, F, defined as

_(9_“22
e 20 2 2
o I.u_tu’OI<K'0'a0- >C},

V2o
where K and c are some real positive constants. This class was previously considered by
Perricchi & Walley (1991). We shall below check condition C directly. Fix 6y € ©. Let
N(6p) be a 6 ball around ;. We now show how to choose the value of §. Note that, for

F={r:7(0) =



™ =N(p,0%) € F and 6 € N(by),

|7(6) — 7 (6o)]
< 18— 60| - x'(6%)| = 16— 6o - w(67) - 3

= |9_(90|.19;_;#l.7r(90).%%
by application of a Taylors series expansion. Note that
w(0%)/7(bo)
= eXp(—go*—_”%‘%—_”ﬁ) < exp(|0* — bl - [19"—0ol + Lo~ ul])
exp(5- [% n |9o—uoa-i;u Ko ])

< exp(6- (K + % + |9o—cuo|))_

IN

Combining these inequalities yields

|7(6) — 7(6o)]
< 6 (K 4 lomtolty  exp(5- (K + £ + 1o=talyy . 7(6,), V8 € N(by).

It is clear that 6 can be chosen to make §-(K + Je"—“"”—) -exp(6-(K + 5% + Ja"—‘“’l)) arbitrarily

small. Hence we see that this class satisfies condition C. O
Remark 2.3 In Berger (1990) the class I'c, defined as
I'c = {N(u,0?) distributions : —0.2 < 4 < 0.2 and 0.7 < ¢% < 1.3},

is mentioned as a useful conjugate class for a normal likelihood when it is known apriori that
the median and quartiles are 0 and % 0.675, respectively. As seen in the above example, this

class would give the desired behavior asymptotically.

Lemma 2.3 Let F be a class which satisfies condition C and let C(F) denote the convex
hull of F. Then C(F) also satisfies condition C. Further, if F can be indexed by a parameter,
say v € T, then the set G defined as

G={n:n= /m dP(v), P a probability on T},

also satisfies condition C.



PrROOF. We shall only prove the second statement. Note that

|y — 1

1(fo)

- |jf_ﬂ_@dﬂ _1 L («}(m—m(oo)) 4P())
my(60) dP(7) 7 (60) dP(7)

< f|“:(9;—7w(90)l PO~ 7|1r0 8)—m (60!

= [ 7y(60) dP(v) S SWPyer T G

As the class F satisfies condition C, we see from the above that so does G. O

Example 3: Let F be any class which satisfies the condition C. Then one can define an

e-contamination class around a base prior, say 7y, with contaminants in F as
Pr={r:m=(1-¢m+enneF}

If we assume that the prior 7 is continuous and positive, then it can be shown that the above
class also satisfies condition C, by applying Lemma 2.3 twice. Trying to find the extrema
of posterior quantities w.r.t. the above class reduces to the problem of finding extrema of

expressions of the type
A+ [édn
B+ [¢dy

as 7 varies over J, where A,B are constants and ¢,) are functions of the parameter. For
example, in the mixture case, when the index takes values in R", the problem reduces to an

n-dimensional extremal problem. O

3 Proof

Condition A

1. O is a closed set of points.
2. The set of points {z : f(z|@) > 0} is independent of §; we denote this by X.

3. If 6,,0, are two distinct points of O,

w{z : f(x10,) # f(x10,)} > 0.



Let z € X, §' € ©. Then for all 6 such that |§ — 6’| < §, with § sufficiently small,
|log f(|0) —log f(x|¢')| < Hs(z,6"),
where }E%Hg(w,H') =0 and, for any §, € O,
lim [ Hi(z,0) (zl0s) dp = 0.
If © is not bounded, then for any 6, € © and sufficiently large 7,
log f(z]0) —log f(z]6,) < Kq(=,0,),

whenever |8] > 7, where

lim [ K,(2,0,)f(cl8,) du < 0.

Condition B

Let 8, be an interior point of 0.

1.

2.

log f(z|6) is twice differentiable with respect to 6 in some neighborhood of 4,.

Let

160) = [, flGped

where f, denotes f(z|6,). Then 0 < J(6,) < oo.

ofy . _ [ f
/xaaod“_/x ap2 =0
If |6 — 6, < &, where ¢ is sufficiently small, then

0%log f(z|0)  0*log f(zl6,)

I 962 803 | < M5($700)7

where

lim [ Ms(z,0,)f(al0,) du = 0.



OUTLINE OF THE PROOF OF THEOREM 2.1: It is clear that the behavior of the priors
outside a neighborhood of the true parameter point, say 6y, does not matter. This is because
of the relative exponential decay of the likelihood outside the neighborhood. In the neighbor-
hood, by using Taylor series we know that the likelihood behaves as a normal density with
the mean at the MLE. It is in this neighborhood that we need to replace the prior density
by a constant, that given by the density value at 5. It is here that we need the Condition
C. The probability statements involve only the measure given by the p-density f(-|fo). The

proof is otherwise the same as that given in Walker (1969). O
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