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Abstract

We present, in an expository way, the theory of stochastic integration with respect
to semimartingales, stochastic differential equations, and weak convergence of stochastic
processes in the Skorohod topology. We then describe recent results concerning weak con-
vergence of stochastic integrals and stochastic differential equations, with some applications

including numerical analysis of SDE’s.
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1 Semimartingales

Let W denote a standard Wiener process with Wy = 0. For a variety of reasons, it is
desirable to have a notion of an integral [} H,dW,, where H is a stochastic process;
‘or more generally an indefinite integral f; H,dW,, 0 < t < co. If H is a process with
continuous paths, an obvious way to define a stochastic integral is by a limit of sums:
let ™[0, t] be a sequence of partitions of [0,¢], with mesh (™) = sup;(¢;31 —t;), where
0=t <t <...<t,=1are the successive points of the partition. Then one could
define .

/0 H,dW, = JLIEO Z Ht.‘(u/tin - Wy) (1.1)

t.'€1r"[°-‘]

when lim,_. mesh(7") = 0. If one wants the natural condition that (1.1) holds
for all continuous processes H, then it is an elementary consequence of the Banach-
Steinhaus theorem that W must have a.s. paths of finite variation on compacts. Of
course this is precisely not the case for the Wiener process. The key insight of K. It in
the 1940’s was to ask for condition (1.1) to hold only for adepted continuous stochastic
processes. We will both explain this idea and extend it to a large class of stochastic
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processes: exactly those for which both the integral exists as a limit of sums, and for
which we also have a dominated convergence theorem.

We suppose given a filtered probability space (2, F, P,F), where F is a P-complete
o-algebra and where F = (Fi)o<t<oo is a filtration of o-algebras: i.e., F, C F; if
s < t. We also assume that Fq contains all the P-null sets of Fp and that F is right
continuous: that is, F; = Fiy = Ny>tFu. (Note that if W is a standard Wiener
process with its natural filtration F® = (F?)o<i<oo, Where F; = 0(Ws;s < t), then
if one adds the P-null sets of F} to F7, all ¢, the resulting filtration F satisfies the
preceding hypotheses, which are known as the usual hypotheses. The same holds for
Lévy processes and for most strong Markov processes.)

Let X be an adapted process with cadlag paths: that is, X; is F;-measurable, each
t > 0, and a.s. has paths which are right continuous with left limits.?

Definition 1.1 A process H is simple predictable if H has a representation

H; = Hol(oy(t) + Y Hil(g,1:,,1(2) (1.2)

=1

where 0 = T1 < ... < Thy1 < oo is a finite sequence of stopping times, H; € Fr,,
|H;| < 00 a.s., 0 < i< n. The collection of simple predictable processes is denoted S.

Let L° denote all a.s. finite random variables. We topologize L° with convergence
in probability, and we topologize S with uniform convergence (in (t,w)) and denote
it S,. For a given X we define an operator Ix mapping S to L° by (with H as in

(1.2): )
Ix(H) = HyXg + EHi(XTiH - XT'.). (13)

=1

Definition 1.2 A process X is a semimartingale if Ix : S, — L° is continuous on
compact time sets.

Definition (1.2) is not customary. We give the customary definition here, and to
distinguish it from ours we call it a “classical” semimartingale.

Definition 1.3 A process X is a classical semimartingale if it is adapted, cadlag,
and has a decomposition X = M + A, where M is a local martingale, and A (is
adapted, cadlig, and) has paths of finite variation on compacts.

1“cadlag” is the French acronym for right continuous with left limits



One of the deepest results in the theory of semimartingales is the following, proved
around 1978, primarily by C. Dellacherie and K. Bichteler.

Theorem 1.1 (Bichteler-Dellacherie) An adapted, cidlig process X is a semi-
martingale if and only if it is a classical semimartingale.

We remark that the deeper implication is the “only if”.
Also note that the Bichteler-Dellacherie theorem gives us many ezamples of semi-
martingales:

i) Any local martingale, such as the Wiener process, is a semimartingale.
g g

(ii) Any finite variation process, such as the Poisson process, is a semi-
martingale.

(iii) The Doob-Meyer decomposition theorem states that any submartingale
Y can be written Y = M + A, where M is a local martingale and A
is an adapted, cadlag process with nondecreasing paths. Thus, any
submartingale (and hence any supermartingale) is a semimartingale.

