WEAK CONVERGENCE OF STOCHASTIC INTEGRALS AND
DIFFERENTIAL EQUATIONS: II
INFINITE DIMENSIONAL CASE

by
Thomas G. Kurtz
University of Wisconsin-Madison
and

Philip E. Protter
Purdue University

Technical Report #96-16

Department of Statistics
Purdue University
West Lafayette, IN USA

May 1996



WEAK CONVERGENCE OF STOCHASTIC INTEGRALS AND
DIFFERENTIAL EQUATIONS II: INFINITE DIMENSIONAL CASE

by
Thomas G. Kurtz and Philip E. Protter
University of Wisconsin-Madison Purdue University
Abstract

This is a semi-expository paper which nonetheless contains many new results. We
treat the topics of stochastic integration, weak convergence, and stochastic differential
equations in an infinite dimensional setting. Our results unify several approaches, and
we give examples illustrating their power. The unification also leads to new results not

covered with the usual techniques.
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1 Introduction

In Part I, we discussed weak limit theorems for stochastic integrals, with the prinicple result
being the following (cf. Part I, Section 7):

Theorem 1.1 For each n = 1,2,..., let (X,,Y,) be an {F*}-adapted process with sample
paths in Dypm yym([0,00) such that Y, is an {F]'}-semimartingale. Let Y, = M, + A, be a
decomposition of Y, into an {F}}-martingale M, and a finite variation process A,. Suppose
that one of the following two conditions hold:

UT (Uniform tightness.) For SF, the collection of piecewise constant, {F}'}-adapted pro-

CESSES
H = Uii{|Z- - Yal)] : Z € &5, sup | Z(s)| < 1}
s<t

is stochastically bounded.

UCV (Uniformly controlled variations.) {T;(A.)} is stochastically bounded for each t > 0,
and there ezist stopping times {72} such that P{7® < a} < a™! and

sup E[[Mp]inre] < o0

for each t > 0.

If (X,,Ys) = (X,Y) in the Skorohod topology on Dygm xgm[0,00), then Y is an {F:}-
semimartingale for a filtration {F;} with respect to which X is adapted and (X, Yn, Xn- -
Y.) = (X,Y,X_- -Y) in Dypmygmxrt[0,00). If (Xp,Ys) — (X,Y) in probability, then
(Xn, Yo, Xn- - Ya) = (X,Y, X_ - Y) in probability.
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In this part, we consider the analogous results for stochastic integrals with respect to in-
finite dimensional semimartingales. We are primarily concerned with integrals with respect
to semimartingale random measures, in particular, worthy martingale measures as developed
by Walsh (1986). We discover, however, that the class of semimartingale random measures
is not closed under the natural notion of weak limit unlike the class of finite dimensional
semimartingales (Part I, Theorem 7.3). Consequently, we work with a larger class of infinite
dimensional semimartingales which we call H#-semimartingales. This class includes sem-
imartingale random measures, Banach-space valued martingales, and cylindrical Brownian
motion.

A summary of results on semimartingale random measures is given in Section 2. The def-
initions and results come primarily from Walsh (1986). H#-semimartingales are introduced
in Section 3. The stochastic integral is defined through approximation by finite dimensional
integrands. The basic assumption on the semimartingale is essentially the “good integrator”
condition that defines a semimartingale in the sense of Section 1 of Part I. This approach
allows us to obtain the basic stochastic integral covergence theorems in Sections 4 and 5 as
an application of Theorem 1.1.

Previous general results on convergence of infinite dimensional stochastic integrals in-
clude work of Walsh (1986), Chapter 7, Cho (1994, 1995), and Jakubowski (1995). Walsh
and Cho consider martingale random measures as distribution-valued processes converging
weakly in Dg/ge)[0,00). Walsh assumes all processes are defined on the same sample space
(the canonical sample space) and requires a strong form of convergence for the integrands.
Cho requires (X, M,) = (X, M) in Dy s®re)[0,00) where L is an appropriate function
space. Both Walsh and Cho work under assumptions analogous to the UCV assumption.
Jakubowski gives results for Hilbert space-valued semimartingales under the analogue of the
UT condition. Our results are given under the UT condition, although estimates of the
type used by Walsh and Cho are needed to verify that particular sequences satisfy the UT
condition.

Section 6 contains a variety of technical results on the uniform tightness condition. Sec-
tion 7 includes a uniqueness result for stochastic differential equations satisfying a Lipschitz
condition with a proof that seems to be new even in the finite dimensional setting. As an
example, a spin-flip model is obtained as a solution of a stochastic differential equation in
sequence space. Convergence results for stochastic differential equations are given based on
the results of Sections 4 and 5.

Section 8 briefly discusses stochastic differential equations for Markov processes and in-
troduces L;-estimates of Graham that are useful in proving existence and uniqueness, par-
ticularly for infinite systems. Infinite systems are the topic of Section 9. Existence and
uniqueness results, similar to results of Shiga and Shimizu (1980) for systems of diffusions,
are given for very general kinds of equations. Results of McKean-Vlasov type are given in
Section 10 using the results of Section 9.

Stochastic partial differential equations are a natural area of application for the results
discussed here. We have not yet developed these applications, but Section 11 summarizes
some of the ideas that seem most useful in obtaining convergence theorems.

Section 12 includes several simple examples illustrating the methods of the paper. Dif-
fusion approximations, an averaging theorem, limit theorems for jump processes, and error
analysis for a simulation scheme are described.
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2 Semimartingale random measures.

Let (U,ry) be a complete, separable metric space, let Uy C U, C --- be a sequence of
sets {Un} C B(U) satisfying UnU, = U, and let A = {B € B(U) : B C Uy, some m}.
Frequently, U, = U and A = B(U). Let (2, F,P) be a complete probability space and
{Ft} a complete, right continuous filtration, and let Y be a stochastic process indexed by
A x [0, 00) such that

e For each B € A, Y(B, ) is an {F;}-semimartingale with Y (B, 0) = 0.
e For each £ > 0 and each disjoint sequence {B;} ¢ B({U), Y (U, N UX,B;,t) =

2.Y(Un N B;,t) as.

i=1

Then Y is an {F;}-semimartingale random measure. We will say that Y is standard if
Y = M +V where V(B,t) = V(B x [0,]) for a random o-finite signed measure V on
U x [0, 00) satisfying |[V|(Uy, x [0,t]) < oo a.s. for each m = 1,2,...and ¢t > 0 and M
is a worthy martingale random measure in the sense of Walsh (1986), that is, M(A.-) is
locally square integrable for each A € A, and there exists a (positive) random measure X
on U x U x [0,00) such that

[(M(A), M(B))ers — (M(A), M(B))| < K(Ax B x (t,t+5]), ABEcA,

and K(Up x Un x [0,]) < 00 a.s. for each t > 0. K is called the dominating measure.
(Merzbach and Zakai (1993) define a slightly more general notion of quasi-worthy martingale
which could be employed here. See also the defintion of conditionally worthy in Example
12.5.) Note that if U is finite, then every semimartingale random measure is standard.

M is orthogonal if (M(A),M(B)); = 0 for ANB = @. If M is orthogonal, then
m(A x (0,t]) = (M(A)); extends to a random measure on U x [0,00), and if we define
K(T) =n(f~Y(I")) for f(u,t) = (u,u,t), K is a dominating measure for M. In particular, if
M is orthogonal, then M is worthy.

If o is a simple function on U, that is ¢ = 312, ¢;Ip, for disjoint {B;} C A4, and {¢;} C R,
then we can define m

Y(p,t) = aY(Bi,t).
=1

If Y is standard and E[K (U x U x [0,1])] < oo for each t > 0, then
E[M(p,t)’] < E[/va lo(w)e(v)| K (du x dv x (0,4])] < [l@ll%EIK (U x U x (0,2])] (2.1)

so Y(p,t) can be extended uniquely at least to all ¢ € B(U) for which the integral against
V is defined, that is

Y(p,t) = M(g,t) + [ o(w)¥(du x [0,1)
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where M(ip, t) is defined as the limit of M(ypy,t) for simple ¢, using (2.1).
More generally, for each j =0,1,..., let {B! } C A be disjoint, let 0 =ty < t; <ty < -
and let C! be an Ft;-measurable random variable. Define

X(U, t) = z: Cle;’ (u)I(tj,tj+1] (t) (22)
i
and define X - Y by
X Y(t) = X CH(Y (Bt At) ~ Y(B],t; A1) .
Again, we can estimate the martingale part

Bl(X-M(t))"] = [E > CLCL(M(BL,), M(B,))t;une — (M(BL), M (Bf,))t,-/\t)]

7 i1,i2
< .
< E [ /U ey XX @)K (dux do x ds)| (2.3)
and if E[K(U x U x [0,])] < oo for each ¢ > 0, we can extend the definition of X - M (and
hence of X -Y) to all bounded, |V|-integrable processes that can be approximated by simple

processes of the form (2.2).
An alternative approach to defining X_ - M is to first consider

u) = Z&i(t)IBi (U), (24)
=1
for disjoint {B;} C A and cadlag, adapted &;. Set

X Y®)=% / &(s-)dY (B, s) ,

=1

where the integrals are ordinary semimartingale integrals. We then have

B(X-- M@)Y) =Bl % [ &(s-)&(s-)M(Bi ), M(B;, )] (25)
i,
< E| UxUx(4] | X (s—, u) X (s—,v)| K (du x dv x ds)] ,

which, of course, is the same as (2.3). By Doob’s inequality, we have

E[sup(X_ M(s))? < 4E[/U Ux(04] | X(s—,u)X(s—,v)|K(du x dv x ds)].  (2.6)

For future reference, we also note the simple corresponding inequalities for V,

Efsup|X_-V(s)ll < E[J o4 |X (5=, u)||V|(du x ds)] (2.7)



and _ _
E[Sagg(x- -V(s))’] < E[V|(U x [0,1]) /Ux(w] 1 X (s—,w)PVI(du x ds)] . (2.8)

Let P be the o-algebra of subsets of 2 x U X [0,00) generated by sets of the form
Ax B x(t,t+s]fort,s >0, A€ F;, and B € B(U). P is the o-algebra of predictable sets.
If E[K(U x U x [0,1])] < oo and |V|(U x [0,t]) < oo a.s. for each ¢ > 0, then the bounded
P-measurable functions gives the class of bounded processes X for which X -Y is defined.
Of course, the estimate (2.3) also allows extension to unbounded X for which the right side
is finite, provided X is also almost surely integrable with respect to V.

Note that if K satisfies

K(Ax Bx[0,t]) = K;(AN B x [0,t]) + K2(A x B x [0,1]) (2.9)

where K is a random measure on U x [0, c0) and we define
K(Ax[0,1]) = Ki(Ax[0,8]) + = (Kz(A x U x [0,t]) + Ko(U x A x [0,1])), (2.10)

then
Elsup(X - M(2))?] < 4E] / X (u, 8) 2K (du x ds)] . (2.11)

For future reference, if [V|({Un X [0,]) is locally in L; for each m, that is, there is a
sequence of stopping times 7, — 0o such that E[[V|({Unm x [0, A 7p]))_< oo for each ¢ > 0,
then we can define V(A4 x [0,]) to be the predictable projection of |V|(A4 x [0,-]), and we

have

E] Uxiod X (s—,w)|V|(du x ds)] = E| UX[O,t]X(s—,u)V(du X ds)] (2.12)

for all positive, cadlag, adapted X (allowing oo = 00).
Example 2.1 Gaussian white noise.

The canonical example of a martingale random measure is given by the Gaussian process
indexed by A = {A € B(U) x B([0,00)) : u x m(A) < oo} and satisfying E[W(A)] = 0 and
E[W(A)W(B)] = u x m(A N B), where m denotes Lebesgue measure and u is a o-finite
measure on U. If we define M(A,t) = W(A x [0,t]) for A € B(U), u(A) < oo, and t > 0,
then M is an orthogonal martingale random measure with K(A x B x [0,t]) = tu(4A N B),
and for fixed A, M(A,-) is a Brownian motion.

Example 2.2 Poisson random measures.

Let v be a o-finite measure on U and let h(u) be in L?(v). Let N be a Poisson random
measure on U x [0, 00) with mean measure v X m, that is, for A € B(U) x B([0,00)), N(A)
has a Poisson distribution with expectation v x m(A) and N(A) and N(B) are independent
if ANB = 0. For A € B(U) satisfying v(A4) < oo, define M(A4,t) = [, h(u)(N(du x [0,1]) —
v(du)t). Noting that E[M(A4,1)?] = t [, h(u)?v(du) and that {M(A;,t)} are independent for
disjoint {A;}, we can extend M to all of B(U) by addition.



Suppose Z is a process with independent increments with generator
Af@) = [ (F(z+w) = £(2) - ulgusn f ()v(dw).

Then v must satisfy fu? A 1y(du) < oo. (See, for example, Feller (1971).) Let U = R,
and let N be the Poisson random measure with mean measure v x m. Define M(A,1)
fA UI{IuISI}(N(du' x [01 t]) - V(du’)t)’ V(A7t) = fA UI{|u|>1}N(dU X [Ov t])’ and Y(Aat)
M(A,t) + V(A,t). Then we can represent Z by Z(t) = Y (R, ). v
Consider a sequence of Poisson random measures with mean measures nv x m. Define

Ma(A,t) = 71_5 [ 1) (Nl x [0,8]) = (). (2.13)
Then M, is an orthogonal martingale random measure with
(M(A), Ma(B)): = t / _ h(u)?w(du) = K(A x B x [0,1]).
AnB

By the central limit theorem, M, converges (in the sense of finite dimensional distributions)
to the Gaussian white noise martingale random measure outlined in Example 2.1 with u(A4) =
Ja M(w)?v(du).

Example 2.3 Empirical measures.

Let &,&,... be iid U-valued random variables with distribution p, and define

[nt]

Ma(A,t) = %gm(a) — u(A)). (2.14)

Then (M,(4), M,(B)): = Z(u(A N B) — u(A)u(B)). Note that Ko(4 x B) = p(A N
B) + p(A)u(B) extends to a measure on U x U and K,p(A x B x (0,]) = Ko(A x B)J-’;‘fl
extends to a measure on U x U x [0, 00) which will be a dominating measure for M,. Of

course, M,, converges to a Gaussian martingale random measure with conditional covariation
(M(A),M(B)): = t(u(ANn B) — u(A)p(B)) and dominating measure Ky x m.

2.1 Moment estimates for martingale random measures.

Suppose that M is an orthogonal martingale measure. If A,B € A are disjoint, then
[M(A), M(B)]; = 0 and in particular, M(A,-) and M(B,-) have a.s. no simultaneous dis-
continuities. It follows that

II(A x [0,2]) = [M(A)];

determines a random measure on U x [0, 00) as does

Hk(A x [Oa t]) = Z(M(A’ s) - M(A, s_))k (215)

s<t



for even k > 2. For odd k > 2, (2.15) determines a random signed measure. For X of the
form (2.4), it is easy to check that

. - 2 —_—
[X_ - M), /leo,t]X (s—,u)II(du x ds),
and setting Z = X_ - M and letting AZ (s) = Z(s) — Z(s-), we have

2e) = [ k2*s-)az(s )+ [ k(k

+3 (Z"(s) A ka"l(s—)AZ(s) - (k) Z"’z(s—)AZ(s)z)

<t

bk~ 1) ze-2(s )d[Z]s

/Ux[oﬂ kZ*1(s=)X (5=, u) M (du x ds)+/ ( ) Z42(5) X2(s—, w)TI{du x ds)

x[0,1]
3 (5) o 2700, x (216)

j=3
and can be extended to more general X under appropriate conditions.
Since M (A, ) is locally square integrable, [M(A)]; is locally in L,, that is, there exists a
sequence of stopping times {7,} such that 7, — oo and E[[M(A)]i-,] < oo for each t > 0
and each n. In addition,

[M(A)]: — (M(A))e = TI(A x [0,2]) — m(A x [0,1])

is a local martingale. It follows from (2.16) and L, approximation that

2 X2
E[(X_-M(t))*] = E| Uxod] X?(s—,u)II(du x ds)] = E]| Ux(od X%(s—,u)m(du x ds))] (2.17)
whenever either the second or third expression is finite. (Note that the left side may be
finite with the other two expressions infinite.) We would like to obtain similar expressions
for higher moments.

A discrete time version of the following lemma can be found in Burkholder (1971), Theo-
rem 20.2. The continuous time version was given by Lenglart, Lepingle, and Pratelli (1980)
(see Dellacherie, Maisonneuve and Meyer (1992), page 326). The proof we give here is from
Ichikawa (1986), Theorem 1.

Lemma 2.4 For 0 < p < 2 there ezists a constant C, such that for any locally square
integrable martingale M with Meyer process (M) and any stopping time T

Blsup |M()P] < G,B((M)2")

Proof. For p = 2 the result is an immediate consequence of Doob’s inequality. Let 0 < p < 2.
For z > 0, let 0, = inf{t : (M), > z?}. Since o, is predictable there exists an increasing
sequence of stopping times o7 — o,. Noting that (M),» < z2, we have

E[(M>'r/\a’;]
72

< P{o"< }+M,

P{sup|M(s)P >z} < P{or <7}+
s<71



and letting n — oo, we have

_ 2
P{sup |[M(s)]? > =} < P{(M). > z?} + ﬂf—%fM—)T] (2.18)
s<7
Using the identity )
® 2 A Y2 P-3 g — 2 P
/0 E[z® A X*|pzP~%dz = 5 _pE[|X| ]
the lemma follows by multiplying both sides of (2.18) by pzP~! and integrating. ]

Assume that for 2 < k < kg and A € A, |[I;|(A4 x [0,00]) is locally in L, and there exist
predictable random measures 7, and 7 such that

Hk(A X [0, t]) - 7rk(A X [O,t]) (2.19)

and
ITIk|(A x [0,¢]) — 7k (A x [0,1]) (2.20)

are local martingales. Of course, for k even, 7y = 7. We define 7y = 7
If M is Gaussian white noise as in Example 2.1, then [Ty =, =0 for k > 2. If M is as
in Example 2.2, then

TL.(A x [0,£]) = /A h¥(w)N (du x [0,1]),

(A x [0,¢]) = t/A h*(w)v(du),

and
Ax(A X [0,1]) = t /A I (u) v (du).

Theorem 2.5 Let k > 2, and suppose that for2< j < k

Hy,=E [(-/Ux[o,t] 1X (s—, u)[P#;(du x ds)) 7] < 00. (2.21)
Then Elsup,,|Z(s)|*] < co and
=~ (k - j
E[Z*@t)] = ,12=:2 (])E [/wa] Z*-i(s=) X3 (5=, w)m(du x ds)] (2.2’2)

Proof. For k = 2, the result follows by (2.17). Note that if (2.21) holds, then it holds with &
replaced by k' < k. Consequently, proceeding by induction, suppose that E[sup,., |Z(s)|¥~}] <
00. Since : -

Mi(t) = [ *kZH1(r=)dz(r)

is a local square integrable martingale with
t
(M) = [ B2*(s-)d(2),,

9



by Lemma 2.4, for any stopping time 7

Blswp | [ k2*(-)aZ(rl) < CikEL [sup 1Z(s)FHZ)unel,

s<tAT

and letting 7. = inf{t : |Z(t)| > c}, it follows that

Bl sup |Z(s)f] < ClkE[\/ sup [Z(s)*+(Z) 029
+§( )E[ sup. |Z(s)[*~ ]./x[o,t] X (s—, w) V4, (du x ds)]

which by the Hoélder inequality implies

Elsup 1Z2()] < CukEl supCIZ(snk]"%’E[(/ 1X (s, u) P duxds) # (2.20)

Ux[o0,t)

a

+Z ( )E[ sup ,Z(s)|k]—:‘E[(/Ux[o,t] | X (5=, u)lP#;(du x dS)) ¥

j=2

where the right side is finite by (2.21) and the fact that E[sup,a,, |Z(s)|*] < cF. The
inequality then implies that E[sup,., |Z(s)|*] < Kk, where Ky is the largest number
satisfying

K < CikK*F Hf, + E (k) K% HE,. (2.25)

j=2
(2.22) then follows from (2.16). O

2.2 A convergence theorem for counting measures.

Forn=1,2,.., let N, be a random counting measure on U X [0, o0) with the property that
Nn(Ax {t}) <1forall A€ B(U)andt > 0. Let v be a o-finite measure on U, and let
Fy C F; C - be closed sets such that v(F) < oo, ¥(0F;) = 0, and v(A) = limy—, V(ANF})
for each A € B(U). Let A, be a random measure also satisfying A,(A x {t}) < 1. Suppose
that A, and N, are adapted to {F7*} in the sense that N, (A x [0,t]) and A,(4 X [0,1]) are
JFi-measurable for all A € B(U) and t > 0, and suppose that

Np.(AN Fi x [0,t]) — Ap(AN Fy x [0,¢])
is a local {F7'}-martingale for each A € B(U) and k =1,2,....

Theorem 2.6 Let N be the Poisson random measure on U X [0,00) with mean measure
v X m. Suppose that for each k =1,2,..., fe C(U), andt >0

lim /F - F(u)An(dux [0,1]) = /F  Fw)(du)

10



tn probability. Then N, = N in the sense that for any A,,...,An such that for each i,
A; C Fy for some k and v(0A;) =0,

(Nn(Al X [O’ ])a sy Nn(Am X [Oa ])) = (N(Al X [0’ ])7 s N(Am X [Oa ]))
It also follows that for f € C(U),

'/Fk f(u)Np(du x [0,-]) = ‘/Fk F(u)N(du x [0,-]).

Proof. The result is essentially a theorem of Brown (1978). Alternatively, assuming
U;ZlAi C Fk, let
Tn = inf{t : Ap(F; % [0,])) > tv(Fy) +1}.

