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Abstract

Suppose that one has a random sample from a survival function of the form (1 —
Fo)(1 — G) where Fy is known and G is unknown. We study the problem of Bayesian
estimation of G in this paper. It is known that the GMLE of G and the Bayesian
estimator, using the Dirichlet prior for G, are inconsistent for estimating G when
the distributions are continuous. To derive consistent Bayesian estimators we, under
the assumption that G is absolutely continuous unimodal distribution, put a prior
on G which concentrates on absolutely continuous unimodal distributions by using
the Dirichlet as a prior on the Khinchine measure. It is shown that in this case one
can show consistency for a large class of sampling distributions, the class depending
on the parameter of the Dirichlet prior. We discuss an importance sampling method
for computing the estimate. An example is discussed where this estimator compar.es

favorably with another estimator from the literature.
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1 Introduction

Let us consider the problem of estimating the distribution function, given a random
sample, under the constraint that the true distribution function is in the class of all distribu-
tions uniformly stochastically smaller than a known given distribution. For two distribution
functions, F' and G, on [0,c0) we shall say that F' is uniformly stochastically smaller than
G and denote it by F <(4) G if (1 — G)/(1 — F) is non-decreasing on the support of F.
This problem is of interest to us as in our problem, we are basically restricting the sampling
distribution to not only being uniformly stochastically smaller than Fy but also that it is of
the specific form FyG, where G is some distribution function and G represents its survival
function. It is worth noting that, in the definition of uniformly stochastically smaller, if one
further imposes the condition that the ratio G /F is not only nondecreasing but approaches
infinity as F tends to zero, then we are basically requiring F' to have the above form.

There is some literature on estimating the distribution function under a constraint of
uniform stochastic ordering. The assumption that Fy is known is reasonable when the life
testing is done in a controlled environment which permits it’s estimation with sufficient
accuracy. It was shown in Rojo and Samaniego (1990) that the nonparametric maximum
likelihood estimator, NPMLE, for H is inconsistent under the constraint H <(4) Fp, for
Fb increasing and continuous. Theré it was shown that the NPMLE for H is of the form
1 — Fy- H,, where H, is the empirical distribution function, which converges to the wrong
limit 1 — FuH, instead of H.

In Shyamalkumar (1996), it is shown that using the Dirichlet as a prior for G results in
an estimator which is inconsistent for estimating G, when the distributions are continuous.
The problem was that the Dirichlet puts all its mass on discrete distributions. In the third
section we try to find a Bayesian estimator of the survival function when one restricts G
to the class of unimodal distributions. We use the method of Lo (1984) to do this, i.e. by
making use of the Khintchine theorem. The derivation of the estimator does not pose any
problem but its form is pretty unyielding to standard theoretical analysis. Moreover, the

consistency of the posterior derived using such a prior is not known, beyond the Doob (1949)



result. We give a proof of the consistency for a certain class of distributions. Moreover our
condition for consistency is very simple. One way of looking at our results is that, if one
knows an upper bound on the tail of the true survival function, then one can use this bound
to come up with a parameter for the Dirichlet prior such that posterior consistency holds
for all survival functions which satisfy the upper bound. The other way is that, if we use
a certain parameter for the Dirichlet prior, then one is guaranteed consistency for all the
distributions which satisfy a certain upper bound (a function of the parameter) on their tail.
The first way of looking at it is very Bayesian in some sense. If you have prior knowledge,
then incorporating it in the prior assures better behavior of the estimator. The proof is long
but straightforward though the pre-requisites may be high.

It can be seen that we are in fact working with a prior on densities induced by convolving

the distributions from a Dirichlet with a kernel of random width, K(z,7) given by

0 n<x

K(SE,‘I]) = Fb!z!—zfo!a:! >
fo(z) + p N2>z

where Fp is a distribution on (0,00) satisfying certain conditions, which are satisfied, for
example, when Fj is IFR with continuous density. In this case it is shown that for suitable
choices of the parameter of the Dirichlet prior we have strong local matching for a large class
of likelihoods. From this we deduce strong consistency for all likelihoods for which the strong
local matching is attained with the prior under consideration. This answers, partially, some
open questions posed in Barron (1986). We believe that such results could be proved for a
more general class of kernels, by following a similar approach, as is adopted in this paper.
This generalization would be carried out elsewhere.

In the fourth section, we discuss a computation scheme for the estimator. Though the
scheme is base on that mentioned in Escobar (1994), we have to make some important
modifications because of the form of our integrand. One such is the choice of the importance
sampling density and the other is working after ordering of the data vector, Z. We explain

these with an example and compare our estimate with that of Rojo and Samaniego (1993).



2 Pre-requisites in Bayesian Nonparametrics

2.1 Dirichlet Process Prior

The Dirichlet process prior is a prior on the space of probability measures on a measurable
space. Let X be a set and A be a sigma field of subsets of X'. According to the definition in
Ferguson (1973), a Dirichlet Process with parameter o, denoted by D,, whe re « is a finite
measure on (X, .4) is a random process, P,

indexed by elements of A with the property that for every positive integer k, and
every measurable partition {Aj,...,Ax}, the random vector (P(A;),...,P(Ax)) has a k-
dimensional Dirichlet distribution with parameter vector (a(A;), ..., a(Ax)).