Note that 7, — oo and that
Np(A; x [0,t A1y]) — An(A; X [0,2 A T3))
is an {F7'}-martingale. For T > 0 and 6 > 0, let

Y(6) = sup A (Fi X (t A To, (T +6) A Ty))
t<T

and observe that lims_,o lim sup E[y}(8)] = 0. It follows that for 0 <t < T
E[Nn(Ai x (¢ ATn, (t +6) A )| F7] < Eyr(8)1F7)

and the relative compactness of {(N,(A4; X [0,]), ..., Nn(Am % [0,:]))} follows from Theorem
3.8.6 of Ethier and Kurtz (1986). The theorem then follows from Theorem 4.8.10 of Ethier
and Kurtz (1986). O

In addition to the conditions of Theorem 2.6, we assume that there exists h € C(U) with
0 < h < 1 such that f;;(1 — h(u))v(du) < oo and for f € C(U),

[, 7@ = hw)An(du x [0,8) =t [ £(u)(1 = h(u))v(du)

in probability. Let D be a linear space of functions on U such that for each ¥ and each
pw€eD

ME(p,t) = [ plu)h(u) (Nadu x 0,4) = An(du x 0,8))

M5(p,t) = [ p(u)h(u)(Na(du x [0,]) - An(du x [0,1])
and

Ma(p,t) = [ @()h(u)(Na(du x [0,]) — An(du x [0,£))

are local {F*}-martingales and

/U O (u)h?(w)v(du) < 00. (2.26)
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Theorem 2.7 Suppose that there ezists o : D — [0,00) and a sequence my, — 00 such that
for every sequence k, — oo with k, < my, and each t > 0,

lim Elsup | M (¢, s) — M (p,5-)|] =0 (2.27)
n—=+00 " " ,cy
and X
[Min(p)]: = a(p)t (2.28)

in probability. Then for ¢1,...,om € D,
(Mo (#1,8)s - - s Ma(pm, 1)) = (M(01,1), - ., M(Pm, 1))

for
M(p,t) = W(p, 1)+ [ e(u)h(w)N(dux [0,1)

where W is a continuous (in t), mean zero, Gaussian processes satisfying
1
E[W (p1,8)W (p2,t)] = s A ti(a(% + p2) — a(p1) — ale2)),
N(A x [0,t]) = N(A x [0,%]) — tv(A), and W is independent of N.
Remark 2.8 Note that the linearity of D and (2.28) implies

(W8 (or), 388 ()] = 5 (0ls + 02) = a(1) = a(2)). (229)

(2.27) and (2.29) verify the conditions of the martingale central limit theorem (see, for
ezample, Ethier and Kurtz (1986), Theorem 7.1.4) and it follows that

("er’f’l (301, ')’ KRR M:n (‘pm’ )) = (W((Pla ')’ T W(‘pm’ ))
Suppose that AX(p,t) has the property that
(Mr’zc(‘p, t))2 - Aﬁ(‘P’ t)

is a local {F'}-martingale for each ¢ € D and that for m, and k, as above, we replace
(2.27) and (2.28) by the requirements that

lim E[sup |M¥" (¢, s) — M} (p,5-)|] =0 (230)
n—oo s<t

] kn _ Ak A\ —
,,ll,f{.loE[Sg |4z (0, 8) — Ap* (9, 5=)l} = 0

and
Al (p,1) = a(p)t - (2.31)

in probability. Then the conclusion of the theorem remains valid. In particular, (2.30) and
(2.81) verify alternative conditions for the martingale central limit theorem. Note that if
A.(AN F; x [0,-]) is continuous for each A € B(U) and k = 1,2,..., then we can take

Ak (p,) = /F _P(w)h?(u)An(du x [0,1]). (2.32)

k
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Proof. For simplicity, let m = 1. For each fixed k, Theorem 2.6 implies
Mi(e,) = [ plw)h(w)N(du x [0,])
Fy
and it follows from (2.26) that
kll’r{.xo . @(u)h(u)N(du x [0,t]) = ./l;cp(u)h(u)N(du x [0,1]).
Consequently, for k, — oo sufficiently slowly,
Mi=(p) = [ p(u)h(w)N(du x [0,1)),

and since we can assume that k,, < my, for the same sequence, the martingale central limit
theorem implies M¥~(p,.) = W(p,-). The convergence in Dg[0,00) of each component
implies the relative compactness of {(M%»(¢,-), M¥(p,-))} in Dg{0,00) x Dg|0,00). The
fact that the second component is asymptotically continuous implies relative compactness
in Dg2[0, 00). Consequently, at least along a subsequence (M¥~(y, ), M*=(¢,)) converges in
Dg:[0,00). To see that there is a unique possible limit and hence that there is convergence
along the original sequence it is enough to check that W and N are independent. To venfy
this assertion, check that W (yp,-), ¢ € D, and N(ANF;, x[0,-]), A € B(U), k=1,2,.

all martingales with respect to the same filtration. Since trivially, [W (¢), N(ANF})], = 0 an
application of Itd’s formula verifies that W and N give a solution of the martingale problem
that uniquely determines their joint distribution and implies their independence. It follows

that
(M (p,-), M¥ (0, -)) = ( /U p(u)h(u) N (du x [0,-]), W(p,"))

and hence
Mn((p7 ) = M((p’ )

3 H#-semimartingales.

We will, in fact, consider more general stochastic integrals than those corresponding to
semimartingale random measures. As in most definitions of an integral, the first step is
to define the integral for a “simple” class of integrands and then to extend the integral to
a larger class by approximation. Since we already know how to define the semimartingale
integral in finite dimensions, a reasonable approach is to approximate arbitrary integrands
by finite-dimensional integrands.

-

3.1 Finite dimensional approximations.

We will need the following lemma giving a partition of unity. C(S) denotes the space of
bounded continuous functions on S with the sup norm.

13



Lemma 3.1 Let (S,d) be a complete, separable metric space, and let {zx} be a countable
dense subset of S. Then for each € > 0, there ezists a sequence {y;} C C(S) such that
supp{ti} C Be(zi), 0 < 9 < 1, Id)k(x) Yi(v)| < 2d(z,y), and for each compact K C S,
there ezists Nx < oo such that Th% vi(z) = 1, z € K. In particular, ¥, ¢i(z) = 1 for
allz € S.

Proof. Fix e > 0. Let ¢x(z) = (1 — 2d(z, Bej2(zx)) V0. Then 0 < ¢ < 1, 9x(z) = 1,
£ € Bep(zx), and Y(z) = 0, z ¢ B.(zx). Note also that |¢h(z) — Pi(y)] < 2d(z,y).

Define y§ = ¥, and for k > 1, ¥f = max;« o~ maxi<k— 1 %;. Clearly, 0 < P < ¥y and
}:,_1 P{ = maXicx Y. In pa.rtlcular, for compact K C S, there exists Ny < oo such that
K C U,,_lBe/g(zk) and hence TNX 4 (x) =1 for z € K. Finally,

g (z) — Y (y)| < 2 maxick [$i(z) — Pi(y)| < 2d(z,y)
O

Let U be a complete, separable metric space, and let H be a Banach space of functions
on U. Let {¢x} be a dense subset of H. Fix € > 0, and let {¢)§} be as in Lemma 3.1 with
S = H and {z} = {¢x}. The role of the 9§ is quite simple. Let z € Dy[0, 00), and define

z(t) = X ¥i(z(t))px. Then

llz(t) — 2°(@)||w < Zwk lz(t) — eellr < e (3.1)
Since z is cadlag, for each T' > 0, there exists a compact K7 C H such that z(t) € Kr, 0 <
t < T. Consequently, for each T' > 0, there exists Ny < oo such that z¢(t) = S n%; ¥ (z(t)) ek
for 0 < t < T. This construction gives a natural way of approximating any cadlag H-valued
function (or process) by cadlag functions (processes) that are essentially finite dimensional.

Let Y be an {¥;}-semimartingale random measure, and suppose Y(y, -) is defined for all
¢ € H (or at least for a dense subset of ¢). Let X be a cadlag, H-valued, {F;}-adapted

process, and let
X“(t) = 2 vhX (3.2)

Then || X - X¢||g <, and the integral X¢ Y is naturally (and consistently with the previous
section) defined to be

X Y() =3 [ v x(s-)av (o, 9)

We can then extend the integral to all cadlag, adapted processes by taking the limit provided
we can make the necessary estimates. This approach to the definition of the stochastic
integral is similar to that taken by Mikulevicius and Rozovskii (1994).

3.2 Integral estimates.
Definition 3.2 Let S be the collection of H-valued processes of the form

Z(t) =Y &(t)ex
k=1
where the & are R-valued, cadlag, and adapted.

14
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Suppose that Y = M + V is standard and M has dominating measure K. Then for
Z € S, we define

m .t
Z_-Y({t)=Y /0 & (s=)dY (¢x, 5). (3.3)
k=1
As in the previous section, we have
Elsup|Z_ - M(s)[?] (3.4)
<t

< - — .
<4E [ /U <Uxo] |Z(u, s=)||Z(v, s=))| K (du x dv x ds)] ,

and, letting |V| denote the total variation measure for the signed measure V,
Efsup|Z--V(s)| < B[ 12(s,u)||7|(du x ds)). (3.:5)
s<t Ux[0,t]

If, for example, the norm on H is the sup norm and ||Z(s)||g < € for all s > 0, then

E[s%) |Z_ - M(s)]*] < 4€*E[K(U x U x [0,1])] (3.6)

and :
E[Ssglt) |Z- - V(s)[] < eE[[VI(U x [0,1])]. (3.7)

If H = LP(u), for some p > 2, and K defined as in (2.10), has the representation

K(du x dt) = h(u,t)u(du)dt (3.8)

and

V(du x dt) = g(u, t)u(du)dt, (3.9)
then for r satisfying 2 + 1 = 1 and g satisfying 3+ ¢ =1, wehave for | Z||y < ¢

Elsup|z_ - M (5)I7]

<4E [ [ (] 126, u)l”ﬂ(du))% (f ih, s)ru(du))* ds]
<428 [ [ I, 9)lzrgds] (3.10)
and

Elsup|Z_ - V()]

<E [ [ ([ 126, u)m(du))’% (/] totus s)ieutaw) % ds]
<eB [ ["lloC, llaods] - .11

15



Note that either (3.6) and (3.7) or (3.10) and (3.11) give an inequality of the form
E[sup|Z_ - Y (s)]] £ eC(2) (3.12)
<t _

which in turn implies

Hy = {Sup 1Z2--Y(s)| : Z €86, sup 1Z(s)llx < 1} (3.13)

is stochastically bounded. The following lemma summarizes the estimates made above in a
form that will be needed later.

Lemma 3.3 a) Let || - ||g be the sup norm, and suppose E[K(U x U x [0,t])] < oo and
E[|V|(U x [0,t])] < oo for allt > 0. Then if sup, |Z(s)|lzg < 1 and 7 is a stopping time
bounded by a constant c,

E[sz;t) |[Z_-Y(r+s8)—2Z_-Y(1)|]

< 2\/E[K(U x U x (1,7 + )] + E[|V|(U x [r,7 +1])]

and

lim \/E[K(U x U x (1,7 + )] + E[[V|(U x [r,7 + )] =0.

b) Let H = LP(u), for some p > 2, and for h and g as in (8.10) and (8.11), sup-
pose E[f}||h(-,8)|lLr(mds] < oo and E[f0 llg(-, $)l|Lequyds] < oo for all t > 0. Then if
sup, || Z(s)|lx < 1 and 7 is a stopping time bounded by a constant c,

Blowp|2- ¥ (r+5) = 2 ¥ () 24/ BL[ " IC, s + EL[ " ot lhguds]

s<t

and

i/ B G ot + B ot ) lasgodsl = 0

Proof. The probability estimates follow from the moment estimates (3.6) - (3.11), and the
limits follow by the dominated convergence theorem, using the fact that 7 < c.. m]

We will see that for many purposes we really do not need the moment estimates of Lemma
3.3. Consequently, it suffices to assume stochastic boundedness for |V'| and to localize the
estimate on K.

Lemma 3.4 a) Let || - ||y be the sup norm. Let T be a stopping time, and let o be a random
variable such that P{o > 0} = 1, 7 4+ 0 is a stopping time, E[K(U x U x (1,7 + 0]] < o0,
and P{|V|(U x (7,7 +0]) < 00} =1. Then ifsup, ||Z()|lg <1 and a > 0,

P{sup|Z_-Y(r+s)—Z_-Y(1)| > 20}
s<t

j VEIK(U x U x (1,7 +t A o])]

~ +P{V|(U x [r,7 +tA0]) > a} + P{o < t}
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and the right side goes to zero as t — 0.

b) Let H = LP(u), for some p > 2, and let h and g be as in (8.8) and (3.9). Let 7
be a stopping time, and let o be a random variable such that P{oc >0} =1, 7+0 is a
stopping time, E[[T* ||h(:, 8)l|z-(wds] < oo and P{[T*" ||g(-, 8)||Le(u)ds < 00} = 1. Then if
sup, [|Z(s)|lx <1

P{sup|Z_ -Y(r+s)~Z_-Y(7)| > 22}
8<t

) T+IAT h . rend
< VEIE ||a< Nerwds] |,

U o Masgads 2 0} + Plo <1)
and the right side goes to zero as t — 0.
Proof. Observe that
P{sg;: |Z_-Y(r+3s)—Z_-Y(1)| > 2}
< P{awp |2 Mlr+9) - 2. M(7)| 2 0}
-:-I-D{jsg:/}\)a |Z_-V(r+s8)~Z_-V(r)| 2 a} + P{o < t},

and note that the first two terms on the right are bounded by the corresponding terms in
the desired inequalities. O

3.3 H#-semimartingale integrals.

Now let H be an arbitrary, separable Banach space. With the above development in mind,
we make the following definition.

Definition 3.5 Y is an {F;}-adapted, H*-semimartingale, if Y is an R-valued stochastic
process indezed by H x [0,00) such that

o For each p € H, Y(p,-) is a cadlag {F,}-semimartingale with Y (¢, 0) = 0.

o Foreacht >0, ¢1,...,0m € H, and a4,...,0, €R, Y(ZL,; aipi,t) = T2, ;Y (i, t)
a.s.

The definition of the integral in (3.3) extends immediately to this more general setting.
Noting (3.12), (3.13), and their relationship to the assumption that the semimartingale
measure is standard, we define:

Definition 3.6 Y is a standard H #-semimartingale if H, defined in (3.13) is stochastically
bounded for each t.

This stochastic boundedness is implied by an apparently weaker condition.

17



Definition 3.7 Let Sy C S be the collection of processes
m
Z(t) = &(t)px
k=1

in which the & are piecewise constant, that is,

J
E(t) = D1 i o (2)

=0
where 0 = 7§ < -+ < 7F are {F,}-stopping times and nf is F,p-measurable.

Lemma 3.8 If _
M ={|Z--Y()|: Z € So,sup |Z(s)]lm < 1}
8—

is stochastically bounded, then H, defined in (3.18) is stochastically bounded.

Remark 3.9 If Y is real-valued, that is H = R, then the definition of standard H¥-
semimartingale is equivalent to the definition of semimartingale given in Section II.1 of
Protter (1990), that is, the process satisfies the “good integrator” condition.

Proof. For each § > 0, there exists K (t,6) such that
P{|Z_-Y(t)| > K(t,6)} < 6 (3.14)

for all Z € &, satisfying sup,; ||Z(s)||lx < 1. We can assume, without loss of generality,
that K (t,6) is right continuous and strictly increasing in & (so that the collection of random
variables satisfying P{U > K(t,d)} < d is closed under convergence in probability). Let
r=inf{s:|Z--Y| > K(t,0)} and Z" = Ip)Z. Then

Plsup|Z--Y ()] 2 K(t,8)} = P{|Z--Y(tAT)| 2 K ()} = P(Z2- Y () 2 K (t,6)} <6.

For Z € S with sup,, || Z(s)||» < 1, there exists a sequence {Z,} C So with sup,, [|Zn(s)|| <
1 such that sup,, ||Z(s) — Zn(s)||z — 0. This convergence implies Z,_ -Y(t) = Z_-Y in
probability, and the lemma follows. ‘ m|

The assumption of Lemma 3.8 holds if there exists a constant C(t) such that for all
Z € & satisfying sup,, ||Z(s)||x £ 1,

Elz.-Y@)) < C@®).

The following lemma is essentially immediate. The observation it contains is useful in
treating semimartingale random measures which can frequently be decomposed into a part
(usually a martingale random measure) that determines an H¥-semimartingale on an L?
space and another part that determines an H#-semimartingale on an L!-space. Note that if
H, is a space of functions on U; and Hy is a space of functions on Us, then H; x H; can be
interpreted as a space of functions on U = U; U U, where, for example, R U R is interpreted
as the set consisting of two copies of R.
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Lemma 3.10 LetY; be a standard HY -semimartingale and Y; a standard HY -semimartingale
with respect to the same filtration {F;}. Define H = Hy x H,, with |l¢|lg = ||loillm, +
lo2lla, and Y(p,t) = Yi(p1,t) + Ya(po,t) for ¢ = (¢1,92). ThenY is a standard H#-
semimartingale.

If Y is standard, then the definition of Z_ - Y can be extended to all cadlag, H-valued
processes.

Theorem 3.11 Let Y be a standard H*-semimartingale, and let X be a cadlag, adapted,
H-valued process. Define X¢ by (8.2). Then

X_-Ysli_%Xi'Y

ezists in the sense that for each t > 0 lim.o P{sup,¢, |X- - Y(s) ~ X< -Y(s)| > n} =0 for
alln >0, and X_ -Y is cadlag.

Proof. Let K(4,t) > 0 be as in Lemma 3.8. Since || X (s) — X (s)||lg < €1 + €2, we have
that P{sup,<, | X2 - Y(s) — X2 -Y(s)| > (&1 + €2)K(4,t)} < 4, and it follows that {X -V}

is Cauchy in probability and that the desired limit exists. Since X¢ -Y is cadlag and the
convergence is uniform on bounded intervals, it follows that X_ - Y is cadlag. ]

The following corollary is immediate from the definition of the integral.

Corollary 3.12 Let Y be a standard H¥*-semimartingale, and let X be a cadlag, adapted,
H-valued process. Let T be an {F}-stopping time and define X™ = I;g ) X. Then

X_YtAT)=XT-Y(t).
For finite dimensional semimartingale integrals, the stochastic integral for cadlag, adapted
integrands can be defined as a Riemann-type limit of approximating sums
X_-Y(@t)=lm) X(EA) (Y (i1 At) =Y (tiAtL)) (3.15)

where the limit is as max(t;4, — t;) — 0 for the partition of [0,00), 0 =ty < t; <ty < ---.
Formally, the analogue for H#-semimartingale integrals would be

X_ Y(t)=lm) (Y(X(t; At), ti1 At) = Y(X(t; At),t; AL));

however, Y (X, 1) is not, in general, defined for random variables X. We can define an analog
of the summands in (3.15) by first defining X[tt+1) = I, o 1 X (t;) and then defining

Aptirn)Y (X (), 1) = X Bty (p),

Similarly, we can define Ay, -,,.)Y (X (7:), ) for stopping times 7; < 734;.
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Proposition 3.13 For eachn let {7} be an increasing sequence of stopping times 0 = 78 <
' < 18 < -, and suppose that for each t > 0

Jim max{7}, - 7' : 7 <t} =0.
If X is a cadlag, adapted H-valued process and Y is a standard H#-semimartingale, then
X--Y(t)= lim 3 Ay )Y (X (7). ) (3.16)

where the convergence is uniform on bounded time intervals in probability.

Proof. Let
Xn = Z I[-r‘,n’.,-‘,n_'_l)X(T:l).
Then the sum on the right of (3.16) is just X,,_ - Y (¢) and, with X¢ defined as above,

Xo Y(0) = zk:Z@bi(X(TZ‘))(Y(%T& A1) =Y (@x, 7 A ).

By the finite dimensional result, for each n > 0,

lim P{sup |X:_-Y(s)— X -Y(s)|>n}=0
n-+00 s<t

and by standardness
P{sup |X;_-Y(s)—Xn_-Y(s)| > eK(6,2)} +P{sup | X -Y(s)—X_-Y(s)| > eK(6,t)} <26
s§<t s<t

and the result follows. O

3.4 Predictable integrands.
Definition 3.14 Let S* be the collection of H-valued processes of the form

2(t) = fj &(t) ok

where the & are {F;}-predictable and bounded.

Z_-Y for Z € S, can be extended to Z € S* by setting
. m t
z.Y®) =Y [ &(s)d¥ (e, ).
k=1
We will show that the condition that %, is stochastically bounded implies that

H; ={sup|Z-Y(s)| : Z € S*,supy|Z(s)|lg < 1}
8<t s<t
is also stochastically bounded, and hence Z -Y can be extended to all predictable, H-valued
processes X that satisfy a compact range condition by essentially the same argument as in

the proof of Theorem 3.11.

20



Lemma 3.15 If H, is stochastically bounded, then H; is stoéhastz’cally bounded.

Proof. Let K(t,0) be as in (3.14). Fix ¢1,...,¢om € H and let C, = {r € R™ :
IR, zivillg < 1}. To simplify notation, let Y(t) = Y(p;,t). We need to show that if
(&1,-..,&n) is predictable and takes values in C,, then

P{sup|}_j / &(s)dYi(s)| 2 K(4,8)} < 6. (3.17)

i=1

Consequently, it is enough to show that there exists cadlag, adapted &* such that
(&8s -+, &n) € Cp and lim, o0 SUP,, | J5 (6i(u) — €F(u~))dYi(u)| = 0 in probability for each
i. Assume for the moment that Y; = M; + A; where M; is a square integrable martingale
and E[T;(A; )] < 00, T3(A;) denoting the total variation up to time t. Let I'(t) = T7,[M;],
and A(t) = T, Ty(A;). Then (see Protter (1990), Theorem IV.2) there exists a sequence of
cadlag, adapted R™-valued processes £" such that

n—roo

lim (\/E[ [ 1€(0) - éx(s—par(e)) + B[ l(s) - £"<s—)|dA(s)]) =0 ()

Letting 7 denote the projection onto the convex set C,, since [7(z) — 7(y)| < |z — y| and
£ € C,, if we define £ = 7(€"), £€* € C, and the limit in (3.18) still holds. Finally,

Blsup | [(6(u) - € u-))aYi(w)]

< 2B [ 166) ~ €p(o-) L] + B 1) — €861, A)

< 2y/B1 [ e(e) - £x(s-)Par(e)) + L[ e(e) - €%(6-)ldA(s)

so the stochastic integrals converge and the limit must satisfy (3.17).

For general Y, fix ¢ > 0, and let Y; = M; + A; where M; is a local martingale with
discontinuities bounded by ¢, that is, sup, |M;(t) — M;(t—)| < ¢, and A; is a finite variation
process. (Such a decomposition always exists. See Protter (1990), Theorem III.13.) For
¢ >0, let 7. = inf{t : X2, [M;]: + X2, T:(A:) > ¢}, and let Y = Y;(-A7). Then for cadlag,
adapted £ with values in C,, it still holds that

P{sup| 3 / &(s=)dY™(s)] 2 K(5,6)} < 6. (3.19)

=1

(replace £ by I r,)€). Define Y = M + AF~ where AT~ (t) = A;(t), for t < 7. and
A7 (t) = Ai(rc=) for t > 7. It follows from (3.19) and the fact that

lf:fi(Tc“)(Mi(Tc) M;i(r.=))| L e sup E |z:| = eK,

=1 Co i=1
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that

m
P{sup|)_ /03 &i(s—)dY™(s)| > K(t,6) + €K, } < 6. (3.20)

LhL |
for all cadlag, adapted processes with values in C,. But M;* is a square integrable martin-
gale and T;(A7*") < ¢, so it follows that (3.20) holds with £(s—) replaced by an arbitrary
predictable process with values in C,. Letting ¢ — oo and observing that € is arbitrary, we
see that (3.17) holds and the lemma follows. O

Proposition 3.16 LetY be a standard H¥-semimartingale, and let X be an H-valued pre-
dictable process such that for t,n > 0 there exists compact K., C H satisfying

P{X(s) € Kiy, s<t} 2 1-n.
Then defining X€ as in (8.2), X - Y = lime,0 X¢- Y ezists.

Remark 3.17 If estimates of the form (8.4) hold, then the definition of X-Y can be extended
to locally bounded X, that is, the compact range condition can be dropped. (Approzimate X
be processes of the form X Iy (X) where K is compact.) We do not know whether or not the
compact range condition can be dropped for every standard H¥-semimartingale.

Proof. The proof is the same as for Theorem 3.11. a

3.5 Examples.

The idea of an H¥-semimartingale is intended to suggest, but not be equivalent to, the
idea of an H*-semimartingale, that is, a semimartingale with values in H*. In deed, any
H*-semimartingale will be an H#-semimartingale; however, there are a variety of examples
of H¥-semimartingales that are not H*-semimartingales.

Example 3.18 Poisson process integrals in LP spaces.

Let u be a finite measure on U, and let H = L?(u) for some 1 < p < 0o. Let N be a Poisson
point process on U x [0,00), and for ¢ € H, define Y (p,t) = [y o %(u)N(du x ds). Of
course Y (i, ) is just a compound Poisson process whose jumps have distribution given by
v(A) = [I4(p(u))u(du). Since point evaluation is not a continous linear functional on L?,
Y is an H#-semimartingale, but not an H*-semimartingale.

Example 3.19 Cylindrical Brownian motion.

Let H be a Hilbert space and let @ be a bounded, self-adjoint, nonnegative operator on H.
Then there exists a Gaussian process W with covariance

E[W((Pl, t)W(<p2a S)] =tA S(Q(Pl, (P2>

If Q is nuclear, then W will be an H*(= H)-valued martingale; however, in general, W will
only be an H#-semimartingale. (See, for example, Da Prato and Zabczyk (1992), Section
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4.3.) Note that if X(t) =37, &(t)¢; is cadlag and adapted to the filtration generated by
W, then

E(X-- WP = [ BT 6()6(5)Qus e)ds < @1 [ BIIX (e) s
i,

and it follows that W is standard.

4 Convergence of stochastic integrals.

Let H be a separable Banach space, and for each n > 1, let Y, be an {F}'}-H #.semimartingale.
Note that the Y, need not all be adapted to the same filtration nor even defined on the same
probablity space. The minimal convergence assumption that we will consider is that for
P15-- - 0m € H, (Ya(p1,)s -, Ya(@m,*)) = (Y(01,°)s+ .., Y (¢m, ) in Dgnm|0, 00) with ‘the
Skorohod topology. ~ '

Let {X,} be cadlag, H-valued processes. We will say that (Xn, Ya) = (X,Y), if
(Xn, Ya(e1,°), .-, Yalom, 1)) = (X, Y(01,°),. .., Y (0, ) in Dy yrm[0,00) for each choice
of ¢1,...,m € H. We are interested in conditions on {(X,, Y,)}, under which X,_ Y, =
X_ -Y. In the finite dimensional setting of Kurtz and Protter (1991a), convergence was
obtained by first approximating by piecewise constant processes. This approach was also
taken by Cho (1994, 1995) for integrals driven by martingale random measures. Here we
take a slightly different approach, approximating the H-valued processes by finite dimen-
sional H-valued processes in a way that allows us to apply the results of Kurtz and Protter
(1991a) and Jakubowski, Mémin, and Pages, G. (1989).

Lemma 4.1 Suppose that for each ¢ € H, the sequence {Y,(p,-)} of R-valued semimartin-
gales satisfies the conditions of Theorem 1.1. Let X5(t) = S vi(Xn(t)) k. If (Xn, Y2) =
(X,Y), then (X,,, Yy, X5_ - V,) = (X, Y, X -Y). If (X,,,Ya) = (X, Y) in probability, then
(Xn, Y, Xg_ - Yy) = (X,Y, XE - Y) in probability.

Proof. By tightness, there exists a sequence of compact K,, C H such that P{X,(t) €
Kmt <m} 21—~ . Let 7 = inf{t : Xa(t) ¢ Km}. Then P{r™ > m} > 1~ =, and
Xoo - Vo(t) = 2M(t) = EkN:{" Js Y5 (Xa(5=))dYn (%, 8) for t < 7™. Theorem 1.1 implies
(Xn, Yo, Z7") = (X,Y, Z™) for each m, where Z™(t) = }:iv__{"l'" Jo YE(X (s=))dY (¢4, s). Since
ZpMt) = X5_ - Y,(t) for t < 71", using the metric of Ethier and Kurtz (1986), Chapter 3,
Formula (5.2), we have d(X;_ - Yn, Z]*) < €™, and the convergence of {Z™} for each m
implies the desired convergence for X¢_ - Y. m]

In order to prove the convergence for X,,_ - Y,, by Lemma 4.1, it is enough to show that
X, - 'Y, is a good approximation of X,,_ - Yy, that is, we need to estimate (Xp-—X:_) Y.
If the ¥, correspond to semimartingale random measures, then (3.6) and (3.7) or (3.10) and
(3.11) give estimates of the form

Elsup [(Xa- - X5) - Y ()] < eCa(t)
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If sup, Cr(t) < oo for each ¢, then defining
Hns = {sup|Z_-Ya(s)| : Z € 8",sup||Z(s)||lx < 1}, (4.1)
s<t s<t

?:[t = UpH,: is stochastically bounded for each ¢. This last assertion is essentially the
uniform tightness (UT) condition of Jakubowski, Mémin, and Pages (1989). As in Lemma
3.8, the condition that U,H,; be stochastically bounded is equivalent to the condition that

HY = UnHp, = Un{|Z- - Ya(t)|: Z € So,Sup 1Z(s)llx} (4.2)

be stochastically bounded.

For finite dimensional semimartingales, the uniform tightness condition, Condition UT of
Theorem 1.1, implies uniformly controlled variations, Condition UCV of Theorem 1.1. In the
present setting, the relationship of the UT condition and some sort of “uniform worthiness”
is not clear and certainly not so simple. Consequently, the following theorem is really an
extension of the convergence theorem of Jakubowski, Mémin, and Pages (1989) rather than
the results of Kurtz and Protter (1991a), although in the finite dimensional setting of those
results, the conditions of the two theorems are equivalent.

Theorem 4.2 Foreachn =1,2,..., letY, be a standard {F'}-adapted, H #-semzmartmgale.
Let H , and HY be defined as in (4 2), and suppose that for each t > 0, HY is stochasti-
cally bounded. If (X,,,Y,) = (X,Y), then there is a filtration {F}, such that Y is an
{F:}-adapted, standard, H*-semimartingale, X is {F;}-adapted and (X,,Yn, Xn- - Yz) =
(X,Y,X_.Y). If (X,,Y,) = (X,Y) in probability, then (Xp,Yn, Xn--Yy) = (X,Y, X_.Y)
in probability.

Remark 4.3 a) One of the motivations for introducing H #_semimartingales rather than
simply posing the above result in terms of semimartingale random measures is that the Y,
may be given by standard semimartingale random measures while the limiting Y 1is not.

b) Jakubowski (1995) proves the above theorem in the case of Hilbert space-valued semi-
martingales. :

Proof. The stochastic boundedness condition implies that for each ¢,0 > 0 there exists
K(6,) such that for all R € H;, P{|R| > K(6,t)} < 6. Without loss of generality, we
can assume that K(6,t) is a nondecreasing, right continuous function of ¢. Note that this
inequality will hold for R = sup,<; |Z,- - Ya(s)| for any cadlag, {F7'}-adapted Z, satisfying
SUP,gt 1 Za(s)lla < 1

Let F, = 0(X(s),Y(p,s): s <t, ¢ € H). Define

Za®) = 3 FiXn Ya(@1, ), - YalBar )s D
i=1

where (fy,...,fm) is a continous function mapping Dgyge[0,00) into Cyy,,...om)[0,00),
A(pry .. om) = {@ € R™ : || T;aipillg < 1}, in such a way that fi(z,y1,...,94t) de-
pends only on (z(s),¥1(8), .- .,¥4(s)) for s < t (ensuring that Z, is {F*}-adapted and Z =
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Tr, (XY (@1, ), ..., Y(@a, )i is {F;}-adapted). Theorem 1.1 implies Z,,_-Y, = Z_-Y,
and it follows (using the right continuity of K(4,t)) that

P{sup|Z_-Y|> K(6,t)} < 6. (4.3)
s<t
By approximation, one can see that (4.3) holds for any process Z of the form
Z(t) =Y &(t)p:
i=1

where € = (&;,...,&n) is {F¢}-adapted, cadlag and has values in A(gy,...,¢m). By (4.3),
it follows that Y(p,-) is an {F;}-semimartingale for each ¢ and hence that Y is an H#*-
semimartingale. It also follows from (4.3) that Y is standard.

Finally, observing that || X,(s) — X£(s)||x /€ is bounded by 1, we have that

P{sup |Xp_ - Y, — X:_-Y,| > e(K(6,t)} <6
8<t

and similarly for X and Y. Consequently, the Theorem follows from Lemma 4.1. m]
Example 4.4 Many particle random walk.

For each n let X', k = 1,...,n, be independent, continous-time, reflecting random walks on
E,={;:i=0,...,n} with generator

Z(flz+i)+fz-1)-2f(z), 0<z<1
B.f(z) ={ n2(f(2) - £(0)), z=0
n2(f(1 - 1) - F(0), z=1

and X7 (0) uniformly distributed on E,. Let H = C*([0,1]) with ||¢||x = supy<.<; (l¢(z)] +
|¢'(2)]), and define

n

Yalpst) = = 3 (0 XE() - on™ X2(0) — [ Bagl(XE(s))ds)

k=1
Note that Y, corresponds to a martingale random measure and that
E[(Yn((;o’ t2) - Yn((P, tl))2|'7rt7:]
2 2

- LSy (P(XE(e) +2) = o(XE())” + (0(XE(s) = 3) — (XE(s)))

B ﬁk:l b - 2
It follows that for Z € Sg,

E[(Z_ - Ya(t))’] < t sup sup |Z'(s,z)* <t sup || Z(s)||%,
0<s<t 0<z<1 0<s<t

| 7).

and hence {Y;} is uniformly tight. The martingale central limit theorem gives Y, = Y
where Y is Gaussian and satisfies

¥ (01,0, Y (@2 e =t [ ' 0 ()0 () dz.

It follows that Y does not correspond to a standard martingale random measure.
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5 Convergence in infinite dimensional spaces.

Theorem 4.2 extends easily to integrals with range in R®. The interest in semimartingales
in infinite dimensional spaces, however, is frequently in relation to stochastic partial dif-
ferential equations. Consequently, extension to function-valued integrals is desirable. For
semimartingale random measures, this extension would be to integrals of the form

Z(t,z) = /U 0q X (=@ 0)Y (du x ds)
where X is a process with values in a function space on E x U. We will take (E,r) to be a

complete, separable metric space. More generally, let X be an H-valued process indexed by
[0,00) x E. If X is {F;}-adapted and X(-,z) is cadlag for each z, then

Z(t7 17) = X('—,il?) ) Y(t)

is defined for each z; however, the properties of Z as a function of = (even the measurability)
are not immediately clear. Consequently, we construct the desired integral more carefully.

5.1 Integrals with infinite-dimensional range.

Let (E,rg) and (U, ry) be complete, separable metric spaces, let L be a separable Banach
space of R-valued functions on F, and let H be a separable Banach space of R-valued functions
on U. (We restrict our attention to function spaces so that for f € L and ¢ € H, fo has
the simple interpretation as a pointwise product. The restriction to function spaces could be
dropped with the introduction of an appropriate definition of product.) Let Gr, = {f;} C L
be a sequence such that the finite linear combinations of the f; are dense in L, and let
Gu = {p;} be a sequence such that the finite linear combinations of the ¢, are dense in H.

Definition 5.1 Let H be the completion of the linear space {Z’-=1 2i=1 Gij f,-cpj: fi €Gr,p; €
Gy} with respect to some norm || - || 5-

For example, if

I m
12° 2 aifipilla

i=1j=1

=sup{)_ai; (X, fi)(m, i) : A € L*,n € H*, ||Al[z- < 1, ||nlln- < 1}

=1

then we can interpret H as a subspace of bounded linear operators mapping H* into L.
Metivier and Pellaumail (1980) develop the stochastic integral in this setting.

We say that a norm || - ||¢ on a function space G is onotone, if g € G implies |g| € G
and |g1| < |go| implies ||g1[l < [|g2llg- If [| - ||z and |} - ||z are both monotone, we may take

!l m Il m
13- aiifioillg = 11D Y asfivillela (5.1)

i=1 j=1 i=1 j=1
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Note that in the above examples, the mapping (f,@9) € Lx H — fp € H is continuous,
although in general, we do not require this continuity. R
Let {x = T axij fipj, kK =1,2,... be a dense sequence in H, where each sum is finite, and

let {¥)¢} be as in Lemma 3.1 with {x;} replaced by {¢x}. Then for each v € D0, 00), we
can define v(t) = 3% ¥E(v(t))(k, and we have ||jv(t) — v¢(t)||z < e. Furthermore, if we define

c;(v) = ; ¥ (v)aki; » (5.2)

then v¢(t) = X c§;(v(t))fiv;, and only finitely many of the {c;;(v(t))} are non-zero on any

bounded interval 0 <t < T.
With the above approximation in mind, let

X(t) = Zfij(t)fi%

where the §;; are R-valued, cadlag, adapted processes and only finitely many of the §;; are
non-zero. If Y is an H#-semimartingale, we can define

X ¥(W)= DAY [ 6ls-)av (es,).

Then X_ - Y is in D[0, 00).
Definition 5.2 Let S% be the collection of simple H-valued processes of the form

X = E fkijI[tk,tk+1)f‘i90j

where &;; is an R-valued, Fy, -measurable random variable and all but finitely many of the
&kij are zero, and let Sy be the collection of H-valued processes of the form

X(t) = Z &ii(t) fips

where the &;; are cadlag and adapted and all but finitely many are zero.

For X € S%‘
X_-Y ()= &iifi(Y (05, t Atryr) = Y (g5, t A i),
and for X € Sy
X--Y(t)= > fi /0: &ii(s—)aY (v;, ).
As in the R-valued case, we make th;J following definition.
Definition 5.3 An H#-semimartingale Y is a standard (L, H)#*-semimartingale if
| M ={IX- Y@l : X €S}, sp|X(@lg <1} (53)

is stochastically bounded for each t, or equivalently (as in Lemma 3.8)
Hey = {sup |X- - Y(s)llz : X € Sg, sup||X(s)|ly <1}
s<t 8<t

1s stochastically bounded for each t.
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As before, this assertion holds if there exists a constant C(t) such that for all X € Sy
satisfying sup,, [ X ()15 < 1,

E[|X--Y(®)ll) < C@).

H Y is standard, then, as in the R-valued case, the definition of X_ - Y can be extended to
all cadlag, H-valued processes X by approximating X by

Xt) = Zk:iﬁi(x Gk = 2 ci;(X () fis. (5.4)

In fact, Lemma 3.15 and Proposition 3.16 extend to the present setting and X -Y can be
defined for all predictable H-valued processes X satisfying the compact range condition.
Note that X - Y will be cadlag.

Remark 5.4 Other approaches. Metivier and Pellaumail (1980) develop an integral for,
wn our notation, H*-semimartingales with integrands whose values are bounded linear oper-
ators from H* to L. (Take || - ||4 to be given by (5.1).) They assume moment conditions
that imply that the integrator is a standard (L, H )#-semimartingale. These conditions are
sufficient to eztend the integral to all locally bounded predictable integrands. (See Remark
8.17.) DePrato and Zabczyk (1992) is a recent account of the theory of stochastic integra-
tion and stochastic ordinary and partial differential equations driven by infinite dimensional
Brownian motions of the form described in Ezample 8.19. Ustunel (1982) develops stochas-
tic integration in nuclear spaces. Mikulevicius and Rozovskii (1994) consider integrals in
more general linear topological spaces considering integrands in continously embedded Hilbert
subspaces determined by the covariance operator of the martingale.

5.2 Convergence theorem.

Let {Y;} be a sequence of standard (L, H)#-semimartingales and define

Mo = {1Xn- - Ya(®lle + X € S5, sup | Xa(s)lg < 1) (5:5)

If HY = UMY, is stochastically bounded for each ¢, we will again say that {Y,} is uniformly
tight. (Since bounded sets in L are not, in general, compact, this terminology is not entirely
appropriate; however, see Lemma 6.14.) As in Lemma 3.8, uniform tightness implies

Hy = Un{sup | Xo- - Ya(s)llz : Xn € S, g 5up | Xu(s)]|z < 1}
s<t s<t

is stochastically bounded for each ¢.
If L =R and H = H* with ||(¢1,..-,0)llg = 5, ll¢illa, then any uniformly tight
sequence of H#-semimartingales is a uniformly tight sequence of (L, H)*-semimartingales.

Theorem 5.5 For eachn=1,2,..., let Y, be a standard {F}-adapted, (L, H)*-semimar-
tingale, and assume that {Y,} is uniformly tight.
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If (Xn,Yn) = (X,Y), then there is a filiration {F;}, such thatY is an {F;}-adapted, stan-
dard, (L, H)*-semimartingale and X is {F:}-adapted, and (Xp,, Yy, Xo— - Y,) = (X,Y, X_ -
Y). If (Xp,Ya) = (X,Y) in probability, then (Xu, Yn, Xn- - Y,) = (X,Y,X_-Y) in proba-
bility.

Proof. Noting that Lemma 4.1 extends to this setting, the proof is exactly the same as the
‘proof of Theorem 4.2. O

5.3 Verification of standardness.

If L =C[0,1]) and H = R and we identify A with L, then a scalar semimartingale ¥ defines
a standard (L, L)#*-semimartingale if and only if Y is a finite variation process. In particular,
for any to <, <--- < t, =t we can define Z = T725 &1}y, 1., SO that

12 YOl = 3 ¥ (tier) - Y&,

=0

simply by ensuring that for each of the 2™ choices of §; = 1,7 =0, ..., m— 1, there is some
value of z € [0, 1] such that &(z) = 6;.

Fortunately, more interesting examples of (L, H )#-semimartingales exist in other spaces.
Let L = Ly(v), and assume that Y = M +V is a standard semimartingale random measure
with dominating measure K. Then, as is (2.6),

<t

E [sup (/Ux[o,s] X(s—,z,u)M(du x ds)) 2} (5.6)

s - X (s, z,v)| K (du x d
s4F [/Uxe[o,t]lx(s T, u)|| X (5=, z,v)| K (du x vxds)},

and, since the integral of the sup is greater than the sup of the integral, it follows that

2
E [sup ]
s<t L

<4E [/vax[o,z] /; | X (s—, z,w)|| X (s—, z, v)|v(dx) K (du x dv x ds)}

/U o X(s=ru)M(du x ds)

< . . |
<4E [ /U o K=l X (=, 2K (du x dv x ds)]

If the norm on H is the sup norm and || X (2)||5 = |1 X (&, -, )]z < 1,

2

)

E [Sslélt) /leo’s]X(s—,-,u)M(du x ds)

<4E[K{U x U x [0,1))]
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The analogous inequality for V is simply

E [sup /leo’a]X(s—, 1)V (du x ds)

<t

J

<B[[ . IX(m )iV ds)|
< BIGVI0 x [0, i)

With K defined as in (2.10) and V as in (2.12), suppose that K (du x dt) = h(u, t)u(du)dt
and V(du x dt) = g(u,t)u(du)dt. Let H = L,(p) for 2 < p < oo and again assume that
1X (@)l = 1X ., Yclls < 1. Then with 242 =1 and §+1 =1

2
)
<4B[[ [ 1X(s=,, 0)lth(u, s)u(du)ds]

: [ (] 1xes-s u)ngp,(du))‘% ([ inta, s)m(du)f ds]

/ot (/U I, S)I’u(du))% ds]

(with the obvious modification if 7 = co) and for V

E [sup

<t

/U o X (8= )M (du x ds)

<4E

<4F

-
b

E [sup

8<t

/Ux[o’a]X(s—, u)V(du x ds)

_ J

< . ~
. E _/I‘Jx[o,t] ”X(S 0 u)“LIVI(dU X ds)}
-

< i %
SB[ 1m0l x ds)

<E

< B[ [/ X(er2. Ml ] lotw, )t a3

/ot (/u lg(u, s)lq#(du))% ds] .

From the above inequalities, we see that, at least in the Hilbert space setting, we can
give conditions under which a semimartingale random measure gives a standard (L, H)#-
semimartingale and conditions under which a sequence of such (L, H)#-semimartingales
satisfies a uniform tightness condition. In particular, we have the following analog of Lemma
3.3. An analog of Lemma 3.4 will also hold.

Lemma 5.6 Let L = Ly(v) and || - ||z = |Ill - llz!l&- i

a) Let ||-||z be the sup norm, and suppose E[K (UxU x[0,1])] < oo and E[[V|({Ux][0,1])] <
oo for allt > 0. Then if sup, ||Z(s)||g < 1 and 7 is a stopping time bounded by a constant
)
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E[s%) |Z--Y(T+s)—2Z_-Y(1)|L] < 2\/E[K(U x U x (1,7 +1])] + E[|V|(U x [, 7 +1])]

nd
’ %1_1'% EK(U x U x (1,7 +1))] + E[(IV|(U x [r,7 +1]))}] = 0. (5.7)

b) Let H = Ly(u), for some p > 2, and for h and g as in (8.10) and (3.11), sup-
pose E[[g ||h(-,8)||L,ds] < oo and E[(Jlg(:, 8)llL,w)ds)?] < oo for all t > 0. Then if
sup, ||Z(s)llz £ 1 and 7 is a stopping time bounded by a constant c,

T+t T+t
Bloup 12-¥ (r+5)~2- Y () < 24/ BL[ I, lasodsh 4 BIC[ ™ ot lrde)o?

and _ T+t T+t .
lim B[ I8¢, 8)lgads] + BIC[ ™ N9t )llzggads)) = 0.

Now let L = C([0, 1]%) with the sup norm. It is clear from the discussion at the beginning
of this subsection, that we cannot let || f|| z = sup, ||f(z, -)|| & if we want interesting standard
(L, H)#-semimartingales. It is sufficient, however, to give H some kind of Hélder norm. In
particular, let M be an orthogonal martingale random measure and suppose the 7; defined
as in (2.20) satisfy

#ij(du x ds) = hj(u, s)vj(du)ds.

Let :7 + % = 1, and suppose for each ¢ > 0,

(/0‘ (/U Ih;(u, s)quj(dU)) %> f} < o0.

For k and o satisfying 0 < a < 1 and ka > d, define

Il = 3 ([ 15y *

=2

Ck,j(t) =F

and

lg(z,) — g(y, lm

lz—yle -
Recall that if M is continuous, then v; = 0 for j > 2 and H is just Lap(v5). Now suppose
X € S} and ||X|| < 1. Fix z,y € [0,1]7, and set

gl = sup llg(z, -)|# + sup
z zy

Z(ta z,y) = X("'Ta ')— ‘ M(t) - X(: y"')- ) M(t)
=/ 0K (5=220) = ¥ (5=, 3,)) M(du x ds)
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With reference to (2.21),

] k
Hyj(z,y) = E (/Ux[Ot] |X(s—,z,u)—X(s—,y,u)ljfr_,-(du><ds)) }

B |(f ([, om0 - X))’ (f o)) ]

! (/ot (/U |hj(u, s)|qu(du)) %) 5@}

= |z— ylaka,j(t)-

IN

< |z-y|*E

Then with reference to (2.25),
E[Z(t z,y)*] < K|z~ y|** (5.8)

where K is the largest number satisfying

yd

k )
K < CkCLES +3 (f)cﬁjk 2,

=2

The remainder of the proof of standardness is essentially the same as for the proof of the
Kolmogorov continuity criterion. (Recall that the exponent ak on the right side of (5.8) is
greater than d.) Note that any z € [0, 1]¢ can be represented as

=1

“ED> 5 (6i(z),...,05(z))
=1
where #%(z) is 0 or 1. Let z° = 0 and
g™ =Y =6 (z)
i=1 21

It follows that

X(,z,))- - M(t)=X(-,0,-)- M(t) + Z Z(t, ™1, ™).
m=0
For each 6 € {0,1}¥ and m =1,2,..., let
1
m@) = 3 |2y+ o)l

{velo,1)¢:2myezd}

" Then

sup |X(',27, ')-— M(t)l < lX(70, ')' M(t)l + i E ﬂm(g)%,

z€[0,1]¢ m=19e{0,1}¢
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and since by (5.8)

T nm(eﬁ] < S Y EpaGnt

[m=1 6e{0,1}¢ m=1g¢e{0,1}4

< £ 2fi(E)" ]

o i
< 2ktiE S (im) < o0,
m=1 2

the stochastic boundedness of H{ follows.

5.4 Equicontinuity of stochastic integrals.

The fact that the estimates in Lemma 5.6 along with those in Lemmas 3.3 and 3.4 tend
to zero as ¢ — 0 will be needed for the uniqueness theorem in Section 7. This fact holds
very generally for standard (L, A )#-semimartingales, although we have not been able to
prove that it always holds. The following lemma follows easily from Araujo and Giné (1980),
Theorem 3.2.8.