It is worthwhile to know that in the case when X is the set of natura 1 numbers and A is
the power set then the Dirichlet process prior is same as stick breaking with the proportion
of successive breaks being distributed as independent Beta distributions with parameter
depending on the parameter of the Dirichlet prior.

One of the most important results on the Dirichlet process prior is the following from

Ferguson (1973). This is what makes it mathematically tractable for a Bayesian.

Proposition 2.1 (Ferguson) If P is a Dirichlet process with parameter o, and if given
P, Xi,...,X, is a random sample from P, then the posterior distribution of P given the
random sample is also a Dirichlet process but with parameter a+3 6x, where 6(z) represents

a point mass distribution at x.

Now we give an alternative constructive definition of a Dirichlet process prior given in
Sethuraman (1994). The following definition is simplef and the existence of the process fol-
lows immediately with topological assumptions on the measurable space unlike the Ferguson

definition.

Proposition 2.2 (Sethuraman) Let Y,Y5,... be i.i.d. with a Beta distribution, B(M,1),

M >0, and X1, Xs,... be i.i.d. from ag. Both the Y and Z sequences are independent. Let
-1

P := Y P,6(X;), where P, == Y; and P; := (1 —Y;)TL Yi, § > 1. Then P is a Dirichlet
1

process with parameter M ay.



We end this subsection by giving a fact about Dirichlet process priors which we shall

need in the derivation of the estimator we seek.

Fact 2.1 The joint marginal distribution of X!s is given by the following.

X1 ~ Qg
i1
a+ Y bx;
=1 .
Xilea---,Xi—l Nm forz:2,...,n.
PROOF. Follows from elementary facts about Dirichlet process priors. O

There are a host of other important and interesting results on the Dirichlet process prior
available in the literature. We shall, as and when we need, mention some of them at the

appropriate places later in the paper.

2.2 Posterior Consistency

Let (X, .A) be a measurable space and P be the set of all probability measures on (&, .A).
Let {Ps : 6 € O} be an indexed class of probability measures.

For a probability measure P on (&X', 4) we shall denote by P> the countable product of
P, a probability measure on (X¥*°, A.). Now let 7 be a probability measure on © with some
associated sigma-field. Let 7, denote the posterior after observing the first n observations.

We would say that (6, 7) is consistent if
To(Ng) — 1 a.e.(P5°),

for every neighborhood Ny of . When we talk about posterior consistency we must assume
some underlying topology on the parameter space. It is natural to endow the parameter
space with a topology which is induced by the mapping § — P; where the topology on
{P; : 8 € O} is the subset topology from that on P. So it is clear that we should be

looking for a reasonable topology on P so that consistency is meaningful. In the usual case
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when (X, .A) happens to be a Polish space, i.e. a complete separable metric space with its
associated Borel sigma-field, it is natural to endow P with the weak topology, which also
happens to be a complete separable metric topology. If one achieves posterior consistency
fo r this weak topology it would be meaningful and moreover it is weaker than all the other
natural topologies, such as the total variation, on P. In other words with the weak-topology
it is easiest to achieve meaningful consistency. Consistency with weak-topology would imply
classical consistency of Bayesian estimators of all functions of § which would be bounded and
continuous in the above described induced topology. In this paper we shall only be working

with the consistency based on the weak-topology.

3 Restricted Bayesian Estimator - Continuous Case

3.1 Introduction

In this section we try to construct a Bayesian estimator which has good asymptotic
behavior in the sense of consistency. To do this we restrict the support of the prior on
G. The restriction we impose is that of unimodality. To put a prior on the space of all
unimodal distribution we adopt a scheme of Lo (1984). To describe this scheme we recall
a result by Khintchine, see Feller (1965), which states that any unimodal distribution can
be represented as a scale mixture of uniform distributions. Note that the above is a type
of Choquet representation theorem. For a unimodal distribution we shall call the mixing
measure in the above representation as the Khintchine measure associated with the unimodal
distribution. Note that an unimodal distribution is absolutely continuous w.r.t. Lebesgue
measure on Rt except possibly for a mass at zero. The scheme of Lo (1984) is to put a
Dirichlet prior on the Khintchine measure to arrive at a probability measure on the set of all
unimodal distributions. Note that almost surely w.r.t. the Dirichlet prior (with a continuous
measure as parameter) the point zero is assigned zero mass and hence almost surely all
realizations from our prior are absolutely continuous unimodal probability measures. This

prior measure that we assign to G shall be denoted by D%.



Below is the summary of the model we shall be working with in this section.
o {Y;}7 a random sample from Fy.

e P has a Dirichlet law with parameter o denoted by D,. a is assumed to be absolutely

continuous w.r.t. Lebesgue measure with density o'.
e Conditioned on P, {n;}} is a random sample from P.
e Conditioned on {7;}7, X; has a Ugy,,) law for ¢ = 1,...,n, {X;}} independent.
o Z;:=X;A\NY;,forz=1,...,n.

The problem is to estimate the law of X denoted by GG, which is assumed to be unimodal
with no point mass at zero.

Before we go further into the technical details we shall try to motivate why we would
expect a more sensible behavior of the estimate of G with this type of restriction and prior.
For this we need to recall some facts about the I divergence and the total variation metric,
which we give below.

For two probability measures, P and Q, on a measure space, we shall denote by Iy( P, Q),

the Kullback-Leibler I divergence between the two measures, defined by,

dQ
I(P,Q) = [1og (%) d
o(,Q) = 105 (32) 0
where the densities are with respect to some dominating measure. It is easy to see that
this divergence is invariant w.r.t. to the choice of the dominating measure. Here and in the

sequel we understand

a

0) = 400, 0-(4o00) =0,

log0 = —oco, log (

where a > 0. I(P, Q) is always non-negative and vanishes only when P = Q. If Q </ P then
In(P, Q) = +oo.
Let us recall that the total variation distance between two probability measur es P and
Q is given by
1P~ Qll =2 sup |P(4) - Q(4)|
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where the supremum is taken over all sets in the o-field on which the probability measures
are defined. The mysterious factor 2 is included to make it equal to the L; distance between
the densities of the two measures with respect to any dominating o-finite measure. Note
that the L; metri c is invariant to the choice of the dominating measure.

The below given information inequality was independently discovered by many in the
late 1960’s; among them being Csiszar (1967), Kemperman (1967) and Kullback (1967). We
refer to them for its proof which follows essentially from the monotonicity property of the

I- divergence.

Lemma 3.1 Let P and @ be two probability measures. Then with the above notations we
have
(P —eQm?

L(P,Q) 2 "

By symmetry the above is true with Iy replacing Iy.

PROOF. See Csiszar (1967).
0

As we shall see later one of the factors that guarantees consistency of the posterior is
the richness of its support. Now the support of a probability measure is dependent on the
topology one prescribes to. The usual convention is to talk of the weak support, i.e. the
support w.r.t. weak topology on the space of probability measures. This is necessary and
sufficient to guarantee consistency when we are talking about the case of a finite population,
see Freedman (1963). But in other cases it can be grossly insufficient. The appropriate
topology as we shall see later is the one defined by the I divergence. Before we go further
let us give two definitions for the support of a probability measure on, say, (X, .A) which we
assume to be a Polish space, i.e. & has a complete seperable metric associated with it and

A is the Borel sigma field w.r.t. this topology.

1. The smallest closed set C' which has probability one under P is called the support of
P.



2. A point x € X is said to belong to the support of P if every open ball around z is
assigned a positive probability by P.

The above two definitions are equivalent when the topology is separable and metrizable, see
Parthasarathy (1967). But when the space has cardinality of at least the continuum it is easy
to see that the topology induced by the total variation metric is not separable. In this case
it can happen that under definition 1 the support does not exist. To avoid such problems
we shall in what follows use the second definition. We state a lemma below concerning the

support of the two priors mentioned so far w.r.t. the total variation metric.

Lemma 3.2 The total variation support of the D, is the empty set and the total variation
support of D%, when o has the whole of R as its support, contains the set of all absolutely
continuous unimodal distributions on RY. Hence, the support w.r.t. the Iy divergence of D,

is also empty.

PROOF. Let us prove the statement regarding the support of D first. Let Up be an ab-
solutely continuous unimodal distribution. As the weak support of the Dirichlet process
prior is the whole space of probability measures on R*, and as the mapping P — Up is
continuous with the weak topology on the left and the total variation topology on the right
(proved using Scheffe’s theorem), we have the desired result. Clearly, by the discreteness of
the probabilities from D,, we have to consider only discrete measures as candidates for the
support. But, by the representation of the Dirichlet given in Sethuraman (1994), we see that
neither does any discrete measure belong to it’s support. From the previous fact, Fact 3.1,
it is clear that the Iy divergence shall induce a stronger topology than the total variation and

hence a smaller support. This ends the proof. a

The above lemma along with the preceding comments explains in some sense the incon-
sistency observed in Shyamalkumar (1996) and gives us some hope for the the success of the
present approach.

We need a few more notations in this section which we list below. Below M is a measure

on Rt and A is a Borel subset of R*.



By M, we shall denote the measure M restricted to the subset A, i.e. Mu(B) =
M(ANB) for any Borel subset B of R*. By My we shall denote the measure M
restricted to A°.

By M,, for a € R", we shall denote the measure M restricted to [0,a]. By M,., for

a € RY, we shall denote the measure M restricted to (a, co).

For a finite measure M we shall denote by M* the normalized measure derived from

M.
For a finite measure M, M(a) := M([0,a]) and M(a) :=1— M(a).

By Up, for P a probability measure on IR*, we shall denote the unimodal distribution
with Khintchine measure P. We shall denote the density of it’s absolutely continuous

part by up.

hp is defined by

hp(z) 1= Fo(z)up(z) + Up(z) fo(z), for z € R*.
When P = 6,(-), we shall denote hp simply by h,,.