Lemma 5.7 Let {6;} be iid with P{f; = 1} = P{6; = -1} = 1, let {z;} C L, and define
Sk =Y, 0:z;. Then forp>1,

P
2P{||Sn||z > a} 2 P{IE?}“S)‘”L >a} > 21°P (1 a?(1+3 ))

El]|Sn]1Z)

Let fon(21s...,20) = E[||Snlli). If X1,Xa,... are L-valued random variables, independent
of the {6;}, and Sy = X, 6,X;, then

P{max ||Sllz > a} 2 27PP{fpn(X1,..., Xn) 2 2(1 + 3)a?}.

Remark 5.8 By definition, if L is cotype p, then fpn(Z1,...,2Zn) 2 ¢ T, ||z} - IfL is
uniformly convez, for each € > 0 there ezists a(e) > 0 such that

Fon(@1s- 1 Zn) 2 (6) 3 Teooy(llzille) (5.9)

=1

Note that the cotype inequality implies (5.9) (with 2 replaced by p). Since L,(v) is cotype 2
(see Araujo and Giné (1980), page 188) and L,(v), 1 < r < oo is uniformly convez, (5.9)
holds for all L.(v), 1 £ r < 0o0. The inequality fails for L (v).

Proof. If maxi<i<y ||z:i]|L > 2a, then P{maxi<, ||Sk|lL > a} = 1, so the bound ¢in Araujo

and Giné (1980), Theorem 3.2.8, can, in the present setting, be replaced by 2a, and the first
inequality follows. The second inequality is an immediate consequence of the first. 0
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Lemma 5.9 Suppose that L satisfies (5.9) (possibly with f,, replaced by fpn). LetY be a
standard (L, H)¥-semimartingale, and define

K(t,6) = inf{K : P{sup||Z_ - Y(s)llr 2 K} < 6,Z € 85,1 Z]l5 < 1}.
8<t

Then for each 6 > 0, lim;_o K(t,6) = 0. More generally, let T be a stopping time bounded
by a constant and define

K,(@t,6) =inf{K : P{sup||Z- - Y(r+8) = Z_-Y(")lL > K} < 6,Z € 83, |Z||5 < 1}.
<t

Then lim; o K,(t,6) = 0.

Proof. Consider the case 7 = 0. The general case is similar. Suppose that lim,_.o K (¢, 6) >
0. Then there exists t, — 0, K > 0, and Z, € S; with ||Z,||5z < 1, such that

P{sup || Zn- - Y(s)ll1 > K} > 26.
s<tn 3

Since Z,. - Y is right continuous and vanishes at zero, we can select 0 < r, < t, such that
K 6
P{ sup [|Zn--Y(s)=Zn--Y(ra)lle 2 5} 2 5.
Tn_<_3_<_t'n 2 2

Let

oo = inf{s > 1o : | Zae - Y(8) = Zn - Y(ra)llz 2 52{-},
and note that 5
-2_-

P{Zo - Y (00 Ata) = Zue V() 2 5} 2

Without loss of generality, we can assume that there is a sequence {6;}, as in Lemma 5.7,
that is independent of the Z, and is Fp-measurable. (If not, enlarge the sample space and
the filtration to include such a sequence and note that the stochastic boundedness of H is
unaffected.)

Select a subsequence satisfying ¢,, = t; and t,,,, < 7y, and define

m
209 = 35 6l gren o
k=1

Then Z(™ is cadlag and adapted, ||Z||; < 1, and setting Xy = Z,,— - Y (0n, Atn,) — Zny— -
Y(rn,)

m
Z_(_M) . Y(tl) = Z oka.
k=1
By Lemma 5.7 and (5.9)
Jm P{IZ Y ()l > a} 2 27P{IXils > &0} 2 277706
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Since a is arbitrary, this estimate violates the stochastic boundedness of H?, and the lemma
follows. 0

The following variation on the above lemma may be useful in proving uniqueness in spaces
in which (5.9) fails.

Lemma 5.10 LetY bea standard (L, H )#-semimartingale, let T be a stopping time bounded
by a constant, and let ' C H be compact. Define

K:(t,6,T) = inf{K : P{sup||Z_.-Y(r+s)-Z_-Y ()|t 2 K} < 6,Z € Sy, 2(s) €T, s < t}.
§<t

Then for each 6 > 0, lim,_,o K,(¢,6,T") = 0.

Proof. Take 7 = 0. The general case is similar. Let Z,, tn,, and 7, be as in the proof of
the previous lemma, and define

oo .
Z= Zl(rnk,tnkAa,.k]an-
k=1

Then Z is predictable and takes values in the compact set I'. Consequently, Z -Y is defined

and cadlag. In particular, lim; .0 Z-Y(t) = 0. But for r,, <t <t,,, Z-Y(t)~Z-Y(ry,) =
Zny—+Y(t) — Zp,— - Y(ry,) s0

. K

limsupsup||Z-Y(t)— Z-Y(s)|lL > =

t—0  s<t 2

with probability at least -,f;-, contradicting the right continuity at 0 and giving the result. O

6 Consequences of the uniform tightness condition.

Let {Y,} be a sequence of H#-semimartingales, and let H? be as in Theorem 4.2, that is,

HY = Up{|Xn- - Yo()] : Xy € Sé‘,sgg [ Xn ()|l < 1},

where Sg is the collection of simple, finite dimensional H-valued, {F7*'}-adapted processes.
The sequence {Y,} is uniformly tight (UT) if H? is stochastically bounded for each ¢ > 0.
For real-valued semimartingales, this condition appears first in Stricker (1985) where it is
shown to imply a type of relative compactness for the sequence of semimartingales previously
studied by Meyer and Zheng (1984) under somewhat different conditions. Jakubowski (1995)
develops the topological properties of the corresponding convergence, and Kurtz (1991) char-
acterizes the convergence in terms of convergence in the Skorohod topology of a time-changed
sequence. Uniform tightness is the basic condition in the stochastic integral convergence re-
sults of Jakubowski, Mémin, and Pages (1989). \
As noted previously, uniform tightness is equivalent to the stochastic boundedness of

Hy = Un{sup [ Xn- - Ya(s)| : X € 8™, sup || Xn(s)[lx < 1}, (6.1)
8<t s<t
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for each t > 0. In particular, if {Y,} is uniformly tight, for each ¢t > 0 and 6 > 0 there exists

a K(t, 6) such that

- P{sup | X, - Yo(s)| 2 K(t,6)} < 6 (6.2)
<t

for each n and all X,, € S" satisfying || X,(s)||z < 1. The following lemma is an immediate
consequence of (6.2).

Lemma 6.1 Let {Y,} be as above and let X, be an H-valued, {F]'}-adapted, cadlag process.
Let TM = inf{t : || X,|lg = M}. Then for allt,6 > 0,

P{ sup |Xo--Ya(s)| 2 MK(2,6)} < 6.

a<t/\-r,,

The next lemma gives conditions under which stochastic integrals of uniformly tight
sequences define uniformly tight sequences.

Proposition 6.2 Let Hy be a Banach space of functions on U with the property that g € Hy
and h € H implies gh € H and ||ghllg < ||9llmo||hlle- Let {Yn} be a uniformly tight sequence
of H#-semimartingales, and for each n, let X, be an H-valued, cadlag, F7*-adapted process
such that for each t, the sequence {sup,<, || Xn(s)||n} is stochastically bounded. Define

Zn(g, ) = an— Y,

for g € Hy. Then {Z,} is a uniformly tight sequence of HF -semimartingales. In particular
(taking Hy = R), {X,_ - Y3} is a uniformly tight sequence of R-valued semimartingales.

Proof. Let X, be a simple, {#"}-adapted, Hy-valued process satisfying || X.(s)|ln, < 1.
Then X,_ - Z, = X, X,- - Yy, and

P{sup | Xn- - Za(s)| > MK(t,6)} < 6+ P{sup || Xa(s)llz > M}.
8<t s<t

In particular, select M such that P{sup, ||X.(s)llz = M} < 6, and define K(t,26) =
MK (t,6). D

We have the following analogue of Lemma 3.10.

Lemma 6.3 Let {Y!} be a unzforml'y tight sequence of HY -semimartingales and {Y;?} a
uniformly tight sequence of H -semimartingales, where the conditions on Y} and Y? are
with respect to the same filtration {F7'}. Define H = {(¢1,%2) : o1 € Hy,p; € Hy}, with

el = el + llpallm, and Yo(p,t) = Yo(p1,t) + Y (@2, t) for ¢ = (p1,92). Then {Y,}
is a uniformly tight sequence of H¥-semimartingales.

We will need a number of technical lemmas regarding convergence in distribution in
the Skorohod topology. For any nonnegative, nondecreasing function a defined on [0, 00), we
define a~*(¢) = inf{u : a(u) > t}. Let T,[0, 00) be the collection of continuous, nondecreasing
functions v satisfying y(0) = 0 and lim; ., ¥(t) = oo. (Note that 4~ is right continuous and
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strictly increasing and that y(¢) = inf{u : y~(u) > t}.) If {X,.} is a sequence of processes in
Dg|0, 00) and {7} is a sequence of processes in T,[0, 00), then we say that {y,} regularizes
{X.} if {7;1(t)} is stochastically bounded for each ¢ > 0 and the sequence {(X © Vs, V.)}
is relatively compact in Dgyg[0,00). Note that if Y, = X, o 7, then X,(t) = Yo(771(2)).
The following lemma is a restatement of Theorem 1.1b,c of Kurtz (1991) using the above
terminology.

Lemma 6.4 Suppose that {v,} regularizes {X,} and that (X, o Yp, 1) = (Y,v). Then
(by the Skorohod representation theorem) there ezists a proability space on which are defined
processes {(Y,,, Yn)} converging almost surely to a process (Y, 4) in the Skorohod topology on
Dgxg[0, 00) such that (Yo, 4n) has the same distribution as (X, o > Yoy Yn) (and hence Xn
Y, 047 has the same distribution as X,,) and with probability 1, X,(t) — X(t) = Yo'y‘l(t)
for all but countably many t > 0.

If v s strictly increasing, then X, = Y oy™!

Remark 6.5 Under the conditions of Lemma 6.4, there ezists a countable set D C [0, c0)
such that for (t1,...,tn) C [0,00) — D, (Xp(t1),..., Xn(tm)) = (X(t1),...,X(tn)), for
X=Yoxyl.

It follows from results of Stricker (1985) and Kurtz (1991) that any uniformly tight
sequence of real-valued semimartingales can be regularized. We will prove a corresponding
result for H#-semimartingales. For a given R-valued, cadlag process X and u < v, N(u,v,t)
will denote the number of upcrossings of the interval (u, v) by X before time ¢, and for u > v,
N(u,v,t) will denote the number of downcrossings of the interval (v, u) before time ¢. Note,
for example, that |[N(u,v,t) — N(v,u,t)| < 1.

Lemma 6.6 Let {X,} be a sequence of cadlag processes with X, adapted to {F'}, and let
Np(u,v,t) count down/upcrossings for X,. Suppose that for each (u,v,t) € R® X [0, 00),
u # v, {Na(u,v,t)} is stochastically bounded and that for each t > 0, {sup,,|Xn(s)|}
is stochastically bounded. Then for each n there ezists a strictly increasing, {F7'}-adapted
process C,, such that for each t > 0, {Cy(t)} is stochastically bounded and {~,} defined by

= C;! regularizes {X,}, that is {(X, © Vn, )} is relatively compact in the Skorohod
topology.

Proof. Let {(u,u),! 2. 1} be some ordering of {(u,v) : u,v € Qu # v}. By the stochastic
boundedness assumptions, for k,l = 1,2,... there exist 0 < ¢;; < 1 such that

sup P{cpNo (us, v, k) > 27 *+0} < o-(k+D),
n

Define o
Cot)=1+t+ Z/o Cls}+1,08Nn (U, vy, 8).
=1
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Note that

oo t 00 [t]+1

Haoi(t)= ) / Cla+1,18Nn(u, v, 8) < Y Y culNo(w, v, k)
1=L+170 I=L+1 k=1
and
P{H,1(t) >271} < 27F,
SO

L
P{Cu(t) >t+a+2} <271+ P{3" Nu(w,u,t) > a},
I=1

and the stochastic boundedness of {Cy(t)} follows from the assumed stochastic boundedness
of {Nn(ul,vz,t)}.

Let v, = C;!, and define Z,(t) = X,(n(t)). Let € > 0 be rational. Note that each time
X, crosses an interval (u,v;), Cp, jumps and that each jump of C,, corresponds to an interval
on which ~,, and hence Z,, is constant.

Define 73" = 0,

Tegr = 10f{t > 7" : Zy(2) ¢ [[Zn(7)/ele — €, [Zn(7) /€] + 2¢€]}

and
Zi(t) = Za(%), T St<Ten

so that |Z,(t) — Z5(t)| < 2e. To show that {Z,} is relatively compact, it is enough to
show that {Z¢} is relatively compact. Since the Zf are piecewise constant, it is enough
to show that {sup,.,|Z:(s)|} is stochastically bounded (which follows from the fact that
SUP,<; | Z5(8)| < SUPyey | Xn(s)|) and that {min{rf — 7 : 7/ < t},n = 1,2,...} is
stochastically bounded away from 0, that is, for each § > 0 there exists an 7 > 0 such that
P{min{r5 — 70 : 7o < t} < n} < 6. Let c(u,v,k) = c if (u,v) = (u,v). Define
n(a,t) = min{c(ie, je, [t] + 1) : |ie|, |je] < a,j =i+ 1}. Then

P{min{r:5 — 70 : 72 < t} < n(e,t)} < P{sup|Z,(s)| > a}
s<t

since 77" > 1 and at each time 73" with k > 0, Z, finishes a downcrossing or an upcrossing
of an interval of the form [ie, (i + 1)e¢] and is constant for an 1nterva.l of length at least
c(ie, (i + 1)¢, [7] + 1) (in the case of an upcrossing) after time 74" implying 7475 — 70 >
clie, (i + Ve, [17] + 1), D

Following the proof of Theorem 2 of Stricker (1985), we have the following lemma.
Lemma 6.7 Let {Y,} be a uniformly tight sequence of R-valued semimartingales, and let

{N,} be as in Lemma 6.6. Then for u # v € R and t > 0, {Nn(u,v,t)} is stochastically
bounded.

Proof. Suppose v < v. Define 7 = 1nf{s > 0: Xn(s) < u}, 0f =inf{s > 70 : X,(s) >
v}, and for k > 1, 7 = inf{s > o} : Xn(s) < u}. Note that N,(u,v,t) = max{k :
ok < t}. Define Xy = Ty Jirpop). Then Xp - Ya(t) 2 (v — u)Ny(u, v,£)—2sup,, [Yn(s)]
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and hence, (v — u)Nu(u,v,t) < |Xon- - Ya(t)| + 2sup,, |Ya(s)]. Since {|Xn- - Ya(2)]} is
stochastically bounded by the definition of the uniform tightness of {¥,} and {sup,., |Y;(s)[}
is stochastically bounded by (6.1), the stochastic boundedness of {N,(u,v,t)} follows. The
proof for u > v is essentially the same. O

Lemmas 6.6 and 6.7 immediately give the following:

Lemma 6.8 For each n, let Y, be an R-valued {F}'}-semimartingale, and let the sequence
{Yr} be uniformly tight. Then there ezist {F}}-adapted C, satisfying C,(t) — Cn(s) > t—s,
t > s 20, and {Cya(t)} stochastically bounded for each t > 0, such that for v, = c;t,
{Yn 01} is relatively compact.

The next lemma gives conditions under which a process with values in a product space
can be regularized.

Lemma 6.9 For each k = 1,2,..., let (Ex,7x) be a complete, separable metric space, and
for each n = 1,2,..., let X7 be an {F}'}-adapted process in Dg,[0,00). Let E denote the
product space Ey x Ep X ---. Suppose, for each k, that {X[} is relatively compact (in the
sense of convergence in distribution in the Skorohod topology). (This assumption implies
that the sequence of E-valued processes {(X7, X2,...)} is relatively compact in Dg, [0, 00) x
Dg,[0,00) x- - - but not necessarily in Dg[0,00)). Then there ezist strictly increasing processes
{Cr}, such that C,(0) > 0; for t > s, Cu(t) — Cp(s) > t — s; for each t > 0, {Cr(t)} s
stochastically bounded; for each n, C, is {F;*}-adapted; and defining v, = C;1, the sequence
{(Xp,Xp,...)} obtained by setting X x = Xi oYy is relatively compact in Dg|0, 00).

Proof. Recall that a sequence converging in Dg, [0, 00) X D, [0, 00) x - - - fails to converge
in Dg[0,00) if discontinuities in two of the components “coalesce”. With that in mind,
C, should be constructed to slow down the time scale after a jump in such a way that
coalescence of discontinuities is prevented. Let NZ(t,7), ¢, > 0 be the cardinality of the set
{s: s < t,7(XP(s), XP(s—)) > r}. The relative compactness of { X7} ensures the stochastic
boundedness of {N}(t,7)} for each choice of ¢,7 and k. For m =0,1,2,...and [ = 1,2,.. "
let cx(1,2™™) = sup{c: ¢ < 1,sup, P{cN}([,2™) > 2™} < 2™} and for I -1 < s < |,
define ci(s,7) = c¢(l,27™) for 27™ < r < 27(mD ;> 1, and cx(s,r) = cx(l,1) for r > 1.
Then Ck(t) = To<; ck(s, Te(XP(s), XP(s~)) converges and

P{Ck(l) > z} < P{NP(1,27™) > 2 — I} +12~™. (6.3)

It follows from the stochastic boundedness of {N7(/,2~™)} and the fact that m is arbitrary,
that lim; . sup, P{C¥(l) > z} = 0. Finally, let 0 < a; <1 satisfy

sup P{an(C(1) - Gl ~ 1)) 2 27"} < 27%,

Define ax(s) = ay, 1 —1 < s <1 and

Cat)=t+ zk: Z ar(s)cx(s, r(Xp (), Xp(s=)). (6.4)

s<t

39



Noting that Cp(l) = I + ¥,—1 Tk akm(C¥(m) — Ck(m — 1)), the stochastic boundedness of
{Cx(t)} follows, as in (6.3), from the stochastic boundedness of the {CE(t)} and the definition
of the ay.

_ Note that 7, = C; ! is continuous, in fact, absolutely continuous with 7;, < 1. Setting
XP = X[ o,, we have {(7n, XP, X7, .. .)} relatively compact in S = Dg[0, 00) x D, [0, 00) X
Dg,[0,00) x ---. The proof of the lemma follows by showing that any subsequence that
converges in S also converges in Dgrxg[0,00). The Skorohod representation theorem (for
example, Ethier and Kurtz (1986), Theorem 2.1.8) and the characterization of convergence
in the Skorohod topology given in Proposition 2.6.5 of Ethier and Kurtz (1986) can be used
to complete the proof. O

Lemma 6.10 Suppose that {X,} is relatively compact in Dg[0, 00) and that Cy, is nonneg-
ative and satisfies Cn(t) — Cn(s) 2 ot — s), t > s 2 0 for some o > 0. Define v, = C;!
and X, = X, oYn. Then {X,} is relatively compact.

Proof. Note that v, is differentiable with v, < i Let w'(z,6,T) denote the modulus of
continuity for Dg[0, 00) defined in (3.6.2) of Ethier and Kurtz (1986). Then

W' (X, 8,T) < w'(Xp,6/a,T/a).

This estimate and the relative compactness of {X,,} implies the relative compactness of (X}
by Theorem 7.2 of Ethier and Kurtz (1986). O

The next lemma says that if a sequence of time changes regularized a sequence of processes
then a sequence of time changes that grows more slowly will also regularize the sequence of
processes.

Lemma 6.11 Let X, be cadlag, E-valued, and {F7'}-adapted. Let C: and CZ be strictly
increasing and {F7'}-adapted. Define 41(t) = inf{u : Ci(u) > t} and 1,(t) = inf{u :
CL(u) + C2(u) > t}. Suppose {X, 01} is relatively compact. Then {X, 0 v} is relatively
compact.

Proof. Let 0 =1t; <t; < :--. Then there exist 0 = sp < 81 < - - - satisfying Ya(sx) = 7 (tx)
and try; — tk < Sk41 — Sk It follows that w'(Xy 0, 6,t) < w'(Xpo 43,8,t), where w' is the
modulus of continuity defined in (3.6.2) in Ethier and Kurtz (1986). Since ,(t) < 75 (t), for
any compact set K C E, P{X,07.(s) € K,s <t} 2 P{Xn07:(s) € K,s < t}. The lemma
follows by Theorem 3.7.2 and Remark 3.7.3 of Ethier and Kurtz (1986). O

Lemma 6.12 If v, = C;! reqularizes {X,}, then for a > 0, 73 given by ¥3(t) = inf{s :
aCy(s) > t} regularizes {X,}. .

Proof. Note that 423(t) = y,(t/a) and that if {Z,} is relatively compact, then {Z,(-/a)} is
relatively compact. O
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Lemma 6.13 Suppose for each k =1,2,... and n=1,2,... C¥ is {F'}-adapted, Ck(t) -

Ck(s)>2t—s,t>s>0, for each t > 0 {C’"(t)} is stochastzcally bounded, and vk(t) =

inf{u: C’"(u) > t} regularizes {X%} in Dg[0,00). Then there ezists {F'}-adapted C,, such

that Cn(t)—Cp(s) >t—s,t > 820, for eacht >0, {Cp(t)} is stochastzcally bounded, and
= C;;! regularizes {(X},X2,...)} in Dg[0,00), E=E; x E3 x -

Proof. First construct a C, such that for 5, = C;1, {(X3 0, X2 0Fn, .. .)} is relatively
‘compact in D, [0,00) x Dg,[0,00) x - - - and then perturb C;, by a process constructed as in
(6.4) to obtain the desired C,,. D

The next result extends Lemma 6.8 to sequences of H# semimartingales.

‘Proposition 6.14 Let {Y,} be a uniformly tight sequence of H*-semimartingales, Y, adapted
to {F'}, and for each n, let U, be an {F}*}-adapted process in Dg[0, 00) where E is a com-
plete, separable metric space. Suppose {U,} is relatively compact (in the sense of convergence
in distribution in the Skorohod topology). Then there ezist strictly increasing, {F7}-adapted
processes Cp, with Cy(0) > 0, Cy(t + h) — Cr(t) > h t,h 2 0, and {Cy(t)} stochastically
bounded for all t > 0, such that, defining v, = C;! and Yy(p,t) = Ya(p, 1(t)), {V,} is
uniformly tight and {(Uy o 1, ¥,)} is relatively compact.