For {P,} a sequence of probability measures on some Polish space we shall use the
notation

P, = P,

to denote convergence of the sequence in the weak topology to P..

We state below an elementary result on the Dirichlet process which will be of critical use

when we prove the consistency of the estimator in the later sub-sections.

Fact 3.1 (Projection lemma) Let A be a Borel subset of RY. Let P be a probability from
D, ,, Q be a probability from D, ,. and p be drawn from Beta(a(A), a(A°)). Let P, Q and
p be mutually independent. Then the law of p- P + (1 — p) - @ is D,.

10



ProOF. The proof follows easily by working backwards. a

Before we proceed further with the above setup, we shall show below that in a similar
setup in the discrete case we do not have tail-free property of the prior, unlike the unrestricted
case. This shall also provide justification for the route we take to establish consistency.

We shall, in the remaining part of this subsection, assume that F and G are distributions
on {1,2,...} and we shall put a prior on G as a mixture of discrete uniforms, with the mixing
distribution having a Dirichlet prior with «, a finite measure on {1,2,...}.

First note that H = Fylg, where @ is given a D, prior. Now after some simple algebra,
one can see that

H{k} = Folk} - U(k) + Ugik} - Ff (k),

H{k}) _ Uo{k} | Fofk} Uafh)
HH k)~ U3(k) T () TG(R)

Now, as in the proof of the tail-free property in the unrestricted case, we fix §y := 0 and 6;

for ¢ = 1,2,... are independent random variables following Beta(a{i}, ioj af{s}). Then we
1
can write _
1—1
_ k oo 0.7 >](;I+1)(1 - am))
Ug(k) =111 - 80;) [1 - k-3 — :
0 k+1 J
j—1
k-1 0;( 11 (1 —0m))

Ug{k} = T](1-6;) i mah_

0 J
From the above it is clear that the independence that is required for the tail-free property

does not hold.

3.2 The Estimator

We shall in this sub-section derive the estimator of G which we shall denote by CA?U,n.
The loss function has the same form as in the previous section and hence the estimator

is the posterior expectation of the corresponding distribution function. Below we shall for
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an, n-dimensional vector, say V, denote by V_; the n — 1-dimensional vector with the i-th
coordinate of ¥ removed. We shall for v € R* and an n-dimensional vector V denote by

Y(u; Vi, V_;) the expression

n n j—1
f ]{mSU} [jl;ll hnj(Vj)] jl;ll[a(dnj) + k§1 by (dnj)]

n n Jj—1
JUIT by (Vi) 11 [ex(dm;) + 52 6, (dm;)]
7=1 j=1 k=1
Theorem 3.1 The Bayes estimator for G, denoted by éU,n, under the forementioned model,

is given by

a(u) > ¢(u7 Z;, Z—i)

+ =t , forueR*.

GU’n(u)=M+n M4n

PROOF. Let u be an arbitrary positive real number. Note that
Gun(u) = E(P(w)|Z) = E(E(P(u)ly, )|2).

Observe that, from elementary properties of the Dirichlet prior, we have
a(u)

PIRLES:
E(P(u)ln, Z) = E(P(u)|n) = TRyt

Hence we have

 M+n M+n
We note that {(7;, Z;)}T is an exchangeable sequence. Hence it is sufficient to find Prob(n, <

Gun(u)

u|Z) to be able to explicitly write down the form of éUn(u) Now by using Fact 2.1 we see
that the joint density of (Z,7) is given by

i—1

C(M,m) [T hn(dZ)loldns) + 3 65 (dnd)]l

=1 =1

Hence we get

sl ha(20) fl o(an) + 5, 8, (en)]

Prob(m < ulZ) = ~ — —
ST (20 fLfaldn) + 5 6, (an)

12



Note that the above is precisely ¥(u; Z;, Z_;) and the notation is justified because of ex-
changeability. From this the result of the theorem follows.

Remark 3.1 We note that as we let M approach zero the estimator converges to

=

hn(Z:)exo(dn)

hn(Z:)exo(dn)

Y

=H[

, foru e R*.

CenBC—e

I
1l
[

The above is precisely the Bayes estimate of I,<, when one is working with the parametric
model in which the distribution of Y is an uniform with unknown scale 5. The proof of the

above is easily accomplished by observing that the required limit is given by

i [ P(u) - 1_1:11 hp(Z;)Da(dP)

«®5)=0 | ¢ [T hp(Z)Da(dP)

i=

As one has weak convergence of the Dirichlet when one lets M approach zero, with the
limiting distribution assigning all probability to point masses with the distribution of the
point mass being o (see Sethuraman and Tiwari (1982)) and the integrands are bounded
continuous functions (actually, the set of continuity points has measure one w.r.t. the limiting
distribution) we have the proof. The interesting part is that the above can be consistent
only when the true Khintchine measure is degenerate. This is easily seen by the result of
Berk (1966) which implies that the above converges to I.<, where n* is the unique value of
n for which Iy(h,, h°) is minimized, where A° is the true distribution. Of course one has to

have the existence of a unique n*.