Proof. For C, with the desired properties, the uniform tightness of {¥,} follows from the
fact that v, < 1. By the uniform tightness of {Y }, to prove relative compactness, it 1s
enough to prove relative compactness of {(U, © Ya, Ya(¢1,), Ya(e2, ), - - )} in Dgygr=[0, 00)
for a dense sequence {y;} or for a sequence whose finite linear combmations are dense. By
Lemma 6.8, for each k = 1,2,... there exists a strictly increasing, {F;'}-adapted process
C* such that 4F defined by 7* (t) = inf{s : Ck(s) > t} regulanzes {Ya(pk,-)}. Letting
L(t) = t, there exist ay > 0 such that Cn = 1L+ 5 axC* exists and has the property
that for each t > 0, {C,,(¢)} is stochastically bounded. Setting 4, = €1, it follows from
Lemmas 6.11 and 6.12, that {(Us 0 ¥n, Ya(1, %0 (), Yn(2, 0 (), - . )} is relatively compact
in Dg[0,00) x Dg[0,00) X Dg[0,00) X ---. As in Lemma 6.9, we must modify C, to ensure
that discontinuities for different components do not coalesce. Setting, X? = U, and X} =
Yn(k, ), let NP (t,r) be as in the proof of Lemma 6.9. Note that {N}(¢,7)} is stochastically
bounded by the assumption that {U,} is relatively compact and that for k > 0, {N2(t,7)}
is stochastically bounded by the assumption that {Y,} is uniformly tight. (In particular,
this assertion follows from the fact that {[Y;];} is stochastically bounded for each ¢ > 0.)
Consequently, we can add the analogue of the right side of (6.4) to C, defined above to
obtain a nonnegative, strictly increasing, {#7'}-adapted process Cy, such that for v, = C;?,
{(Un © M, Ya(1, % (), Ya(®2, (), - - )} is relatively compact in Dgl[0, 00) x Dg0,00) x
Dg[0,00) x - - - (by Lemma 6.11) and discontinuities do not coalesce, so that, in fact, relative
compactness is in Dgyge[0, 00) as desired. m

Lemma 6.15 For each n, let Z, be an {F]'}-adapted process in Dy [0, 00), and suppose that
the compact containment condition holds, that is, for each € > 0 and t > 0, there ezists
a compact Ky C L such that P{Z,(s) € K.3,s < t} 2 1 —¢€. Let {N} C L* satisfy
sup; (i, z) = ||z||L for all z € L, and suppose for each i, the sequence {{)\;, Z,)} is uniformly
tight. Then there ezist {F7'}-adapted C,, satisfying Cp(t) — Cp(s) > t—s5,t > s> 0, and
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{Cn(t)} stochastically bounded for each t > 0, such that for v, = C;, {Z, 0 s} is relatively
compact.

Proof. By Lemma 6.8 there is a C% such that the corresponding +% regularizes {()\;, Z,)},
and by Lemma 6.13, there exists a C,, such that {({A\1, Z,07n), (A2, Zn07n), - . .)} is relatively
compact in Dge[0,00). The relative compactness of {Z, o v,} then follows from Theorem
3.9.1 of Ethier and Kurtz (1986). O

The following lemma generalizes Proposition 4.3 of Kurtz and Protter (1991).

Lemma 6.16 For each n = 1,2,..., let U, be an {F7'}-adapted process in Dr[0,00) and
let Y, be an {F7}-(L, H )#-semzmartzngale Suppose that {Y,} is uniformly tight and that
{(Un,Yn)} is relatively compact in the sense that {(Un, Yn(®1,+),- -, Ya(@m, )T is relatively
compact in Dpypm[0,00) for any finite collection ¢1,...,om € H . Let X,, be an {F}'}-
adapted process in Dy[0,00). Define :

Zu(t) = Un(t) + Xu- - Ya(2) .

Let C,, be a strictly increasing, {F;*}-adapted process with Cr(0) > 0 and Cp(t+h) —C,(t) >
h, t,h > 0. Suppose that {Cy(t)} is stochastically bounded for all t > 0. Define v, = C;?,
U, = Uporn, Yo =Ys09,, and X, = X, 0m, and suppose that {(Un,Xn,Y,,,'yn) 18 relatwely
compact in the sense that

{(Um Xm (Yn(‘pla.')a ey Yn(‘ﬁma ')’ 711)}

is relatively compact in D}, g, pmypl0,00) for ¢1,...,0m € H. Then {(Z,,Uy,Yy)} is rela-
tively compact.

Proof. First replace X, by X, defined by X;(t) = ¥ ¢;(Xn(?)) fip; where the cf; are defined
as in (5.2) giving

Z() = Un(t) + X5 - Yal(t) = Un(t) + 1_ f; /0 t ¢ (Xn(2))dYa(pj, 8)

and apply Kurtz and Protter (1991), Lemma 4.3, to obtain the relative comﬁactness of
{(Z5,U,,Y,)}. The lemma then follows from the uniform approximation of X,, by X¢ and
the uniform tightness of {Y,}. O

The following lemma shows that the “uniform tightness” terminology is appropriate even
in the infinite dimensional setting, that is, if we restrict our attention to integrands taking
values in a compact set, then the distributions of the values of the integrals are “tight” in
the usual weak convergence sense. .

Lemma 6.17 Let {Y,} be a uniformly tight sequence of standard (L, H )#-semimartingales.
Then for each compact 'y C H and n > 0, there ezists a compact 'y C L such that for any
T'o-valued, F}'-adapted, cadlag process Xn, P{Xp--Yo(s) €Ty,s<t}>1—17
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Proof. With {¢i} as in Section 5, let X5(2) = X ¥£(Xn ()G = 2 €5 (Xn(t)) fip;. Then
since sup,ck, ¢i;(z) = O except for finitely many values of i and j, say 1 < ¢ < I and
1 < j < J, and the coefficient of f; in the integral X:_ - Y,(t) will be of the form

J ot
3 [ si(Xn(s=)dYa(p9)

i=1

where the c;; are uniformly bounded on T, for any 7 > 0 there will exist a compact set of
the form

I
I={> aifi:|al < a;} (6.5)

=1
such that
P{X:_ -Y(s)el,s<t}>1-1n

for all To-valued, F7*-adapted, cadlag processes X,. Let I'* = {z : ||z — ||, < a}. Then for
6> 0,

P{Xp- - Yo(s) ¢ T¥0), some s <t} < mo+ P{sup [[(Xn- — X5_) - Ya(s)llL > €K (2, 6)}
’ s<t
< Mo + 6.

For m > 2, let 6, = 727™, let €y, = 1/(mK (t,6m)), and select Ty, of the form (6.5) so that
P{Xim -Yo(s) €T, <t} 21 =927 ™
for all I'p-valued, F*-adapted, cadlag processes X,. Then
P{X,- - Y,(s) ¢ T¥™ some s < t} < 52~("1),

and letting I'; denote the closure of n;',f=21“3,{'", we have

[+.<}
P{X,_-Y,(s) ¢ Ty, somes <t} < Y 727m =g

m=2
Note that I'; is compact since it is complete and totally bounded. O
The following lemma is an immediate consequence of Lemma 6.17.
Lemma 6.18 Let {Y,} be a uniformly tight sequence of standard (L, H )¥-semimartingales.
For each n = 1,2,..., let X, be an {F'}-adapted process in Dy[0,00), and suppose that
{Xn} satisfies the compact containment condition. Then {X,. - Y,} satisfies the compact

containment condition, that is, for n > 0, there ezists a compact I' C L such that P{X,_ -
Ya(s)el,s<t}>1—1.

43



7 Stochastic differential equations.
In this section we consider stochastic differential equations of the form
X@®)=U@®)+F(X,--)-Y(), (7.1)

where F : Di[0,00) — Dg[0, 00) and F is nonanticipating in the sense that for z € D.[0, 00)
and z(-) = z(- A t), F(z,t) = F(z,t) for all t > 0. The usual Lipschitz condition on F
implies uniqueness for equations driven by (L, A )#-semlmartmgales satisfying a condition
slightly stronger than the assumption that Y is standard. Weak existence, under certain
continuity assumptions, follows from a convergence theorem given below (see Corollary 7.7),
and strong existence follows from weak existence and strong uniqueness.

7.1 Uniqueness for stochastic differential equations.

Theorem 7.1 Let Y be an (L, H)#-semimartingale adapted to {F:}. Suppose that for each
{F:}-stopping time 7, bounded by a constant, and t,6 > 0, there ezists K.(t,6) such that

P{lz--Y(r+t) - Z_-Y(7)llL 2 K-(8,6)} < 6 (7.2)

for all Z € 8y, satisfying sup, |Z(s)|lz < 1, and that lim,_.o K, (t,6) = 0. Suppose that there
ezists M > 0 such that

sup || F'(z, s) — F(y, s)llz < Msup ||z(s) — y(s)|.
s<t s<t

for all z,y € DL[0,00). Then there is at most one solution of (7.1).

Remark 7.2 Note that if L and H are finite dimensional and Y is a finite dimensional
semimartingale, then the hypothesized estimate (7.2) holds.

More generally, if L satisfies the conditions of Lemma 5.9, then (7.2) will hold for any
standard (L, H)#-semimartingale.

Finally, one can apply Lemma 5.10 to prove unigueness for any standard (L, H )# -semi-
martingale under the additional condition on F that for each compact I" C L there ezists a
compact Ky C H such that z(s) € T, s < t, implies F(z,t) € Kp. (See Theorem 7.6 for -
another application of a related condition.) In particular, if F(z,t) = f(z(t)) for a Lipschitz '
continuous f : L — H, then uniqueness holds for all standard (L, H)#-semimartingales.

Proof. Without loss of generality, we can assume that K,(t,6) is a nondecreasing function
of t.

Suppose X and X satisfy (7.1). Let 7 = inf{t : ||X(t) — X ()|l > 0}, and suppose
P{ry < 00} > 0. Select 7,6,t > 0, such that P{ro < 7} > 6 and MK, .(t,6) < 1. Note
that if 75 < oo, then

X (10) = Xo(m) = (F(X,=) = F(X,-=))- Y(r0) = 0. (7.3)

Define i
= inf{s: || X(s) — X(s)||L > €}.
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Noting that || X (s) — X (s)||z < € for s < 7., we have
IF(X,s) = F(X,9)ll5 < eM,
“ for s < 7, and
IF(X,=)-Y(r) = F(X,-=) - Y(r)lle = |1 X(7) = X(r )l 2 €.
: Consequently, for 7 > 0, letting 75 = 70 A 7, we have

P{r.— 13 <t}
SP{ sup |IF(X,=)-Y(r§+5)=F(X,=) Y5 +5)llr > eMK;(t,6)}
8<tA(Te~7§) )
< 6.

‘Since the right side does not depend on € and lim,o 7. = 79, it follows that P{mp — 5 AT <
t} < 6 and hence that P{ry < r} < §, contradicting the assumption on § and proving that

To = OO a.S.
(]

Example 7.3 Eguation for spin-flip models.

A spin-flip model, for example on the lattice Z¢ is a stochastic process whose state 7 =
{mi : i € 2%} assigns to each lattice point i € 2% the value £1. The model is prescribed by
specifying for each i € Z¢ a flip rate c; which determines the rate at which the associated
state variable 7; changes sign. The rates ¢; may depend on the full configuration 7. We
formulate a slightly more general model by tracking the cumulative number of sign changes
X; rather than just the current sign. Of course, if the initial configuration is known, then
the current configuration can be recovered by the formula

7:(t) = mi(0)(~1) X=X,

The model, then, consists of a collection of counting processes X = {X; : 1 € z¢}, and
the specification of the rates ¢; corresponds to the requirement that there exist a filtration
{#:} such that for each i € z¢,

Xi(t) - [ a(X(s))ds (7.4)

is an {F;}-martingale. To completely specify the martingale problem corresponding to the
{c;} we must also require that no two X; have simultaneous jumps (that is, the martingales
are orthogonal).

We formulate a corresponding system of stochastic differential equations for the X;. Let
{N; : i € 2% be independent Poisson random measures on [0, 00) x [0, 00) with Lebesgue
mean measure. Then we require

Xi(t) = X;(0) + 0i(X(s—), z2)N;(dz x ds) (7.5)

[0,00)x[0,1]
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where 0 (@)
_J1 <z<L clz
0i(z,2) = { 0 otherwise

Note that any solution of this system will be a family of counting process without simultane-
ous jumps (by the independence of the N;). Letting N;(A) = N;(A) — m(A), we can rewrite
(7.5) as

- t
Xi(t) = X:(0) + (X (s=), 2) Ni(dz x ds) + / ci(X (s))ds . (7.6)
[0,00)x[0,1] 0
The second term on the right will be a martingale (at least, for example, if the ¢; are
bounded), and hence (7.4) will be a martingale.
-We now give conditions under which the solution of (7.5) is unique. Let J = {{k;,7 €
2%} : k; € 2,}. Assume

lei(z +€5) —ci(z)| L ai;  |al(z)] < b

for all z,y € J and 1, j € Z¢ where e; is the element of J such ej; = 0 for ¢ # j and e;; = 1.
In addition, assume that there exist a; > 0 and C' > 0 such that

Zaiaij < Ca; zaibi < 00. (7.7)
? 1

These conditions are similar to those under which Liggett (1972) (see also Liggett (1985),
Chapter III) proves uniqueness of the martingale problem for the spin-flip model. To give
a complete proof of Liggett’s theorem, we would need to show that any solution of the
martingale problem is a weak solution of (7.5). We do not pursue this issue here, but
see Kurtz (1980) for a closely related approach involving a different system of stochastic
equations. Uniqueness of (7.5) can actually be proved under the same conditions as used in
Kurtz (1980) using different methods; however, our point here is to illustrate the breadth of
applicability of the theorem above. -

In order to interpret the system as a solution of a single equation of the form (7.1), let
U = [0,00) x 2% and E = z¢, and define F;(z,u) = 0(z, 2);; for u = (z, ). Define

£l = T aulf@)
lellr = X [ etz d)ldz
J
loly = e [ l9G,2,)ldu= lllglallz

Then o
1P Ng < T [ low(e, Dldz = T oues(z) < Coub

and
IF(z,-) = F(y, )l Yiai [y loi(z, z) — 0i(y, 2)|dz
T ailei(z) — ci(y)]
i 04 X aijlT — v
Y Cajlz; — yj| = Cllz — y|l.

INIA T
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so F' is bounded and Lipschitz.
For many examples a;; = p(i — j), where p has bounded support and b; = b. One then

can take o; = T+TI_°'+— so that
pi—J) |k|"!+1 1
k) —
2 1+ [ie+t = ( upz ¥ ld+1 ) 1+ [j]e+

which gives (7.7).
To verify (7.2), suppose

1X()llg =3 e [ 1X(irz)ldz < 1.
i

Then
EIX--N@ls] = EX Yo [ X(s=i,z)Ny(dz x d)
t ] ) b
< F ; X(s—,1,2)|dzds
S B0 2)ldeds
< t

7.2 Sequences of stochastic differential equations.

Consider a sequence of equations of the above form
Xn(t) = Un(t) + Fu(Xas, =) - Ya(2). (7.8)

The following analogue of Proposition 5.1 of Kurtz and Protter (1991) is an immediate
consequence of Theorems 4.2 and 5.5.

Proposition 7.4 Suppose (U, X»,Y,) satisfies (7.8), that {(Uy, Xy, Yn)} is relatively com-
pact, that (U,,Y,) = (U,Y), and that {Y,.} is uniformly tight. Assume that F,, and F satisfy
the following continuity condition:

C.1 If (zn,yn) — (z,¥) in Dyxrn[0, 00), then
(zm Yn, Fﬂ(xm )) - (IL‘, Y, F(‘T’ ))
in DLxR"'x]?[O’ 00).

Then any limit point of {X,} satisfies (7.1).

In many situations, the relative compactness of {X,} is easy to verify; however, with
somewhat stronger conditions on the sequence {F,} (satisfied, for example, if F,(z,t) =
fa(z(t)) for a sequence of continous mappings f, : R* — H converging uniformly on compact
subsets of R* to f : R* — H) we can drop the a priori assumption of relative compactness
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of {X,}. Let T30, 00) be the collection of nondecreasing mappings X of [0, 00) onto [0, c0)
satisfying |A(t) — A(s)| < |t — s|. Let the topology on T3]0, 00) be given by the metric

L Aa(®) = Da(®)
h0uX) = T = N

¢ will denote the identity map, ¢(t) = t. We assume the following:

C.2a There exist G, G : Di[0,00) x T} [0, 00) — D40, 00) such that Fn(z)oX = Gp(zo ), \)
and F(z)o A= G(z o\ )), z € D1[0,00), A € T3]0, 00).

C.2b For each compact X C Dj[0,00) x T1[0,00) and t > 0,

sup sup “Gn(z, /\’ S) - G(.TJ, A, 3)”1] - 0.
(z,A)EK s<t

C.2c For {(zn, An)} € Dy[0,00) x T}[0,00), sup, ||Zn(s) — z(s)||l. — 0 and SUP,<; [ An(s) —
A(s)| = 0 for each t > 0 implies sup,, [|G(2n, An, 8) — G(z, A, 8)|| 5 — O.

Note that if F(z,t) = f(z(t)), then G(z, A\, t) = f(z(t)); if F(z,t) = f(J§ h(z(s))ds), then
G(z, A, t) = f(J§ h(z(s))N(s)ds). (See Kurtz and Protter (1991) for additional examples.)

The following theorem is the analogue of Theorem 5.4 of Kurtz and Protter (1991). For
simplicity, we assume that F,, and F' are uniformly bounded. The localization argument
used in the earlier theorem can again be applied here to extend the result to the unbounded
case.

Theorem 7.5 Let L = R*. Suppose (Un,X,,Y,) satisfies (7.8), that (Uy,,Y,) = (U,Y),
and that {Y,} is uniformly tight. Assume that {F,} and F satisfy Condition C.2 and that
Sup,, Sup, || Fu(z, )||gx < 0o0. Then {(Un, Xn,Yy)} is relatively compact and any limit point
satisfies (7.1).

Proof. Since Condition C.2 implies Condition C.1, it is enough to show the relative com-
pactness of (Uy, Xy, ). By Proposition 6.2 {F,(X,,-—)-Y,} is uniformly tight. By Propo-
sition 6.14, there exists a 7, such that {(Up 0 Ya, Fu(Xp, =) - Y 04,)} is relatively compact,
which in turn implies {(X,, 0 Y, Un 0 Yy Fn(Xy,—) - ¥, 07,)} is relatively compact. Setting
X=X, o0 Tn, €tc., Condition C.2a implies

Xn(t) = 0n(t) + Gn(Xn7 Tns '-) ‘ ?n(t)
and the relative compactness of {(X,, Uy, ¥;)} implies the relative compactness of
{(Xn, f]n, Yn, Gn(XAn, Tns ')7 7’!1)} .

By Lemma 6.16, {(X,, Us,Y,)} is relatively compact, and the theorem follows from Propo-
sition 7.4. |
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Theorem 7.6 Suppose (Uy, Xy, Yy) satisfies (7.8), that (Up,Y,) = (U,Y), and that {Y,} is
uniformly tight. Assume that {F,.} and F satisfy Condition C.2, that sup,, sup, || F,(z, -)|| g <
oo, and that for each k > O there erists a compact K, C H such that sup,<; 1z(s)llL < &
implies Fy(z,t) € Ky for alln. Then {(Un, X, Y,)} is relatively compact and any limit point
satisfies (7.1).

Proof. Again it is sufficient to verify the relative compactness of {(Un, X1, Yn)}. The
‘uniform tightness of {Y,} and the boundedness of the F, imply the stochastic boundedness
of {sup,<, | Xn(s)ll2}. The compactness condition on the F, then ensures that {F,(X,,-)}
satisfies the compact containment condition. The sequence {Fa(Xn,-—) - Y,,} satisfies the
compact containment condition by Lemma 6.18 which in turn implies {X,} satisfies the
compact containment condition. Lemma 6.15 then ensures the existence of 7, as in the
proof of Theorem 7.5, and the remainder of the proof is the same. ‘ O

Corollary 7.7 a) Let L = R*. Suppose that F and G satisfy C.2a and C.2c, that

sup [|F (@, )l < oo,

and that Y is a standard H¥*-semimartingale. Then weak ezistence holds for (7.1).

b) For general L, suppose that F and G satisfy C.2a and C.2c, that sup, ||F(z,-)||5 < oo,
and that F satisfies the compactness condition of Theorem 7.6, and that Y is a standard
(L, H)#-semimartingale. Then weak ezistence holds for (7.1).

Proof. Let F,, = F, and define U, (t) = U(l’;—tl) and Yn(p,t) = Y(e, I%tl) Let X,, be the
solution of
Xa(t) = Un(t) + F(Xp, =) - Ya(2)

which is easily seen to exist since U, and Y,, are constant except for a discrete set of jumps.
Then X,, Uy, Ya, and F, satisfy the conditions of Theorem 7.5 in part (a) and of Theorem
7.6 in part (b). Consequently, a subsequence of X, will converge in distribution to a process
X satisfying X (t) = U(t)+ F(X,-—)-Y (t), where (U, ¥) has the same distribution as U,Y),
that is, X is a weak solution of (7.1). O

The following corollary is the analogue, in the present setting, of a result of Yamada and
Watanabe (1971) stating that weak existence and strong uniqueness imply strong existence.
(See Engelbert (1991) for a more recent discussion.) The proof of the corollary is the same
as that of Lemma 5.5 of Kurtz and Protter (1991). We say that strong uniqueness holds for
(7.1) if any two solutions X; and X, satisfy X; = X, a.s.

Corollary 7.8 Suppose, in addition to the conditions of Corollary 7.7, that strong unique-
ness holds for (7.1) for any version of (U,Y) for which Y is a standard H# (or (L, H)*)-
semimartingale. Then any solution of (7.1) is a measurable function of (U, Y), that is, if
X satisfies (7.1) and the finite linear combinations of {;} are dense in H, there ezists a
measurable mapping

9 : Dpyxre[0,00) = D0, 00)

such that X = g(U,Y(¢1,+),Y(92,°),...). In particular, there erists a strong solution of
(7.1).
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Remark 7.9 Note that under the conditions of Theorem 7.1 (see Remark 7.2), the strong
uniqueness hypothesis of the present Corollary will hold.

The proof of the following corollary is essentially the same as that of Corollary 5.6 of
Kurtz and Protter (1991).

Corollary 7.10 Suppose, in addition to the conditions of Theorem 7.5 or Theorem 7.6, that
strong uniqueness holds for any version of (U,Y) for which Y is a standard H* (L, A)#)-
semimartingale and that (Uy,,Y,) — (U,Y) in probability. Then (Up, Yy, Xy) = (U,Y, X) in

probability.

8 Markov processes.

An H#-semimartingale has stationary independent increments if (Y (¢1,+),...,Y (¢m,*)) has
stationary independent increments for each choice of ¢y,...,m € H. I Y is a standard
(L, H)#-semimartingale with stationary independent mcrements F:L — H, and the equa-

tion
X(t) =z + F(X(--)) - Y(2) (8.1)

has a unique solution for each zo € L, then X is a temporally homogeneous Markov process.
If Y is given by a standard semimartingale random measure, then (8.1) can be written

X () = 70+ /U oy FOX(e2) )Y (@ x ds).

For 1,...,¢m € H, (Y(p1,%),..., Y (¢m,-)) has a generator of the form (see, for example,
Ethier and Kurtz (1986), Theorem 8.3.4)

' B(‘pl’ a‘Pm = 3 Z a’:](sola ,‘pm)aiajf(x) + f: b;’((,ﬁl, ey ‘pm)alf(w)
t,5=1 i=1
+ [ (@40 - 10 - 57 or o)

where it is enough to consider f € C®°(R™), that is, the closure of B(ypy,...,pm) defined
on C®(R™), the space of infinitely differentiable functions with compact support, gener-
ates the strongly continuous contraction semigroup on C(IR'") corresponding to the process
(Y(¢1,°);..+,Y(¢m,*))- The assumption that Y is standard H#-semimartingale implies
B(y,. .-, cpm) f is a continuous function of (¢1,...,¥m). (Note, however, that this continu-
ity does not imply the continuity of a;;.)
Suppose L = RF. Formally, at least, the solution of (8.1) should have a generator given
by '
Af(.’L') = B(Fl(x), crey Fk(z))f(z)a

that is, the solution of (8.1) is a solution of the martingale problem for A.
Consider a sequence of stochastic differential equations

Xa(t) = Xa(0) + oy (X (57) 0)Ya(du x ds)
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where Y, is an H#-semimartingale with stationary, independent increments, and let the
generator for (Yn(1,-),-..,Yn(¢m,)) be denoted B,(p1,...,¥m). The following theorem
is an immediate consequence of Theorem 7.5 and Theorems 1.6.1 and 4.2.5 of Ethier and
Kurtz (1986).

Theorem 8.1 Let L = R*. Let F in (8.1) be bounded and Lipschitz. Assume that {Y,}
4s uniformly tight, Y, is independent of X,(0), end X,(0) = X(0). Suppose for each
©1y---,9m € H and each f € CX(R™)

Jdim sup |Bn(1,- - > m) f(x) — B(e1, - - -, o) f(2)| = 0, (8.2)

and for each compact K C R*

lim sup || Fn(z) — F(2)||gx = 0.
ﬂ—'szK

Then (Xn,Yy) = (X,Y), whereY is a standard H# -semimartingale, (Y (p1,°),..., Y (¥m,*))
has generator B¢, ...,¢m), and X is the unique solution of

X(@®)=X(0)+ F(X(--))-Y(®).

Proof. The convergence of B, to B implies the convergence (Yn(¢1,:),...,Y(¢m,)) =
(Y(e1,%)y+-+3 Y(@m,*)), and the theorem follows from Theorem 7.5 i

For a specific form for (8.1), let W denote Gaussian white noise on Up X [0, 00) with
E[W(A,t)?] = u(A)t, let N; and N, be Poisson random measures on U; x [0,00) and
U, x [0,00) with o-finite mean-measures v; x m and v, X m, respectively. Let M;(A,t) =
Ni(A,t) — 1n(A)t, and note that

(Ml(A, '), Ml(B, ))t = tll](A N B)

Consider the equation for an R¥-valued process X

X(t) = X(0) + /U o

+ [ oy P2 (=), 0 Naldu x ds) + / " Fy(X(s=))ds . (8.3)

FolX(s=), w)W (du x ds) + /U o FYX (8=), )My x ds)

Note that the above equation. is essentially the same as that originally considered by It6
(1951). (The diffusion term in It6’s equation was driven by a finite dimensional standard
Brownian motion rather than the Gaussian white noise.) The generality of this equation is
demonstrated in the work of Cinlar and Jacod (1981).

Theorem 8.2 Suppose that there ezists M > 0 such that

|, Fote) = Futnwltutan) + [ | 1F(e,v) = By w)Pn
+ [ 1P(@,) - Py, w)ba(d) + 1RE) - BE)| < Moyl
2
Then there erists a unique solution of (8.3).
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Remark 8.3 This result is essentially Theorem 1.2 of Graham (1992), the only difference
being that we allow general Gaussian white noise and Graham only considers finite dimen-
sional Brownian motion. His methods, however, which employ an L,-martingale inequality
instead of the typical application of Doob’s Ly-martingale inequality (see Lemma 2.4 and
additional discussion below), could also be used in the present setting. As Graham points
out, the ability to use L, estimates is crucial for many applications. For ezample, consider
the equation corresponding to the generator

Af@) = [ Mz, 0)(f(z+u) - f@)v(dv)

given by

X(t) = X(0) + / wlip xx ooy ()N (du x dz x ds),
where N is the Poisson random measure on R? x [0, 00) with mean measure n = v x m. The
Ly(n) Lipschitz condition becomes

R4x[0,00)

/Rd ulA(z,u) — My, u)|v(du) < K|z — 3]

which will be satisfied under reasonable conditions on A. Since the square of an indicator is
the indicator, the corresponding Ly condition would require

/;;d u?|A(z,u) — Ay, u)|v(du) < K|z — y|?,

which essentially says that A(z,u) is constant in x. The classical conditions of Ité (1951)
(see also Ikeda and Watanabe (1981)) as well as more recent work (for ezample, Kallianpur
and Xiong (1994)) based on Ly estimates do not cover this ezample. Roughly speaking, L,
estimates will work if the jump sizes vary smoothly with the location of the process and the
jump rates are constant, but fail if the jump rates vary.

Proof. Let Hy = Ly(pu), Hy = Ly(vy), Hy = Li(1»), and H3 = R, and let Yy(p,t) =

Jv, ()W (du,t) for ¢ € Ly(p), Yi(p,t) = Jy, p(u)Mi(du,t) for ¢ € Hy, Y2(<p, t) = [y, p(u)No(du, t)
for ¢ € Hy, and Y3(p,t) = gt forp € R. Yy and Y, are standard Ho and H1 -sem1mart1ngales
respectively, by Lemma 3.3. For Z € Sg,, we have

E[|Z- - Ya(t)[] < E| /sz[o,q 12 (5=, 0)| Na(du x ds)] = E /o’ /Uz |Z(s—,u)|va(du)ds] ,

which implies Y; is a standard HJ -semimartingale. Trivially, Y3 is a standard H -semi-
martingale. Setting H = Hy x H; X Hy x H3, Y defined as in Lemma 3.10 is an H#-
semimartingale, and the theorem follows by Theorem 7.1 and Corollaries 7.7 and 7.8. O

Let X and X be solutions of (8.3). Graham’s approach (cf. Remark 8.3) depends on the
inequality

‘ EwplX(9)- X < EIX(©) - XO)]
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+C\E [(/t/ |Fo(X (s=),u) — Fo()?(s—),u)|2u(du)ds ]
+01E[(/ / IF(X (s=),u) — Fi(X(s-), u)lzul(du)ds) ]
+E [ /0 /U IR(X(s-),0) - Fg(X(s—),u)lug(du)ds]

+B [ [[ IF(X(5-)) = Fs(X(s-))lds]
< E[X(0) - X(0)]] + D(vt+ t)E[s1g> 1X(s) — X(s)]] (8.4)

where C, is the constant in Lemma 2.4 and D depénds on C; and the Lipschitz constants
of Fy - F3. Uniqueness follows by selecting ¢ so that D(\/- t+1t) < 1. We will need estimates
like this one in Section 9

9 Infinite systems.

Most uniqueness proofs for stochastic differential equations are based on L,-estimates. Gra-
ham (1992) is one exception (see Remark 8.3), and as he notes, L,-estimates may be com-
pletely inadequate in treating jump processes. Example 7.3 illustrates the problem. For
that example, E[(0:(X(2), 2) — 0:(X(t), 2))?] = E[|lo:(X(t), z) ~ 0;,(X(t), 2)|], since o; is an
indicator function, and any attempt to estimate E[(X;(t) — X;(t))?] by the usual Gronwall
argument will fail. One of the main advantages of the techniques developed in Theorem 7.1
is that a mixture of L, and L, (or other) estimates can be used to to obtain the fundamental
estimate (7.2).

For finite dimensional problems or single equations in a Banach space, the techniques of
Theorem 7.1 should work any time either L, or L, estimates work. (One exception appears
to be the results of Yamada and Watanabe (1971) involving non-Lipschitz F.) For infinite
systems, however, there are several examples for which L, or L; methods are effective but
for which we have not found an analogue of the approach of Theorem 7.1. Example 7.3 is
in fact one. The conditions under which we have applied Theorem 7.1, although they cover
most of the standard examples of spin-flip models, are not the usual conditions employed.
For example, the conditions in Liggett (1985), Chapter III, require sup; 3°; a;; < co. Kurtz
(1980) considers the general L, in i, L, in j analogs of the L; in i, and L in j conditions
covered in Example 7.3 and the L in ¢, L; in j conditions of Liggett.

9.1 Systems driven by Poisson random measures.

We consider a system more general than (7.5)
Xi(t) = X:(0) + /V o FUCX(5=),0)N (@ x ds) (9.1)

where N is a Poisson random measures on V' X [0, 00) with mean measure v x m. Note that
to represent (7.5) as an equation of the form (9.1), let V = 2¢ x [0, 00), ¥ = v X m where 7
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is the measure with mass 1 at each point in Z¢, and
.F,'(Z', (k, Z)) = 0','((1,‘, z)6ik-

We assume that E[|X;(0)|] < co and

[ ECHES

which ensures that E[|X;(t)|] < E[|X;(0)]]+ bt < co. Observe that if X and Y are solutions

of (9.1) with X (0) = Y(0), then
t
BlIX(t) - Yol < [ Bl[ IR(X(s-),) - F(¥ (s-), v)lv(dv)lds .
With this inequality and Example 7.3 in mind, we assume that

[, 1Fi(z,0) - Fw, o)lv(d) < Tesla; ~ w5l
J

which implies

aEIX0 - YO < [T 0B () - ¥

a;a; 5
O

<

[ Bl (6) = Y5}l s

where

1/p
NFG D, = (Z If(i,j)l”}

and similarly for || - ||, ;. If
llejbjllgs < o0,

then ||, E{[X;(s) - Yj(s)]]ll, ; < oo, and (9.3) implies

;044 t
les E[|X:(t) = Yi@®)l, < Jil— les E{1X;(s) — Yi()lll, 5 ds -
a] 5.j 0 .
! q,i
Consequently, if
% MNpillg,

by Gronwall’s inequality, )
e B[ X:(t) — Ya(®) ]Il = 0

and hence X =Y.
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Note that with the appropriate definition of V, a system of the form

Xi(t) = X(O)+Z /o«,) o F(X (=), 2) Nua(dz x ds) (9.7)

where the Ny are independent Poisson random measures with mean measure m x m, can
be written in the form (9.1). Let

Fii(z,2) = (1 = z)zibulio ary) (2) — (1 — 1) bridjo ace,)(2),

and assume that X;(0) is 0 or 1 for each i. Then (9.7) gives a simple exclusion model with
jump rates A(k,l), that is, a particle at k attempts a jump to [ at rate A(k,!); however, if
is occupied, the jump is rejected. Note that

> [ \Fu(a,2) - Fnly, 2)ldz
k,l

< 2N =2z ~ (1= ga)yel Ak, 8) + D |2:(1 — @) — (1 — w)|AG, )
.k 1
We see that (9.2) is satisfied for

=Z/\(k,2)+2)\(2,1) a,,]=/\(z,])+A(],Z), Z#]

k#i 1#i
If

sup ) _(A(4,4) + A(J,9)) < 00
tog#

then (9.6) is satisfied for p =1 and ¢ = >

9.2 Uniqueness for general systems.
We now consider a general system of the form
Xi(t) =Ui(t) + Fi(X,--) - Yi(t) (9.8)

where for each i, Y; is an (L, H)#*-semimartingale and F; : Dy [0,00) — H and is nonantic-
ipating. Recall that while the product space L™ is not a Banach space, it is metrizable with
a complete metric, for example,

Z l|zx — ?Jk”L Al

dL°° (:L‘ ’ y)

We could allow L and H to depend on i, but the notation is bad enough already. With (8.4)
in mind, the following theorem employs L;-estimates. A similar result could be stated using
Lo-estimates.
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Theorem 9.1 Suppose that for each T > 0, there ezists a nonnegative function Cr such that
for every cadlag, adapted, H-valued process Z and each stopping time 7 < T and positive
numbert <1

E[s’gg |1Z- - Yi(r+ s) — Z_ - Yi(7)llg] £ Cr(t)E[sagg NZ(7 + 8)l| 4] (9.9)

and lim,_o Cr(t) = 0 (cf. (8.4)). Assume (cf. (9.2)) that for z,y € Dyr=[0,00) and all
t>0, ||Fi(z,t)|| < b and

I1Fi(z,1) = By g < 5 assup lzs(o) - )l (5:10)
%

and that for some positive sequence {c;} and some p and g satisfyingp™' + ¢! =1

lleibjllg,; < o0, (9.11)
2i%ij < 00. (9.12)
aJ p’j q’i

Then there exists a unique solution of the system (9.8).

Remark 9.2 a) Shiga and Shimizu (1980) give a similar result for systems of diffusions.
b) One advantage of L, and Ly estimates over the probability estimates used in Theorem
7.1 is that a direct, iterative approach to ezistence is possible.

Proof. To show uniqueness, let X and }Z’ be solutions of (9.8) and let 7 = inf{t : X(t) #
X(t)}. Fix T > 0. Asin (7.3), X(r) = X(7), so by (9.9) and (9.10),
Efsup || Xi(r AT +8) = Xi(r AT + 5)||1]
s<t
= Efsup | (R(X, =) = R(X, =) - X7 AT + 8)lls

< Cr(t) 2 aisBlsup [1X;(r AT + ) = Xi(r AT+ 9)llz),
j s<t

and hence, as in (9.5),

a;E[sup | Xi(r AT + 8) = Xi(t AT + 8)||.] (9.13)
s<t a,i
<@ ||| | |esElsup 1 Xs(r AT +5) = Xs(r AT +5)llz)
j prj q’i Sst qu
and selecting ¢ > 0 such that
or(t) ||| 224 <1, (9.14)
aJ plj gyt
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we see that 7 > 7 AT +t a.s, which, in particular, implies 7 > T a.s. Since T is arbitrary,
7 = 00 a.s. and the uniqueness follows.

If ¢ satisfies (9.14), then existence on the time interval [0,¢] follows by iteration using
(9.13), that is, let X° = 2° and define X™ recursively by

XIH(t) = Ui(t) + Fi(X", =) - Yi().
Then as in (9.13),

o Elsup X7+ (s) = XP()le]

ai

;0;;

< Cr(t) : (9.15)

_ a;Efsup [| X7 (s) — X77(s)|lc]
J P,j [ X} st a.J

and it follows that { X"} is Cauchy. For s < T, if existence is known on [0, s], then the solution
can be extended to [0, s+ t] by the same interation argument. Consequently, existence holds

on [0,T), and since T is arbitrary, we have global existence of the solution. O

9.3 Convergence of sequences of systems.

We now consider a sequence of systems of the form
Xn,i(t) = Un,i(t) + Fn,i(Xm '—-) . Yn,i(t) (9.16)

and extend the convergence theorems of Section 7 to this settings. (Note that the extension
to finite systems is immediate.) We view X, = (Xpn1,Xn2,...) and U, = (Uyp1,Upa,...)
as processes in Dy=[0,00) and F, = (Fp1,Fpna,...) as a mapping from Dy«|[0,00) into
Dje[0,0), and by (Uy,Y,) = (U,Y), we mean that

(Un’ Yn,l(wl,l)y ey Yn,l((pl,ml)a ceey Yn,l(ﬁol,l)a ey Yn,l(‘pl,m,))
= (U7 Y?l(‘pl,l)) ey Yl(‘Pl,m;), veey K(‘Pl,l)a ey YE(‘Pl,m;))

in Dpeygmi+-+m [0,00) for all choices of ¢, ; € H. Recall that convergence in Dy« [0, 00)
is equivalent to convergence of the first £ components in D;x[0, 00) for each k£ and that a
sequence of processes {X"} in Dy[0, 00) satisfies the compact containment condition if and
only if each component satisfies the compact containment condltlon We need the following
modification of Condition C2.

C.3a There exist Gy, G : Dp=[0,00) X I3[0, 00) ~— Dge [0, 00) such that F,(z) o A = Gu(z 0
A A) and F(z)oA=G(z o A, A), £ € Dio[0,00), A € T1[0, 00).

C.3b For each compact K C D0, 00) x T1[0,00) and ¢t > 0,
Sup SUpdge(Gn(z, A, 8),G(z, A, s)) — 0.

(z,A)EK s<t
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C.3c For {(2n, An)} € D1=[0,00) x T3 [0, 00), sup,<; dre (Tn(s), (s)) — 0 and sup,; | An(s)—
A(s)| = 0 for each ¢ > 0 implies sup,<; dge(G(Zn,s An, 8), G(g, A, 8)) — 0.

Theorem 9.3 Let L = R*. Suppose that (U, X,,Y,) satisfies (9.16), that (U,,Y;) =
(U,Y), and that {F,} and F satisfy Condition C.3. For each i, assume that {Y,;} is uni-
formly tight and that sup,, sup, ||Fyi(z, )||g+ < 00. Then {(Uyn, Xn, Ya)} is relatively compact
and any limit point satisfies (9.8).

Proof. As in the proof of Theorem 7.5, it is enough to show the relative compactness of
(Un, X», Yz). By Proposition 6.2, {Fp, ;(Xy,—) : Ya,:} is uniformly tight. By Lemma 6.9 and
Proposition 6.14, there exists a 7, such that {(Up © Yp, Fa(Xp, =) - Yn 0 15)} is relatively
compact, which in turn implies {(X; 0y, Upn©¥n, Fn(Xn, =) - Yo 0,)} is relatively compact.
Setting X, =X, o0 Tn, €tc., Condition C.3a implies

Xa(t) = Un(t) + Ga(Xny Yor =) - Ya(t)
and the relative compactness of {(X,, Uy, ¥,)} implies the relative compactness of
{(an Ijn, f’m Gn(Xn, Tns ')7 ’771)} .

Recalling that relative compactness in Dy« [0, 00) is equivalent to relative compactness of
the first £ components in Dy« [0, 0o) for each k, by Lemma 6.16, {(Xy, Uy, Y5)} is relatively
compact, and the theorem follows from the analog of Proposition 7.4. O

Theorem 9.4 Suppose that (Un, Xy, Y,) satisfies (9.16), that (U,,Y,) = (U,Y), and that
{F.} and F satisfy Condition C.3. For each i, assume that {Y,;} is uniformly tight, that
sup,, sup, || Fri(z, )|z < 0o, and that for each sequence of positive numbers {k,}, there ezists
a compact K; () C H such that SuPs<; l|7;(s)ll < K for all § implies Fy, i(x,s) € Kiyx,
for all s <t and n. Then {(Up, Xn,Yn)} is relatively compact and any limit point satisfies

(9.8).

Proof. Again it is sufficient to verify the relative compactness of {(Uy,Xn,Yn)}. The
uniform tightness of {Y,} and the boundedness of the F, imply the stochastic bounded-
ness of {sup,, || X5,i(s)||L} for each 7. The compactness condition on the F,; then ensures
that {F,, ;(Xn,-)} satisfies the compact containment condition. It follows that the sequence
{Fni(Xys, =) - Y, } satisfies the compact containment condition by Lemma 6.18 which in
turn implies {X,;} satisfies the compact containment condition. Lemma 6.15 and Lemma
6.9 then ensure the existence of 7, as in the proof of Theorem 9.3, and the remainder of the
proof is the same. O

The proofs of the following corollaries are the same as for the corresponding results in
Section 7.
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Corollary 9.5 a) Let L = R*. Suppose that F and G satisfy C.8a and C.8c and that for
each i, sup, ||Fi(z, )||ax < oo andY; is a standard H# -semimartingale. Then weak existence

holds for (9.8).

b) For general L, suppose that F and G satisfy C.8a and C.8c¢ and that for each i,
sup, ||Fi(z, )|z < oo, F; satisfies the compactness condition of Theorem 9.4, and Y; is a
standard (L, H)*-semimartingale. Then weak ezistence holds for (9.8).

Corollary 9.6 Suppose, in addition to the conditions of Corollary 9.5, that strong unigue-
ness holds for (9.8) for any version of (U,Y) for which eachY; is a standard H* (or (L, H)#* )-
semimartingale. Then any solution of (9.8) is a measurable function of (U,Y), that is, if
X satisfies (9.8) and the finite linear combinations of {yr} are dense in H, there ezists a
measurable mapping
9 : Dysoyreo[0,00) = Dye[0, 00)

such that X = g(U,Y (¢1,-—), Y (¥2,),...). In particular, there ezists a strong solution of
(9.8).

Corollary 9.7 Suppose, in addition to the conditions of Theorem 9.8 or Theorem 9.4, that
strong uniqueness holds for (9.8) for any version of (U,Y’) for which each Y] is a standard H*
(or (L, H)# )-semimartingale and that (U, Y,) — (U,Y) in probability. Then (Uy, Y., Xp) —
(U,Y, X) in probability.

10 McKean-Vlasov limits.
We now consider an infinite system indexed by i € 2
Xi(t) = Ui(t) + Fi(X, Z,—) - Y;(t)
which we assume to be shift invariant in the sense that {(U;,Y;)} is a stationary sequence

and Fi(z, z,t) = Fy(z.44, 2,t). We require that {(X;, U;,Y;)} also be stationary (which it will
be if uniqueness holds) and that Z be the P(L)-valued process given by

Z(t) =

i(t)
1— -k

where convergence is in the weak topology. Note that a.s. existence of the limit follows from
the ergodic theorem and that Z(¢,I') = P{X;(t) € I'|Z} a.s., independently of i, where 7
is the o-algebra of invariant sets for the stationary sequence {(X;,U;,Y;)}. Since D.[0, o)
is a complete, separable metric space, there will exist a regular conditional distribution Q
on B(D.[0,00)) for X; given Z, and we can take Z(¢,I') to be Q{Xi(t) € I'}. Since for
any probability measure on Dy[0,00), the one dimensional distributions will be cadlag as
P(L)-valued functions, Z will be a cadlag process.

Typically, the driving processes in models of this type are assumed to be independent.
(See, for example, Graham (1992), Kallianpur and Xiong (1994), and Méléard (1995) for
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further discussion and references.) In Section 11.1, we will see how a model of Kotelenez
(1995) can be interpreted as a system of the present type in which the Y; are identical.
Let a;,b > 0 and Y, a; < co. We assume

1Fo(z,2,8) - Fo(&, 2, t)ll g < 2_ assup llzi(s) — :(s)| + bsup pw (2(s), 2(s))

where pw is the Wasserstein metric on P(L), that is, letting B, = {f € C(L) : |f(z)| <
Lif(z) - f@)| < llz - yllz,z,y € L},

pwp,v) = sup | [ au- [ savl.

In addition, we assume that Y; satisfies (9.9) of Theorem 9.1 and that sup, . [|Fo(z, 2, t)||5 <
0o. Then uniqueness holds as in the proof of Theorem 9.1 with p = 1 and ¢ = oo. Observe

that
k

ow(2(8), Z(0) < Jim £ 3 It8) = Kl

To see that existence holds, let Z%(t) = u for some fixed 4 € P(L), and define X"+!
recursively as the solution of

Xin+1(t) = Ui(t) + Fi(Xn+1’ z", '_) : Y;(t)

where Z" is defined by

z"(t,T) = lim — Z&Xn(t)(r) a.s.
Note that X™*! exists and is (strongly) unique, given Z", as in Theorem 9.1. By the strong
uniqueness, X" is a functional of (U,Y’), and we can take Z"(¢,I") = P{X}(t) € ['|T}, where

7 is the invariant o-algebra for (U,Y’). In particular, as noted above, we can take Z" to be
a cadlag process in P(L). As in the proof of Theorem 9.1, we have

Blsup X7 (s) - X7l (10.1)
< Cr(t) (E a;Blsup X755 (s) = X5 (s)llc] + bE(sup pw (27 (s), Z"‘l(s))]) :

Since by stationarity, E[sup,, I X+ (s) — XP(s)llL] = Efsup,<; ||XJ'-‘+1(s) - X} (s)||L], we
have
(1~ Cr(t) ) Blsup |1 X11(6) ~ X7 (s)lc] < Cr(®pBlsup X7 (6) = X7 ()l
3 8< 8<

and we have convergence on [0, t] provided

CT(t)b

<1
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Existence for all ¢ then follows.
We now obtain X as the limit of finite particle systems. In particular, we consider the

system

X7(t) = Ui(t) + (X", Z", =) - Yi(2)
for —n < i < n with “wrap-around” boundary conditions, that is, for j ¢ {-n,...,n}, we
set XJ = X7, where —n < j(n) < n and |j — j(n)| is a multiple of 2n + 1. Z" is the
empirical measure

ZMt) = Z X2 ()
Let Z™ be defined by
) () =
Z0() = 5 ;,, 8x:(t)

and note that lim,_,o pw(Z™(t), Z(t)) = 0 a.s. We want this convergence to be uniform. In
general, for sequences {g,} C P(DL[0,0)), g¢» — ¢ does not imply that the marginals con-
verge, let alone uniformly, unless the marginals of the limit g are continuous. Consequently,
we assume that Z is continuous which implies that

lim sup pw(Z™(s), Z(s)) = 0 a.s. (10.2)
n—=00 ooy -

for each t > 0. We suspect that in the current situation (10.2) will hold without the continuity
assumption; however, the assumption is in fact rather mild and will hold, for example, if for
all 4,5, (U;, ;) and (U;,Y;) have a.s. no common discontinuities.