3.3 Consistency of the Estimator

In all that follows whenever we talk about a probability measure which is used as a
Khintchine measure then we shall assume that it has no mass at 0. In this sub-section we
shall need some assumptions which are given below.

Assumptions

13



(A1) Fp has a strictly positive continuous density, denoted by fo, such that for some K > 0

we have

z-Fo(z) |, forz>K.
%(f)l 1,  forz>K.

(A2) o is such that it’s support is the whole of R*.

Remark 3.2 Note that (A1) holds for all IFR distributions with continuous densities. Note

that every distribution with logconcave density is IFR.

Remark 3.3 We shall assume that Q(a) > 0 for all a > 0, as otherwise consistency of the
posterior can be achieved easily (because of compactness) under assumption (A4) given later

in this sub-section.

Lemma 3.3 Under (A1) and P any probability measure the following are true.

hp(w)_g P(:czfo(z), V z2>K (1)
Fo(z)- P(z

hp(z) > ——w—) V o> K. 2)

PROOF. We first note that, for any probability measure P, we have
Up(z) = P(z) — = - up(z).
Using the above we have
hp(z) = [Fo(z) — 2 - fo(z)lup(e) + P(2) - fo(z). (3)

Now by (A1) we have by calculus that

Fo(z) —z- fo(z) <0, Vz>K. (4)

Now using the above in (3) we have (1). For the lower bound note that

up(zx) :/%dP(a) < P(:c)

z

14



Using (4) and the above in (3) we have (2). O

Lemma 3.4 Let P and () be two probability measures and ¢ > 0. Then there exists a
B(Q,¢€) > K such that, if for a > B(Q,€) we have

Q(f'f) -z - fo(z)

—log P(a) < €/2 and P(z) > Fol) , Vz>a
and
P(a
(o) i= gy hau(e) + (), fora € R,
then

/ llog (’;LQ((;”)) )]+ ho(z)dz < e.

PROOF. Choose B(@,¢€) > K such that

[log (};LQ((;))]JF <e¢ Vz< K,a> B(Q,c).

This is so because

ho(z) hq.(7) + ho,.(z)
<

ha(z) = L& pg,(2)
>
zel[%fK] ho.(z) > 1[%f ]fo(a:)UQa(K) >01 withe
sup hge(z) < Oa )+ sup fo(z)Q(a) L 0 with a.
z€[0,K] a z€[0,K]

The dependence of B on only ) and € can be seen from the above. By Lemma 3.3 we have

ho(z) < Q(z)fo(z), ¥ z>K
z) - Fo(z

(z
hp(x)>¥ V z>K.

Now for = € (K, a) we have by using the above that

ho(z) _ _ hqu(z) tho(z) _ bk

ha(2) ~ P ho,(2) + hen(e) — L - ho, (o) + LB =

Eis
O
4
Qi
O
S
&

N\
|9
&

QG @ z (e)

15



Similarly for z > a we have

hoe) _ hewe(e) _ Q)ho(@) _ |

ha(z)  hpo(z) = P@FE@

Hence we have

e ()] s o (35

Lemma 3.5 Let

f hQ(fC))
T5(P) := /lo ho(x)dz
for two probability measures @ and P and some positive real a. Let Q be such that Q(a) > 0,

@{0} =0 and hq is bounded. Let {P,} be a sequence of probability measures such that {hp,}

is uniformly bounded away from zero on [0,a] and such that P, = P, with P,{0} = 0.
Then

lim T3(Pa) = Tg(Po).

n—r00

ProoF. Note that, by definition of weak topology, we have

Pn = P ~ lim hp,(z) = hp, () as..

The above convergence, by Scheffe’s theorem, also takes place in L,. Using boundedness of

zlog(z) on compacts and writing

T3(P,) = / (42 tog (724) (o)

n

we have the lemma by uniform integrability.

Lemma 3.6 Let () satisfy the conditions of Lemma 3.5 and let a > B(Q,¢/2), B(Q,€/2)
from Lemma 3.4, be such that

~log P(a) < €/4 and P(z Q(m)_:cfo(m)
log P(a) < ¢/ and P(a) > s

, Ve >a,

16



for some € > 0. Then for R, a probability measure on R*, if we define
h;(R,z) := P(a)hg(z) + hp,.(z), Vz

and

So p(R) = /alog (h;lz)}(;,ca)v)) ho(z) dz,

we have Dy, {R : S§ p(R) < €} > 0.

PROOF. By Lemma 3.4 we have for a > B(Q, ¢/2) that

/ [log (’;LQ((;”)) >]+ ho()de < £

Now note that, using Lemma 3.3, we have

R:(R,z) > hp (z) > Up.(a)- inf fo(z) >0, Vz €l0,q].

z€[0,a]

Hence h*(R,-) is uniformly bounded away from zero on [0,a], uniformly in R. Using
Lemma 3.5 we see that Sj p(R) is weakly continuous in R at Q);. Hence there exists a

weak open ball, say N, around @7, such that
Sop(R) <€, VReEN.