As in (10.1), we have

Blswp 1(s) = X7l
< Cr(t) (23: aj-iE[sg 1X;(s) — X7 (s)llz] + bE[sal;g pw(Z(s),Z "(s))])
< Cr(t) (; aj-<E[sup |1 X1 (5) = X7 (5)1c] + bElsup pw (2(s), Z7(s))]
+ 3 oy Bl I5(6) = X o)) + VEsup o (2(6), 2]

- lil>n

Noting that

Elsuppw(Z‘"’(S) Z(s))] < Z E[SUP [1X5(s) — XF(s)ll2],

2n+1 &,
if we define the matrix D" by
b

D{‘j= Z aji_; + ——
i'(my=i 2n +1°
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and set R}(t) = Elsup,<, [|Xi(s) — X!(s)|lL] and

SP(H)= 3 aj-sBlsup 1X3(s) = Xyo()llz] + bElsup pw (2(5), Z2(s))]

fil>n

for —n < i < n, then for ¢ sufficiently small, Cr(t)(X;a; +b) < 1, and (I - Cr(t)D")1 =
T2 o (Cr(t)D™)* is a matrix with positive entries which implies

R*(t) < (I - Cr(t)D™)™'8™(t),

and the convergence follows.

11 Stochastic partial differential equations.

Let Y be an (L, H)#-semimartingale. We consider equations which, formally, can be written
as

X(0)=X0)+ [ " AX(s)ds + B(X(-—)) - Y(2) (11.1)

where A is a linear, in general unbounded, operator on L. Typically, L is a Banach space of
functions on a Euclidean space R? and A is a differential operator (for example, A =A), but
for our purposes we will let L be arbitrary and assume that A is the generator of a strongly
continuous semigroup on L. In most interesting cases (see Walsh (1986) and Da Prato and
Zabczyk (1992) for systematic developments of the theory), (11.1) cannot hold rigorously in
that no solution will exist taking values in the domain D(A) of the unbounded operator A.
Consequently, (11.1) must be interpreted in a weak sense. For example, letting A* denote
the adjoint of A defined on some subspace D(A*) of L*, we can write

(h, X(t)) = (h, X(0)) + /ot(A'h,X(s))ds + (h,B(X(--)) - Y (1)) (11.2)

for h € D(A*). For the right side of (11.2) to be defined, we need only require that X takes
values in L and that B(X) takes values in H. More generally, it would be sufficient for
h € D(A*) to be extended to the range of B in such a way that (h, B(X(t))) € H. Then
(11.2) becomes

(b X(0) = (b, XO) + [ (A"h, X()ds + (b, BX (=) - ¥(H).  (11.3)

A process X satisfying (11.2) is usually refered to as a weak solution of (11.1); however, note
that this functional analytic notion of “weak” should not be confused with the “solution in
distribution” notion of “weak” considered in Section 7.

A third notion of solution arises when A is the generator of an operator semigroup
{S(t} on L that can be extended to a semigroup on H, starting with the obvious definition
St)(X aijfip;) = ¥ ai;0;S(t) fi- An infinite-dimensional, stochastic version of the variation
of parameters formula leads to

X(t) = S{t)X(0) + St — )B(X(-=)) - Y(t) . (11.4)
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To clarify the meaning of the last term, if Y is given by a semimartingale random measure,
then the last term can be written as

Jy o S = DBX(3-),0)Y (du x ds)

See Da Prato and Zabczyk (1992), Chapter 6, for a discussion of the relationships among
these notions of solution in one setting.

A variety of weak convergence results for stochastic partial differential equations exist
in the literature. See, for example, Bhatt and Mandrekar (1995), Blount (1991, 1995),
BrezeZniak, Capinski, and Flandoli (1988), Fichtner and Manthey (1993), Jetschke (1991),
Kallianpur and Pérez-Abreu (1989), Gyongy (1988, 1989), and Twardowska (1993). We have
not yet had the opportunity to explore the application of the convergence results developed
in previous sections to stochastic partial differential equations. In this section, we collect a
few of the results that may be useful in making that application.

11.1 Estimates for stochastic convolutions.

Let V be an adapted, cadlag, H-valued process. If for each ¢t > 0, the mapping s € [0,t] —
S(t — s)V(s) € H is cadlag, then

Z()=8(t--)V(-)-Y()

is well-defined for each ¢; however, the properties of Z as a process are less clear. In particular,
for the solution of (11.4) to be cadlag, the stochastic integral must be cadlag. We begin with
a discussion of a result of Kotelenez (1982).

Lemma 11.1 Let Z be a cadlag, L-valued, {F;}-adapted process, and let v : L — [0, 00).
Suppose that

E[(Z(t + h))|F) < BIA(t + h) — AQt)|Fy] + LM Oy(Z (1))

for t,h > 0, where A is a cadlag, nondecreasing {F;}-adapted process with a(t) = E[A(t)] <
oo and B is a nondecreasing function. Then for any stopping time 7 and 6§ > 0,

P{sup ¥(2(9) > 6} < 5 (EW@O)LO0 + B[ [ HSO-Aan(s)))
< % (E[zp(Z(O))]eﬂ(‘)“ﬂ(o) + t e”(‘)‘ﬁ(’)da(s)) . (Ls)

If, in addition, A is predictable and ¥(Z(0) =0, then for 0 <p < 1,

£A0)
Bl(sup $(Z(s)Y) < (mu) El(A(r A D)) (11.6)
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Proof. Observe that
Bl b2+ ) - [T PO F)
< MBI+ ) ~ A)IF) +ePOp(2(0) ~ B[ eHIan(s)| ]
< e POy(z(0) - [ ePOdAGs)
= U(t)
so that U is a supermartingale. Consequently,
P{sup %(Z(s)) 2 6} < P{sup U(s) 2 76}

- 8<TAL

IN

%eﬂ@) (E[U(0)] + E[U~(®)])
< _;_ ( fO-PO B[y(Z(0))] + E [ /0 o eﬂ(t)—ﬂ(s)dA(s)D

where U~ = (~U) Vv 0 and the last inequality follows from Doob’s inequality, and (11.5)
follows.

To prove (11.6), we follow an argument from Ichikawa (1986). Let o, = inf{t¢ : A(t) > z}.
Since A is predictable, o, is predictable and can be approximated by an increasing sequence
of stopping times o7 satisfying o7 < 0,. Then

P{sup ¥(Z(s)) >z} < lE [/OMTM: eﬂ(’)‘ﬁ(’)dl\(s)} +P{rAt>or}

s<TAL T
< %eﬁ(‘)E[x AA@EAT)) + P{r > ol}.

Noting that lim, oo P{7 > 02} = P{T At > 0.} = P{A(t A7) > z}, we have

P{sup v(Z(s)) >z} < -i—eﬂ“)E[x ANAEAT)+ P{A(tAT) >z},

s<TAL

and multiplying both sides by pz?~! and integrating gives (11.6). O
Lemma 11.2 Let L = Ly(v), and let M be a worthy martingale measure with dominating
measure K satisfying (2.9). Let K be given by (2. 10), and suppose that M determines
a standard (L, H)#-martmgale For 0 < s < t, let ['(t,s) and ['(t,s) be bounded linear

operators on L satisfying |T(¢, s)|| < C(t) and ||T(t,s)|| < e#®~BG) where C and B are
nondecreasing. Suppose that for V € S° Z, defined by

Z(t,)= /leo’t] I't,s)V(s—,-,u)M(du x ds), (11.7)
s cadlag and

-/Ux[o,t] (t+ b, s)V (5=, u)M(du x ds) = T(t + h, 1) -/(‘Jx[o,t] I'(t,s)V(s—, -, u)M(du x ds).
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For0<t<T, define
—_ - 2 7
@) =0) [ V(o= ul K (dux ds),
Then for each stopping time 1,
P{ sup ||Z(s)|Iz > 6} | (11.8)
8s<TAT

1 ~
<: BBV (5. - ull2 K (du X d
<3E [C(T) xozan® IV(s—,-,ull2 K (du x ds)

and assuming K is predictable, for0<p<2,

v 2e8(t)
Bl sup, 1261 <
s<TAT

+ 1) E[(C(T) IV(s—,,u|2K (du x ds))*/?]. (11.9)
Ux{0,7AT]
Remark 11.3 A number of closely related results exist in the literature, formulated in terms
of Hilbert space-valued martingales. The inequality (11.8) is essentially Theorem 1 of Kote-
lenez (1982). The restriction to 0 < p < 2 in (11.9) is not necessary. Kotelenez (1984)
estimates the second moment of of suPg<,<rar 1Z(8)li in the setting of Hilbert space-valued
martingales. Ichikawa (1986) gives moment estimates similar to those of Kotelenez (1984)
for 0 < p < 2, and under the assumption that the driving martingale is continuous, forp > 2.
In the particular case of finite dimensional and Hilbert space-valued Wiener processes, Tubaro
(1984), da Prato and Zabczyk (1992b), da Prato and Zabczyk (1992a, Theorem 7.8), and
Zabczyk (1993) give estimates for p > 2. Walsh (1986, Theorem 7.18) also considers more
general convolution integrals of the form [y, 9(t, 5, 4)M(du x ds) under Holder continuity
assumptions on g.
d

7

+ (I‘(t + h,t) ./Ux[o,t] I'(t,8)V(s—, -, u)M(du x ds))2 (11.10)

Proof. Observe that

ElZ(t+h,")*|F) = E [(/Uxu,t-w T+ h,8)V(s—, -, u)M(du x ds))

" (-/Ux[o,t] f(t + h, 8)V(s—, -, u)M(du x dS))z

IN

E [ 2 5
I(t+ Vis—. -
[/Ux(t,t_'_h]l (t+h,s)V(s—, ,u)l K(du x ds)

Then for 0 <t < t+ h < T, integrating (11.10) with respect to v, we have
El|Z(t + MILIF] < E[AQ + h) = AQ@)|F:] + £EHM-00) 2(1)| 3

which, by Lemma 11.1 with ¥(z) = ||2||2, gives the result. O
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For a filtration {F.}, let 7 denote the collection of {F,}-stopping times, let S} be given

in Definition 5.2, let Dy be the collection of cadlag, H-valued, {F,}-adapted processes,
and let Dy, be the collection of cadlag, L-valued, {F;}-adapted processes. In the following
development, the primary examples of interest are mappings of the form

GX,t)=T(-)X()-Y(),
or in the case of semimartingale random measures,

G(X,t) = /U og TE= X ()Y (du x ds).

Proposition 11.4 Suppose that G : 82-1 — Dy, has the following properties:
e G(X) is linear, that is G(aX +bY) = aG(X) +bG(Y), X,Y € 8%, a,bER.
e For eacht >0,
H = {IG(X, T ADllz : X € S, supl|X ()il < 1,7 € T)

~ is stochastically bounded.
Then G extends to a mapping G : Dy — Dy.

Remark 11.5 Note that if Y is a standard, (L, A Y¥-semimartingale, then G defined by
G(X,t) = X_ - Y(t) satisfies the conditions of the proposition. Recall that X_ -Y (1 At) =
XI-Y(t), where X7 = Ip ) X.

Proof. The proof is essentially the same as in the definition of the stochastic integral. As
before, for each ¢,6 > 0, there exists a K (t,8) such that

P{IG(X,TAt)|lc 2 K(t,6)} <6
for all X € S} with || X||z < 1. For X € Dy, let X be given by (5.4). Then
P{sup ||G(X*,s) — G(X?,8)||lL = (1 + e2)K(t,8)} < 6
s<t

and it follows that lim._,o G(X¢) converges to a cadlag process which we define to be G(X).
O

Theorem 11.6 Let G satisfy the conditions of Proposition 11.4. Suppose that for each stop-
ping time 7, bounded by a constant, andt,6 > 0, there exists K, (t,8) with lim,_o K. (t,6) =0
such that for all stopping times o satisfyingT <o <7+t

P{IIG(X,0) - G(X,7)llL 2 K(t,6)} < 6

for all X € S with || X||z < 1. Let F : Di[0,00) — Dyl0,00) satisfy sup,, || F(z,s) —
F(y,s)llz < Msup, ||z(s) — y(s)l|z- Then for U € Dy, there ezists at most one solution of

X(t) = U(t) + G(F(X),1).

Proof. The proof is the same as for Theorem 7.1. O
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A

11.2 [Eigenvector expansions.

Suppose that L is spanned by a sequence {f¢} of eigenvectors for A, that is, Afy = = fz,
and that hy € L* satisfies (hg, fi) = 6. Then Ajhy = —Achy and (11.11) implies

(e, X (2)) = (hy, X(0)) = D [ (i, X (s + (b, BX(-)) - ¥()). (1111)
At least heuristically, if we define Vi(t) = (hy, X (%)), then

X(t) =3 Vi) (11.12)
k=1

" To study the convergence of (11.12), we need to be able to estimate Vk, and the following

lemma of Blount (1991, 1995) gives a useful approach.

Lemma 11.7 Let M be a continous, R-valued martingale and T' a constant with (M), =
JoU(s)ds and |U(s)| < T, let C be an adapted process and Cy a constant satisfying

sup |C(s)| < Co,
8<t
and let A > 0. Suppose V satisfies
t t
V(t) = V(0) - A /0 V(s)ds + /0 C(s)ds + M(2) .

Then for each a > 0,

Co At
P V)| 2a+ V(0)|+ 1} £ —m—
{sup|V(s)| 2 e +[V(0)] /\}..exp Y]

Proof. The proof is based on a comparison with the Ornstein-Uhlenbeck process satisfying
dV = —AVdt+TdW (W a standard Brownian motion). See Lemma 3.19 of Blount (1991)
and Lemma 1.1 of Blount (1995). O

11.3 Particle representations.
With the results of Section 10 in mind, consider the system {(X;, A;)} with X; € R? and

A; € R satisfying

X)) =X(0) + [ ta(X,-(s),V(s))dM(s) + [ eXils), V(s)ds
+ /l‘]x[o’t] a(X;(s), V(s),u)W(du x ds)
and
AW =AO) + [ AN (o), V(s)aWile) + [ As)d(Xils), V())ds
+ /U 0y AHOBX(s), V(s), u)W (du x ds)
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where the W; are independent, standard R%-valued Brownian motions and W is Gaussian
white noise with E[W(A,t)W(B,t)] = u(AN B)t. Assume that {(A:(0), X;(0))} are iid and
independent of W; and W. V is the signed measure-valued process obtained by setting

(0. VH) = Jim = 3° A(De(Xi(D).

:—1

For simplicity, assume that o, c, 7, a, 8, and d are bounded. Letting Z be the P(R**!)-valued
process

=
Z(t) = lim = Z} O(xa(),4:(1))»

we have
(V@) = [ ., ap(@)Z(t, do x da),

and the uniqueness result of Section 10 can be translated into a uniqueness result here.
Applying Itd’s formula to A;(t)¢(X;(t)) we obtain

ADXD) = AOPXHO) + [ AlS)e(Xi()Y(Xils), V(5)dWi(s)
+ [ A X)Xl V()
+/£Ix[0,t] Ai(8)p(Xi(s))B(Xi(s),V(s),w)W(du x ds)
+ [ ALV (e (Xi(s))ds
+ [ 4o VelXi(s)) - o (Xils), V()dWi(s)
+ /U o AV (N(Xils), V()W (du x ds)
where L(v)p(z) = 3 T aii(z, v)82,0z,0(2) + L bi(z, v)8s,(z) with
b(z,v) = c(z,v) + o(z,v)y(z,v) + /U B(z,v,v)a(z, v, v)u(du)

and
a(z,v) = o(z,v)0” (z,v) + /U oz, v, u)aT (z, v, u)u(du).

Observing that the terms involving W; and W, will average to zero, we have
(@ V) = (@ VO)+ [ (Ve V) + (LW (), V(s))ds
/U 0 B0 V() w)o+ al, V(s),u) - Vo, V()W (du x ds),

and it follows that V is a weak solution of the stochastic partial differential equation

dv(z,t) = (L*(V()v(z,t)+d(z,V(t))v(z,t))dt (11.13)
+ (B(z, V(t), u)v(z, t) — dive[a(z, V(t), w)v(z, t)]) W(du x dt)

where V(t) is the signed measure given by V(4,t) = [, v(z, t)dz.
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Remark 11.8 The immediate motivation for the material in this subsection is Kotelenez
(1995) who considers a model, formulated in a somewhat different way, which is essentially
the case vy = d = f = o = 0. In particular, the weights A; are constant. Perkins (1995)
uses time-varying weights for models based on historical Brownian motion (rather than an
infinite system of stochastic differential equations) to obtain weak solutions for stochastic
partial differential equations related to superprocesses. Donnelly and Kurtz (1995, 1996)
obtain particle representations similar to those given here for a large class of measure-valued
processes including many Fleming-Viot and Dawson- Watanabe processes. We suspect that
methods used in Donnely and Kurtz (1996) to prove uniqueness for the martingale problem
corresponding to the measure-valued process based on uniqueness for the particle model may
extend to the present setting and give uniqueness of the weak solution of (11.13).

12 Examples.

No attempt has been made at ultimate generality in the following examples. They are
intended to illustrate the variety of models that can be represented as solutions of stochastic
differential equations of the type considered here. In regard to technical points, note that
for most of the examples there are many possible choices for the space H.

12.1 Averaging.

The study of the behavior of stochastic models with a rapidly varying component dates
back at least to Khas’minskii (1966a,b). Characterization of the processes as solutions of
martingale problems has proved to be an effective approach to proving limit theorems for
these models. (See Kurtz (1992) for a discussion and additional references.) Formulating
such a model as a solution of a stochastic differential equation, let W be a standard Brownian
motion in R?, let X,(0) be independent of W, and let £ be a stochastic process with state
space U, independent of W and X,(0). Set &,(t) = £(nt), and for 0 : R® x U — M*# and
b:RP x U — R, let X, satisfy

Xalt) = Xa(0) + [ 0(Xa(6), Ex(&DAW(6) + [ HXa(s), Enls))ds

We assume that

%./ot f(€(s))ds — /l‘]f(u)ll(du) (12.1)

in probability for each f € C(U). Define a sequence of orthogonal martingale random
measures on U X {1,..., 3} by setting

Mo(Ax {k}0)= | a(€n(s))AWi(s) . (12.2)

Observe that .
(Ma(A X {k}, ), Ma(B x {1}, Ve = [ 6ulana(En(s))ds
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and 5
Ma(e,t) = 3 [ 0(6a(s), K)iWi(s)
k=1

and that for ¢s,...,¢, € C(U x {1,...,8}), the martingale central limit theorem (see, for
example, Ethier and Kurtz (1986), Theorem 7.1.4) implies

(Mﬂ(()olv ')7 teey Mn(‘pﬂ, )) = (M((Ph ')’ sy M(‘PB’ ))
where M corresponds to Gaussian white noise with
(M(A x {k},-), M(B x {l},))s = buitv(A N B).

(Approximation of martingale random measures by integrals against scalar Brownian mo-
tions, as in (12.2) has been studied by Méléard (1992) in the context of relaxed control

theory.)
A variety of norms can be used to determine H. We will assume that U is locally compact.

Let v € C(U), v > 0, and assume that {u : 7v(u) < c} is compact for each ¢ > 0. Define
il = suplo(w, £)/4(w)

and define H to be the completion of C(U x {1,...,}) under || - ||z. If
sup " / E(s)) ds < 00 (12.3)

then {M,} is uniformly tight, as is the sequence {V;,} defined by
rt
Va(4,8) = [ Laga(s)ds,

which, by (12.1) converges to v(du)ds. Note, for example, that if £ is stationary and ergodic,
then there exists « such that the above conditions are satisfied. .

Theorem 12.1 Let £ and X, be as above, and assume that (12.1) and (12.8) hold. If o
and b are bounded and continuous and X,(0) = X (0), then {X,} is relatively compact and
any limit point satisfies

X(t) = X(0) + /0 t /U o(X(s), w)M(du x ds) + /0 t /U B(X (), w)v(du)ds .

Remark 12.2 In order to apply Theorem 7.5 we need the mappings z — o(z,-) and z —
b(z,-) to be bounded and continous as mappings from R* to H. The assumption that o
and b are bounded and continous as mappings from R* x U to R is a significantly stronger
requirement.

Proof. For AC U and B C {0,..., 3}, define

Yo(A x B,t) = Ig(0)Va(A,£) + Sﬁ_j Ip(k)M,(A x {k},1) .

k=1

Then {Y,.} is uniformly tight for H defined above, and the theorem follows immediately from
Theorem 7.5. O
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12.2 Diffusion approximations for Markov chains.

Any discrete-time Markov chain with stationary transition probabilities can be written as a
recursion

Xiv1 = F(Xg, €k4a)

where the {£} are independent and identically distributed. Consider a sequence of such
chains with values in R* satisfying

1
X1 = Xy + on(XE, §k+1)7—' + bn (X%, Ck+1);_;

where {(&, ()} is iid in Uy x U,. We again assume that U; and U, are locally compact. Let
p be the distribution of & and v the distribution of (i, and suppose [;;, Gn(z, u2)u(duz) =0

for all z € R® and n=1,2,.... Define Xn(t) = X[y, Ma(4,1) = J= S8 (Ta (&) - u(A)),

and V,(B,t) = 1 Y™ IB(Ck) Note that V,(4,t) — tv(A) and M, (A,t) = M(A,t) where
M is Gaussian w1th covariance

E[M(A,t)M(B,s)] =t A s(u(AN B) — p(A)u(B))
(see Example 2.3).

Theorem 12.3 Let X, be as above, and assume that lim, Sup, y,)ex |bn (2, u2)—b(z, u2)| = 0
for each compact K C R* x Uy and limy e SUP(z,u,)ek |0n (2, u1) — 0(z,u1)| = O for each
compact set K C R* x U;. Suppose that sup, ; (, 4;)(|0n (2, u2)| + |on(z,w1)|) < 00, that o
and b are bounded and continuous, and that X,(0) = X(0). Then {X,} is relatively compact
and any limit point satisfies

X0 =X0)+ [ t [ oX(s),u)M(du x ds) + / t /[ H(X(s), wr(du)ds.

Proof. Let U = U; UU, and let H be the space of functions on U with norm

Il =, () + [, 1Bt

Uniform tightness is again easy to check, and the result follows by Theorem 7.5. ]

12.3 Feller diffusion approximation for Wright-Fisher model.

The Wright-Fisher model is a discrete generation genetic model for the evolution of a popu-
lation of fixed size. For simplicity, we only consider the two-type case. Let NV denote the size
of the population and let XY denote the fraction of the population in the nth generation
that is of type I. Given the population in the nth generation, we assume that the population
in the (n+1)st generation is obtained as follows: For each of the N individuals in generation
n+1 a “parent” is selected at random (with replacement) from the population in generation
n. If the parent is of type I, then with high probability the “offspring” will be of type I,
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but there is a small probability (which we will write as p;/N) of a “mutation” occuring and
producing an offspring of type II. Similarly, if the parent is of type II, then the offspring is
of type II with probability (1 — u3/N) and of type I with probabilty u,/N. These “birth-
events” are assumed to be independent conditioned on X. Note that if X = z, then the
probabilty that an offspring is of type I is

mn(z) = 2(1 — 1 /N) + (1 — 2o /N = 2 + ((1 — 2)uz — 21)/N.