But since o, has support as [0, a], we have the whole space of probability measures on [0, a
to be the support of D,,, see Ferguson (1973). The last fact implies that D,,(N) > 0. Hence

the result. ]

We shall need the following assumptions in the following.
Assumptions
(A3) Let @ be a probability measure such that @Q{0} = 0 and

Fo(t) ex —2log | log @ ()|
t- folt) p[ Go(?)

Q) < ], vt > K.

(A4) Let Q be a probability measure such that hg is bounded.

17



Proposition 3.1 (Doss & Sellke) Let Q) satisfy (A83). Then for almost every P from D,,

we have
b falt _
Q(t)ﬁ'o(t)f()( ) < P(t), for large t.
PROOF. Follows from Doss and Sellke (1982). ]

Lemma 3.7 Define, for an a € RT and probability measure Q, an operator on the space of

probability measures on RY by,

WG (P) = 7 [log (Zzgz;)r ho(z) dz.

Then for a given € > 0 we can choose a K; > 0 such that

Da {P : P(z) > Q(x)ﬁix.)fo(z), YV z>a; Pla) <e WH(P) = 0} >0, Va> K.

PROOF. Now since the Dirichlet process is a measure on the space of probability measures
we have that

lim Do {P : P(z) < €} — 1.
Hence we can choose a Cy > 0 such that D, {P : P(a) < €} > 1 — ¢/2,for a > C;. Now by

Lemma 3.3 we have

ho(z) _ Q) -z - fola)
hp(z) = P(z)- Fo(z) -
By Proposition 3.1 we can choose a C; > K such that

Q(z) - z - folz) ho(z)
R he(e)
Let Ky = maz(Cy,C2). Choosing K; to be the maximum of C; and C; we have the result.

DQ{P:P(w)Z <1, VwZa}>1—e/2, Va>C,.

O

Theorem 3.2 Let Q be such that it satisfies (A8). Then, for any chosen € > 0, we have
DQ{P : Io(hp,hQ) < 6} > 0.

Informally, the above says that hg belongs to the Iy divergence support of the law of hp when
P~ D,.
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PROOF. Choose and fix an € > 0. Let ¢ > 0 be such that —log(l — ¢') < ¢/4. Now by
Lemma 3.7 we have an a > B(Q, ¢/2) such that

Q)+ fola)
Fo(z)

Denote the set above by Ag .. It is clear that it is enough to show that

D, {P : P(z) > , Yz >a; Pla) <¢; Wi(P) = 0} > 0.

Do{P : T3(P) < €|Agae} >0, (5)
as

0 < Io(hp, ho) < T5(P) + WE(P).
Note that any P can be decomposed into (P, P, P(a)) for a € R*. From the definition of

a?’’ a®

Wg(P) it follows that it depends only on (P, P(a)). Hence it is clear that A, depends
only on (P, P(a)). Now by using the Projection Lemma, i.e. Fact 3.1, and Lemma 3.6 it
is clear that (5) holds. Hence the result. ]

Below we shall state a fundamental result upon which our proof for posterior consistency
depends. The result is implicit in Schwartz (1965). The statement we give along with the
proof, can be found in Ghosh & Ramamoorthi (1994).

Proposition 3.2 (Schwartz) Let U!s be i.i.d. random variables with common distribution
P. Let P belong to P, where P is a family of probability measures dominated by a o-finite
measure, and let Py be the true distribution. Supposing the prior © puts positive mass on
every Kullback-Leibler ball Bs around Py, namely w({P : Io(P,Po) < 6}) > 0, then the

posterior is consistent at Fy.
Lemma 3.8 Let Py be the set of probability measures defined by
{Hp : P a probability measure}.

Let Py be endowed with the topology induced by the weak topology on the space of probability

measures. Let T be the map

T: Pg—7P
HP—)P
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with the space of probability measures being endowed with the weak topology. Then T is a

homeomorphism.

PROOF. For all the facts about unimodal distributions used below see Dharmadhikari and
Joag-Dev (1988). First we shall show that P is identifiable. So let Hp and Hg be the same
law. By (A1) this implies that Up and Uq coincide. Now by the uniqueness of the Khintchine
measure the identifiability follows. This guarantees that 1" is well defined. T' is one to one.
That T is open follows from an elementary argument and application of Scheffe’s theorem.
Continuity of T follows from the fact that the set of all unimodal distributions is weakly
closed, (A1) and identifiability of the Khintchine measure. This completes the proof. a

Theorem 3.3 Let all the four assumptions mentioned above hold. Then the posterior for P

is consistent when the Z's are sampled from Hg.

PROOF. In view of proposition 3.2 it is clear that we only have to show the joint mea-
surability of hp(z) w.r.t. P and z. Note that for each fixed P the function hp(-) is right
continuous. For each fixed z > 0 the function hp(z) is continuous in P. Hence we have
the required measurability. So we have from the above that the posterior asymptotically
concentrates on any set of P’s such that the corresponding set of Hp’s forms a weak ball
around Hy. But from Lemma 3.8 it is clear that this is same for any weak ball around Q.