We can construct this model in the following way. Let {¢¢,k=1,...,N,n=1,2,...} be
iid uniform [0, 1] random variables. Then, given X{', we can obtain XY recursively by

N 1 N .
Xpe1 = E Tomnorn€) = 5 2 (Toanexn(@) = in (X)) +7a (X)) .
k=1 k=1

Define a martingale random measure with U = [0, 1] by

1 [Nt] N
Mn(At) = N > (1a(€R) — m(4))
n=1k=1
and let An(t) = 5. Then setting Xn(t) = X[Nt],

Xn(®) = Xn(0) + [ Tomw0one-n(w)Mu(du x ds)

[ (0~ Xnls=D — Xn(s-a) dAn(s).

Noting that

E{My(A,)My(B, s)] = M]é\_sl]

it is easy to check that My = M where M is the Gaussian martingale random measure
in Example 2.3 (with 4 = m). We can take H = L,(m) X R, and observing that z —
Fn(z,') = (Ioan)(*), (1 — Z)p2 — zy) is a continuous mapping from [0,1] — H and that
Fyn(z,-) = F(z,-) = (Ijo,q), (1 = £)p2 — z411) uniformly in z, we can apply Theorem 7.5 to
conclude that {Xy} is relatively compact and that any limit point satisfies

(m(A N B) — m(A)ym(B)),

X@)=XO+ [ Toxw@M(duxds) + / (1= X ()2 — X(s))ds.

12.4 Limit theorems for jump processes.

The following results are essentially due to Kasahara and Yamada (1991). They treat some
cases with discontinuous coefficients which we do not cover here. We include an additional
parameter u that can be used to model different kinds of jump behavior. For simplicity, we
assume the u takes values in a compact metric space U.

Let N, be a point process on R x U X [0,00) such that if A C R — (—¢,¢) for some
€>0, Ny(Ax U x[0,t]) < 0o a.s. We assume that N, is adapted to {F'} in the sense
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that N,(A % [0,]), A € B(R) x B(U), is adapted, and we let A,, denote an adapted positive
random measure such that N, (4 x [0,t]) = N,(A4 x [0,#]) — An(A4 x [0,1]) defines a o-finite,
orthogonal martingale random measure on R x U X [0,00) and A,(4 x [0,]) is continuous
for A C (R — (—¢,€)) x U. Note that the orthogonality implies N,(A x {t}) < 1 for all 4
and t. We assume that

/R J@u)A(dz x dux [0,8) — ¢ /R _ f@uw(dz x du) (12.4)
in probability for all bounded continuous f that vanish for |z| < € for some € > 0, and that

/ 1A 2%v(dz x du) < .
RxU

Let N denote the Poisson point process on RxU x [0, 00) with mean measure v(dz x du)dt.
The convergence in (12.4) implies that

/Rxe[O,.]f(z,u, 8)Np(dz x du x ds) = /;xe[O"]f(z, u,8)N(dz x du x ds) ,

for all bounded continous f on R x U x [0, 00) that vanish for |z| < € for some € > 0. (See

Theorem 2.6).)
Let V;, be a positive random measure adapted to {F}}, and assume that there exists a

finite measure p such that
d 3 t dz x du)d
-Axe[O,t]f(z’u’ s)V"(dz X ay X S) - A ./Rfo(z’ u, S)M( Z X ’lL) S

in probability for all bounded continuous f.
Let c satisfy v({c} x U) = v({—c} x U) = 0, and suppose X,, satisfies

Xn(t) = Xa(0) + / 05, Xn(8), 2,0)2Nn(dz X du x ds)

[=c,e]xU x[0,t]

1
" /(R—[—c,CDxe[o,t] b2 (8, Xn(s), 2, u)Nu(dz x du x ds)

2
+ ./Rxe[O,t] bn(s,Xn(S),Z, 'U,)Vn(dz X du X dS)

Theorem 12.4 Let X,;, N,,, and V,, be as above. Suppose that there ezists a constant C
such that |oy |+ |b}] + |b2] < C and that there are bounded and continous o, b, and b2, such
that for each compact K C [0,00) X R* x R x U

lim sup (lo(s,z,2,u) —on(s,z,2,u)| + [b'(s,z,2, u) — bl(s,z,z,, u)|
n—oo (s,zu)EK

+ [b*(s,z,2,u) — b2(s,z, 2,u)|) = 0.

Suppose that
2
sup E[/Rx[o,t](z A €)*An(dz % du x ds)] < oo (12.5)
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and that there ezist a positive measure p and positive €, — 0 such that b, > €, and 6, — 0
tmplies

2
/(_6"'6")xe[0¢] 2°g(u)An(dz x du x ds) — t/;jg(u)p(du) (12.6)

in probability for all g € C(U). If X,,(0) — X(0), then X, = X satisfying

X&) =X(0) + /U o 718 X (6),0,u)W (du x ds)

Y

N(du x d
+ /[_c,c]wx[o,t]a(s,X(s),z,u)z (du x ds)

' X ) %y N(d d d
* -/(R—[—-c,c])x[o,t]b (s, (s) o u) (dz x du x ds)

+ /t/bz(s X (s), z,u)v(dz x du)ds
0 R b 3
- where W is a Gaussian random measure on U x [0,00) satisfying

E[W(A x [0,t))W(B x [0,s])] = (t A s)p(A N B).

Proof. It is enough to verify convergence for each bounded time interval [0, T). Let NS be N,
restricted to (R—[c, ¢]) xUx [0, 00), and Mp(AXBX[0,1]) = [4n(=c,qxBx[04 2V (dz X dux ds).
The convergence of {N¢} and {V,} to finite (random) measures implies, through Prohorov’s
theorem, a stochastic version of tightness which in turn implies the existence of v : R — [1, 00)
with limy,|_.e ¥(2) = oo such that {[ y(2)N5(dzx U x[0,T])} and {f v(2)V,(d2xU x [0, T))}
are stochastically bounded. Let ||A||z = sup, , |h(u, 2)/7(2)|. The uniform tightness of {V,,}
and of {N} as H¥-semimartingales is immediate and that of M, follows from (12.5). The

convergence of M, to M given by

M(A x B x [0,1]) = 610 (A)W (B x [0,¢]) + X Bx(od] zN(dz X du X ds)

follows from (12.4) and (12.6) and Theorem 2.7. O

12.5 An Euler scheme.

Consider . .
X(8) = X(0) + /o /U (X (s), u)W(du x ds) + /0 b(X (s))ds (12.7)

where for definiteness we take U = [0,1] and W to be Gaussian white noise determined by
Lebesgue measure m on U X [0,00). The solution of this equation will be a diffusion with
generator

Lf@) = § T (o) g (0) + T @) )

where a(z) = [, o(z,v)oT (z,u)du. Of course, this diffusion could be rewritten as the solu-
tion of an It equation in its usual form and numerical schemes applied to approximate the
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solution of that equation; however, our interest here is in developing methods for approxi-
mating stochastic equations driven by ma,rtmgale measures, and we use this simple case to
explore the possibilities.

A simple simulation scheme for (12.7) might involve discretization in both time and in
U to give an iteration of the form

X (tir1) = X (&) + X o (X (t), vi)W (wir wisa] X (b tia]) + (X (#:))(bigr — ) (12.8)
where the sum is over the partition 0 = up < 43 < +*- < 4y, = 1 and u; < v; < U4,
This iteration gives the simplest Euler-type scheme for (12.7). Consistency for the scheme
follows easily from Theorem 7.5. We are interested in analyzing the error of the scheme in

a manner similar to that used in Kurtz and Protter (1991b) to study the Euler scheme for
It6 equations. In particular, X defined in (12.8) can be extended to a solution of

X(t)=X(©)+ | t [ o(X on(s), v(w)W(du x ds) + [ “B(X o (s))ds

where 7(s) = t; for s € [t;,;41) and y(u) = v; for u € (u;, uiy1]- Then

X®-%@ = [ t [, (o0x(s),w) - a(X(s),u)) W (du x ds)
+ [ (oex b(X(s)))
+ / / o(R(s),w) — o(X on(s), u)) W(du x ds)
+ [ [ (o on(s),0) = o(X 0 n(s), 7(w))) W(du x ds)
+ [ (oK () — (X 0 n(s))) ds

We assume that ¢ and b are bounded and have two bounded continuous derivatives.
Observing that

X(t)=Xon(t)= /U (X on(t), ()W (du x (n(2), 1]) + b(X o n(t))(t - n(2)),

fix o > 0 and define i
U(t) = o(X(t) - X(2)

v(ax[o,) = " QW (A x (1(s), s])ds
Z(AxBx[0,)= [ “aW (A x (n(s), s])W(B x ds)
viaxod) = [  La(wa(u — 7(w)W (du x ds)

R(A x [0,%]) = /Ota(s - n(sj)W(A x ds) .

75



Assuming d = 1 to simplify notation,

_ [t (o(X(s),u) — o(X(s),w)
ui) = /0 /U ( X)X (&) )U(s)W(duxds)

t (b(X(s)) — b(X(s))
+ ( X(s) — X (s) )U(s)ds

+/0t /UU::(X o n(s), v)o (X o n(s), v(x))Z(du x dv x‘ ds)
+/Ot/Uaz(X’ o 7(s), v)b(X o n(s))R(dv x ds)

g (a(fc LODBOE 1100 v ¢ a

+/0t be(X 0 n(s))o(X o n(s), w)Y (du x ds) + Err

where Err will be negligible under our asymptotic assumptions on & and 7.
Note that Z, V, and R are martingale random measures with

(Z(C x ), Z(D x -)) = /0 t /U P W(Cy X (1(s), s)W (Dy x (n(s), s])dvds,
where C, = {u: (u,v) € C},
(VAx ) VB xNe=t [ o*u-1(w)’du

and
(R(Ax-),R(Bx-))y=m(ANB) /ot a?(s — n(s))%ds.

Let Z,, Vy, Rp, Uy, be defined by replacing n by 7,(s) = 1%’1, a by \/n, and v, (u) = gli

n
if 250 < 4 < 28D for k= 0,1,.... Then as n — 00 Z, = Z with

(Z(C’ ')’ Z(Da ))t = %mz(C n D)t

V, = V with 2

and R, = 0. _
We should have U, = U satisfying

U(t) = /o ‘ /U oo(X (5), )T (s)W (du x ds} + /o "B (X (s))0(s)ds
+ /o t /U 0:(X (5),0)0(X (), u)Z(du x dv x ds)
+/01/UUu(X(s)’u)f/(du X ds);
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but the conclusion does not follow from Theorem 7.5 since the sequence {Z,} is not uniformly
tight. In particular, Z, is not worthy.

The desired convergence does, however, hold. Note that the integrand for Z, is adapted
to the filtration {F'} with F* = Fy, ) C F:. This observation leads us to define the
notion of a “conditionally worthy” martingale random measure. Let M be an {F;}-adapted,
" martingale random measure, and let G; C F;. Then M is {G;}-conditionally worthy if there
exists a dominating random measure K on U x U x [0, 00) such that

|E[(M(A), M(B))esr — (M(A), M(B)):|Gi| < E[K(A x B x (t,t +])|Gy.

In the present setting, we have

BU(Za(C), Za(DYoss — (Za(C), Za(DNIFT = [ [ am(C 1 Du)(s = ma(s))duds

so Zy, is “conditionally orthogonal” uniformly in n. The convergence theorems extend to this
setting and the convergence of U, to U follows.

13 References.

Araujo, Aloisio and Giné, Evarist (1980). The Central Limit Theorem for Real and Banach
Valued Random Variables. Wiley, New York.

Bhatt, Abhay G. and Mandrekar, V. (1995). On weak solution of stochastic PDE’s.
(preprint)
Bichteler, K. and Jacod, J. (1983). Random measures and stochastic integration. Lect.
Notes in Control and Inform. Sci. 49, Springer, New York, Berlin, 1-18.
Blount, Douglas (1991). Comparison of stochastic and deterministic models of a linear
chemical reaction with diffusion. Ann. Probab. 19, 1440-1462.

Blount, Douglas (1995). A simple inequality with applications to SPDE’s. (preprint)
Brzezniak, Z., Capinski, M. and Flandoli, F. (1988). A convergence result for stochastic
partial differential equations. Stochastics. 24, 423-445. )

Brown, Timothy C. (1978). A martingale approach to the Poisson convergence of simple
point processes. Ann. Probab. 6, 615-628.

Cho, Nahnsook (1994). Weak convergence of stochastic integrals and stochastic differential
equations driven by martingale measure and its applications. PhD Dissertation, University
of Wisconsin - Madison.

Cho, Nahnsook (1995). Weak convergence of stochastic integrals driven by martingale mea-
sure. Stochastic Process. Appl. (to appear).

Chow, Pao Liu and Jiang, Jing-Lin (1994). Stochastic partial differential equations in Hélder
spaces. Probab. Theory Related Fields 99, 1-27. *

Cinlar, E., and Jacod, J. (1981). Representation of semimartingale Markov processes in
terms of Wiener processes and Poisson random measures. Seminar on Stochastic Processes
1981. E. Cinlar, K. L. Chung, R. K. Getoor, eds. Birkhauser, Boston, 159-242.

77



Da Prato, Giuseppe and Zabczyk, Jerzy (1992a). Stochastic Equations in Infinite Dimen-
sions. Cambridge University Press, Cambridge.

Da Prato, Giuseppe and Zabczyk, Jerzy (1992b). A note on stochastic convolution. Stoch.
Anal. Appl. 10, 143-153. .
Dellacherie, C., Maisonneuve, B. and Meyer, P. A. (1992). Probabilites et Potentiel, Chapitres
XVII a XXIV: Processus de Markov (fin); Complements de Calcul‘ Stochastiqgue. Hermann,
Paris.

Donnelly, Peter E. and Kurtz, Thomas G. (1996a). A countable representation of the
Fleming-Viot measure-valued diffusion. Ann Probab. (to appear) ,

Donnelly, Peter and Kurtz, Thomas G. (1996b). Particle representations for measure-valued
population models. (in preparation) :

El Karoui, N. and Méléard, S. (1990). Martingale measures and stochastic calculus. Probab.
Th. Rel. Fields 84, 83-101.

Engelbert, H. J. (1991). On the theorem of T. Yamada and S. Watanabe. Stochastics 35,
205-216. _

Ethier, Stewart N. and Kurtz, Thomas G. (1986). Markov Processes: Characterization and
Convergence. Wiley, New York.

Feller, William (1971). An Introduction to Probability Theory and Its Applications II, 2nd
ed. Wiley, New York.

Fellah, D. and Pardoux, E. (1992). Une formule d’Itd dans des espaces de Banach, et
application. Stochastic analysis and related topics (Silivri, 1990), 197-209, Progr. Probab.
31, Birkhauser, Boston. ' _

Fichtner, Karl-Heinz and Manthey, Ralf (1993). Weak approximation of stochastic equations.
Stochastics Stochastics Rep. 43, 139-160.

Graham, Carl (1992). McKean-Vlasov Ito-Skorohod equations, and nonlinear diffusions with
discrete jump sets. Stochastic Process. Appl. 40, 69-82.

Gyongy, I. (1988, 1989). On the approximation of stochastic partial differential equations.
I, II. Stochastics 25, 59-85, 26, 129-164.

Hadjiev, Dimitar I. (1985). Some remarks on Gaussian solutions and explicit filtering for-
mulae. Stochastic differential systems (Marseille-Luminy, 1984), Lecture Notes in Control
and Information Sci. 69. Springer, Berlin-New York, 207-216.

Hardy, G., Kallianpur, G., Ramasubramanian, S., and Xiong, J. (1994). The existence
and uniqueness of solut_lons of nuclear spa.ce-valued equations driven by Poisson random
measures. Stochastics and Stochastics Reports.

Ichikawa, Akira (1986). Some inequalities for martingales and stochastic convolutions. Stoch.
Anal. Appl. 4, 329-339.

Ikeda, Nobuyuki and Watanabe, Shinzo (1981). Stochastzc Differential Equations and Dif-
fusion Processes. North Holland, Amsterdam.

Ito, Kiyosi (1951). On stochastic differential equations. Mem. Amer. Math. Soc. 4.
Jakubowski, Adam (1995) Continuity of the Ito stochastic integral in Hilbert spaces.
(preprint)

78



Jakubowski, Adam (1995). A non-Skorohod topology on the Skorohod space.

Jakubowski, A. Mémin, J. and Pages, G. (1989). Convergence in loi des suites d’intégrales
stochastique sur ’espace D' de Skorohod. Probab. Theory Related Fields 81, 111-137.

Jetschke, Gottfried (1991). Lattice approximation of a nonlinear stochastic partial differen-
tial equation with white noise. Random Partial Differential Equations. Oberwolfach (1989).
Birkhéauser Verlag, Basel. 107-126.

Kallianpur, G. and Pérez-Abreu, V. (1989). Weak convergence of solutions of stochastic
evolution equations on nuclear spaces. Stochastic Partial Differential Equations and Appli-
cations II. Lect. Notes Math. 1390, 119-131.

Kallianpur, G. and Xiong, J. (1994). Stochastic models of environmental pollution. J. Appl.
Probab. '

Kallianpur, G. and Xiong, J. (1994). Asymptotic behavior of a system of interacting nuclear
space valued stochastic differential equations driven by Poisson random measures. Appl.
Math. Optim. 30, 175-201.

Kallianpur, G. and Xiong, J. (1993). Diffusion approximations of ‘nuclear space-valued
stochastic differential equations driven by Poisson random measures. Center for Stochas-
tic Processes Technical Report 399.

Kallianpur, G. and Xiong, J. (1992). A nuclear space-valued stochastic differential equation
driven by Poisson random measures. Stochastic PDE’s and their Applications. Lect. Notes
in Control and Information Sci. 176. Springer, Berlin-New York, 135-143.

Kasahara, Yuji and Yamada, Keigo (1991). Stability theorem for stochastic differential
equations with jumps. Stochastic Process. Appl. 38, 13-32.

Katzenberger, G. S. (1991). Solutions of a stochastic differential equation forced onto a
manifold by a large drift. Ann. Probab. 19, 1587-1628.

Khas’minskii, R. Z. (1966a). On stochastic processes defined by differential equations with
a small parameter. Theory Probab. Appl. 11, 211-228.

Khas’minskii, R. Z. (1966b). A limit theorem for the solutions of differential equations with
random right-hand sides. Theory Probab. Appl. 11, 390-406.

Kotelenez, Peter (1982). A submartingale type inequality with applications to stochastic
evolution equations. Stochastics. 8, 139-151.

Kotelenez, Peter (1984). A stopped Doob inequality for stochastic convolution integrals and
stochastic evolution equations. Stoch. Anal. Appl. 2, 245-265.

Kotelenez, Peter (1995). A class of quasilinear stochastic partial differential equations of
McKean-Vlasov type with mass conservation. Probab. Theory Relat. Fields 102, 159-188.
Kurtz, Thomas G. (1980). Representations of Markov processes as multiparameter time
changes. Ann. Probab. 8, 682-715.

Kurtz, Thomas G. (1991). Random time changes and convergence in distribution under the
Meyer-Zheng conditions. Ann. Probab. 19, 1010-1034.

Kurtz, Thomas G. (1992). Averaging for martingale problems and stochastic approximation.

Applied Stochastic Analysis. Proceedings of the US-French Workshop. Lect. Notes. Control.
Inf. Sci. 177, 186-209.

79



Kurtz, Thomas G. and Marchetti, Federico (1995). Averaging stochastically perturbed
Hamiltonian systems. Proceedings of Symposia in Pure Mathematics, 57, 93-114.

Kurtz, Thomas G. and Protter, Philip (1991a). Weak limit theorems for stochastic integrals
and stochastic differential quations. Ann. Probab. 19, 1035-1070.

Kurtz, Thomas G. and Protter, Philip (1991b). Wong-Zakai corrections, random evolutions,
and simulation schemes for sde’s. Stochastic Analysis: Liber Amicorum for Moshe Zakas.
Academic Press, San Diego. 331-346.

Lebedev, V. A. (1990). Stochastic integration with respect to semimartingale random mea-
sures. Theory Probab. Appl. 34, 725-727.

Lebedev, V. A. (1990). Stochastic integrals with respect to semimartingale measures and
change of the filtration. Probability theory and mathematical statistics. Proceedings of the
Fifth Vilnius Conference, Volume 2 VSP, Utrecht, The Netherlands; 70- 78.

Lenglart, E., Lepingle, D. and Pratelli, M. (1980). Presentation unifiee de certaines inegalites
des martingales. Seminares de probabilités XIV. Lect. Notes in Math., Springer, Berlin. 26-
61.

Liggett, Thomas M. (1972). Existence theorems for infinite particle systems. Trans. Amer.
Math. Soc. 165, 471-481.

Liggett, Thomas M. (1985). Interacting Particle Systems. Springer-Verlag, New York.
Méléard, Sylvie (1992). Representation and approximation of martingale measures. Stochas-
tic PDE’s and their Applications. Lect. Notes in Control and Information Sci. 176.
Springer, Berlin-New York, 188-199. _

Méléard, Sylvie (1995). Asymptotic behaviour of some interacting particle systems; McKean-
Vlasov and Boltzmann models. CIME School in Probability Lecture Notes. This volume.
Merzbach, Ely and Zakai, Moshe (1993). Worthy martingales and integrators. Stat Prob.
Letters. 16, 391-395.

Metivier, Michel and Pellaumail, J. (1980). Stochastic Integration. Academic Press, New
York.

Metivier, Michel (1982). Semimartingales. de Gruyter, Berlin.

Meyer, P. A. and Zheng, W. A. (1984). Tightness criteria for laws of semimartingales. Ann.
Inst. H. Poincaré Probab. Statist. 20, 853-872.

Mikulevicius, R. and Rozovskii, B. L. (1994). On stochastic integrals in topological vector
spaces. Stochastic Analysis. Proceedings of Symposia in Pure Mathematics. 57, 593-602.
Protter, Philip (1990). Stochastic Integration and Differential Equations. Springer-Verlag,
New York.

Perez-Abreu, V. and Kallianpur, G. (1989). Weak convergence of solutions of stochastic

evolution equations in nuclear spaces. Stochastic Partial Differential Equations and Appli-
cations. Lect. Notes in Math. 1390. 133- 139.

Perkins, Edward (1995) On the martingale problem for interactive measure-valued branching
diffusions. Mem. Amer. Math. Soc. 549.

Shiga, T. and Shimizu, A. (1980). Infinite-dimensional stochastic differential equations and
their applications. J. Mat. Kyoto Univ. 20, 395-416.

80



Stricker, Cristophe (1985). Lois de semimartingales et critéres de compacité. Seminares de
probabilités XIX. Lect. Notes in Math. 1123, .

Trofimov, E. 1. (1989). Semimartingales: L2-construction of distributions. Izv. Vyssh.
Uchebn. Zaved. Mat. 2, 68-78.

Tubaro, Luciano (1984). An estimate of Burkholder type for stochastic processes defined by
the stochastic integral.

Twardowska, Krystyna (1993). Approximation theorems of Wong-Zakai type for stochastic
differential equations in infinite dimensions. Dissertationes Mathematicae CCXXV.

Ustunel, S. (1982). Stochastic integration on nuclear spaces and its applications. Ann. Inst.
Henri Poincaré 18, 165-200.

Walsh, John (1981).: A stochastic model for neural response. Adv. Appl. Probab. 13,
231-281.

Walsh, John (1986). An introduction to stochastic partial differential equations. Lect. Notes
in Math. 1180, 265-439.

Zabczyk, J. (1993). The fractional calculus and stochastic evolution equations. Barcelona
Seminar on Stochastic Analysis (St. Feliu de Goizols, 1991). Progr. Probab. 32, 222-234.
Birkhauser, Basel.

81