Hence the proof. o

Corollary 3.1 Let all the four assumptions mentioned above hold. Then the estimator in

Theorem 3.1 is consistent for Ug when the Z's are sampled from Hg.

PROOF. Let us define the map S, from P to [0,1] by

S.: P—[0,1]
P — Up(u).
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It is clear that this map is continuous with P, as usual, endowed with the weak topology
for every u > 0. That it is bounded, for every u > 0, is clear. Since, by Theorem 3.3, the
posterior is weakly consistent and @) assigns no mass to 0 we have by the definition of weak
topology that the posterior expectation of S, converges to Ug(u) for all u € R*. Hence the

result. ' ’ |

We note that for a unimodal distribution, Up, we have
P(z) = Up(z) + z - up(z).

Hence if one can get an upper bound on the rate of decay of a set of allowed absolutely
continuous unimodal distributions for G, then this could be used to choose a prior parameter
op such that consistency is guaranteed for any absolutely continuous unimodal G satisfying
this upper bound in its tails. We say could because to guarantee the above we need this

upper bound to be decaying faster than
Fg(.’t)

z - fo(z)
This factor would usually be polynomial as even for normal, which has a rapidly decaying
tail, the factor is of the order z72. We choose the parameter ap such that (A3) is satisfied
for all Q) we deem possible. Of course we also need that hg is bounded, which basically says
that ug is finite at 0 which is not a very restrictive assumption. An extension of the same
kind of argument would help relax this condition. So the results of this section, unlike Doob
(1949), guarantee consistency for a certain specific class of parametric values.

An advantage of being able to prove consistency in the above way is that the property of
consistency is preserved when we take mixtures of one such prior with any arbitrary priors.
This is because the Kullback-Leibler support of the resulting prior would be the union of the
supports of the constituents of the mixture. This is in contrast to proving consistency via

the tail-free property. Diaconis and Freedman (1983) gives many examples pointing out the

above.
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4 Computation of the Estimator

4.1 The Scheme

In this section we shall discuss the computations of the Bayesian estimator when we are
working with a Dirichlet prior on the Khinchine measure of a unimodal distribution. Note
that we are talking about evaluations of ratio of integrals of the type

n j—1
S gl ] (2] L foliny) + 5 (i)

s=1

UL o (20 1 o) + S 8 ()

s=1

Also note that the function k, is given by

ha(y) = ¥ W)vho(a) T
' foly) + PRl 5 >y,

Computation of this type of estimator was discussed in Lo (1984), Kuo (1986) and Escobar
(1994). We shall use an importance sampling scheme very similar to that given in Escobar
(1994). The difference in the scheme used there and here is that we are forced to use a
different importance sampling measure because of non-integrability of h,(y) with respect to
n (Lebesgue measure).

Our scheme, following Escobar (1994), is as follows: generate

oo } with probability—1°]
U =1 el + 5% (=)

and, for y =1,...,2—1,

i =75 b (2
! "’} with probability—%)
Ui =0 ol + 5 (29

Here, the ¢., are densities with respect to the Lebesgue measure of the importance sampling

measures. Now to compute the above integral, we shall generate M i.i.d. vectors (U, 1) and
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evaluate the sum
M n i—1
> Lipsa THUZ - A + (1 = U ol + 5 b (29)

M n i—
SIHUP - Adr) + (1= UP)H ) + 5 hop(22))

)

where
L) — hu(Z:) - «o(n)
AZ(n B ¢Zi(77) .

Now our goal is to evaluate Gy ,(u). Below, we give a Monte Carlo estimate of Gunlu),

MCEwy (Gua(u)) =

M n i—1
> #{knp <u} [HUP A (n)+(=U) Hilell+ 3 hym (2)}
1 1 1

i—1

M n

2 THUP-As () +(1=Ur Y Hlledl 3 oy (20))
1 1 1
Theorem 4.1 As M — oo, we have MCEM(CA?U,n(u)) — G’U,n(u), a.s..

PROOF. Proof is similar to that of Theorem 3 in Escobar (1994). O

The advantage of the above scheme is that it samples 1 near Z where the integral is con-
centrated. Moreover, note that because of the above form of k,(y) it is more efficient to use
the scheme after ordering 7 in decreasing order. Of course, the densities, ¢,, ,2 =1,2,...,n.,
must have support on [z;,00). All the usual requirements of an important sampling density
apply to the ¢,, ,7 = 1,2,...,n, densities. That is these must be easy to sample from and
their tails must be heavier than and, in general a good approximation to the actual sampling
density.

The above points will be illustrated more clearly in the example we discuss in the next

subsection.

4.2 An Example

We consider an example where Fj is chosen to be exponential with unit mean. The true
G is chosen to be folded normal with scale parameter equal to 4. We chose ag to be Gamma

with shape parameter equal to 2. This makes the prior mean of G to be exponential with
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unit mean. The true survival function H is shown in the following figure. Also plotted is
the prior mean of H. Note that we have chosen a prior which is markedly different from
the true. This was done deliberately. We sampled, using IMSL pseudo-random number
generation routines, a random sample of size 100 from the above given H. We then used
the estimator derived using the Dirichlet for estimation of H. To compute the estimate, we

used the above importance sampling procedure with ¢.(n) defined as

_Le<nyp(n)
bo(n) = | eCarenn 0 <Z=]

IjZ< }'p(ﬂ)
st 1 <7
where, p(-) is given by,
exp(—7) 0<p<1

(n) =
P n-exp(—n) 1<n.

We have chosen the above form for the importance sampling density in order that its tail
is similar to that of h,(n) - ao(n), as is its behavior near zero. Moreover, we see that the
A.(n) are bounded for our choice of ¢,(n). This was done to satisfy the recommendations
of Gweke (1989). Sampling from ¢,(n) is easy as it is either a truncated Exponential or
truncated Gamma. In the case of a truncated Exponential, we generated pseudo-random
numbers using the inverse distribution function and a uniform random variable generator.
In the case of a truncated Gamma, we used acceptance-rejection sampling and a Gamma
variable generator from IMSL.

One important step in the computation was the ordering of the data in decreasing order.
Since it is a one time procedure, it does not add much to the running time. This increases
the efficiency of the computation many times. The reason behind this is that, because of the
marginal of 7 being exchangeable, we can reorder and the reordering helps because of the
function h,(z) being zero for n < z and monotonically decreasing. This is also permissible
because of the fact that the the product,
h"]j(Zj ),

n
=1

J

24



appears in both the numerator and the denominator. In effect, because of the ]il 6n, (dn;)
term, by ordering we are eliminating sampling 7 from the region which neither cokn~tlribute to
the numerator nor the denominator.

The program code, to implement the above importance sampling scheme, was written
in FORTRAN programming language. The running time was just a couple of minutes for
M = 10000 and estimates for the distribution function at all points in the range [0,10] in an
interval of period 0.02.

|| was chosen to be 1.25. Infact, we tried varying ||| over a wide range. But for
exposition purpose we choose the value 1.25. It is clear that as ||| is increased the prior
concentrates on the prior mean and so the estimate would tend to it. This was also observed
in simulation. For the chosen value, see the following figure, the Bayesian estimator for H
is smoother and very closely matches the true. Also in the following figure is the plot of the
estimate, true and prior mean for the Khinchine measure associated with G. It is comforting
to see movement of the estimate away from the prior mean towards the true.

For comparison purposes we have chosen the estimator of H given in Rojo and Samaniego
(1994). As mentioned before, they consider estimation in the larger class of distributions
uniformly stochastically smaller than Fy. But since their estimator is of the form that we
consider in our problem, our choice of their estimator for purpose of comparison is reasonable.
Their estimate for H, Hpgs, is given by

2 = . H,(y
hase) = it i, {753 -

In the above definition we assumed that Fy has the whole real line as its support. Else,

define the estimate to be zero outside the support of Fy. This estimator for H beats the
empirical distribution function in the expected Kolmogorov distance. In the third plot we
have plotted this estimator along with the true survival function. For the particular choice
of |||, the Bayesian estimator seems to do better than the Rojo-Samaniego estimator for
H, and is also much smoother.

Finally we could use finite mixtures of the Dirichlet to estimate G with almost no change

in the computation procedure. See Escobar (1994) for more details.
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5 Concluding Remarks

In this paper we have studied the problem from survival analysis of estimating a sur-
vival function in a sub-class of distributions uniformly stochastically smaller than a given
distribution. In the case when we define the prior by using the Dirichlet prior for generating
the Khinchine measure of a unimodal distribution, we prove that the consistency is attained
for a certain class of unimodal distributions which can be defined by a bound on the rate
of decay of the tails. In the literature there exists no results on consistency of estimators
derived using Dirichlet in such a non-naive fashion. Is this the best one can do? Actually,
perhaps no. It should be clear that the condition on the Kullback-Leibler support is not
necessary. For example, if the Dirichlet is the prior on the sampling distribution function,
consistency is achieved for all parametric values, but the Kullback-Leibler support is empty.
Moreover, one can prove consistency by trying the following. There are two steps in proving
consistency of the posterior. The first is to prove that the integral of the likelihood outside
a neighborhood of the true vanishes exponentially fast. Since we are working with weak
neighborhoods, that is fine here. The other step is to show that the integral of the likelihood
in a neighborhood of the true does not decrease exponentially fast. This is where we used
the Kullback-Leibler support condition. We could have tried a different route in this step.
Indeed if 7 is the prior, then we need to find lower bounds on #{V N W,}, where W, is a
total variation neighborhood of the true and V is a weak neighborhood of the true. The
rate of decay of this probability as n approaches zero could help in proving consistency using
Schwartz (1965). Such an approach shall be pursued in the future.

The computation of the estimator was reasonably fast and the code is quite small and
simple to write. The estimator compares favorably with the estimator of Rojo-Samaniego.
Of course, they do not assume unimodality. The example showed that it performs well even
if the prior is wrongly centered. And of course it has the advantage of allowing incorporation

of prior beliefs in an easy fashion.
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