(iv) If Z is a Lévy process (i.e., a cadlag process with stationary and indepen-
dent increments), then if E{|Z;|} < oo, each t, one has E{|Z;|} = ot
(assuming Zy = 0) and thus Z; = (Z; — at) + of is a decomposition
for Z,a nd Z is a semimartingale. More generally it can be shown that
any Lévy process is a semimartingale. ‘

(v) Most “reasonable” real valued strong Markov processes are semimartin-
gales.

(vi) An illustrative example of a Lévy process that is a martingale is as
follows: let N* be a sequence of i.i.d. Poisson processes with arrival
intensities a;(a; > 0). Let |f;] < ¢ and assume T2, f?a; < co. Then

Mt = Z ﬂ,(N: - a,-t)

is a Lévy process. Note that if, for example, oy = 1 (all ¢) and
Bi = i, then if AM, = M, — M,_ (the jump at time s), we have
Tocsct |AM,| = Yocoet AM, = 2, 1N] = oo a.s. This is an exam-
ple of a martingale that cannot be used, path by path, as a classical
differential because of behavior arising purely from the jumps; that is,
M has paths of infinite variation on compacts and one cannot define a
Lebesgue-Stieltjes pathwise integral for M.
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Finally let us note some simple but important properties of semimartingales.
Theorem 1.2 The set of semimartingales is a vector space.

Theorem 1.3 If Q is another probability absolutely continuous with respect to P,
then every P-semimartingale is a QQ-semimartingale.

Theorem 1.4 (Stricker) If X is a semimartingale for a filiration F, and if G is a
subfiltration such that X is adapted to G, then X is a G-semimartingale as well.

Proof: Theorem 1.2 is immediate from the definition. For Theorem 1.3 it is enough
to remark that if @ <« P, then convergence in P-probability implies convergence
in @ probability. For Theorem 1.4, let S(F') denote S for the filtration F. Since
S(G) C S(F), if Ix is continuous for Ix : S,(F) — L, then it is a fortiori continuous
for S.(G). [ |

Stricker’s theorem shows one can easily shrink the filtration since one is only
shrinking the domain of a continuous operator. Expanding the filtration, on the
other hand, is more delicate, since one is then asking a continuous operator to remain
continuous for a larger domain. An elementary result in this direction is the following:

Theorem 1.5 (P. A. Meyer) Let A be a countable collection of disjoint sets in F.
Let H be the filtration given by H: = o(F:, A). Then every F semimartingale is an
H semimartingale.

Proof: Without loss of generality assume A is a partition of 2, and P(A,) > 0, each
A, € A. Define @, < P by Q.(A) = P(A|A,). Then X is a @),,-semimartingale by
Theorem 1.3. Let I" be the filtration generated by F and all @, null sets. Let X be
a (I",@,)-semimartingale, each n. Moreover F C H C I". By Stricker’s theorem,
X is an H semimartingale under @,. Note that dP = .22, P(A,)dQ,. Suppose
H™ € S(H) converges to H € S(H) uniformly. Then Ix(H™) converges to Ix(H) in
@--probability for each n, and it follows that it converges in P-probability as well.
Thus X is an (H, P)-semimartingale. [

2 Stochastic Integration

We wish to define a stochastic integral of the form fj H,_dX,, where H is cadlag,
adapted, and H,_ represents its left continuous version; and X is a semimartingale.
We recall S is the space of simple predlctable processes and L° is the space of finite
valued random variables.

We also define:



D = the space of adapted processes with cadlag paths

L = the space of adapted processes with cadlag paths (left continuous with
right limits)

Note that if H € D, then H_ (its left continuous version) is in L; and if H € L,
then H, is in D. We next define a new topology, ucp, which will replace uniform
convergence.

Definition 2.1 A sequence of processes Y™ converges to a process Y uniformly on
compacts in probability (denoted ucp ) if for each t > 0, sup,, |V —Y;| = (Y -Y);
tends to 0 in probability as n tends to oo.

We note that this topology is metrizable.
Theorem 2.1 S is dense in L under ucp.

Proof: By stopping, bL is dense in L, where bL denotes the bounded processes in L.
For Y € bL, let Z =Y,, and for € > 0, define T = 0 and

Tryy =inf{t:t > T and |Z; — Zrc| > €}.

Then T are stopping times and they are increasing since Z is cadlag. Pose Zf =
Yol + Tiy Zrel(re AR T, AR This can be made arbitrarily close to Y € bL by
taking € small enough and n large enough. [ ]

The operator Ix defined in (1.3) was, effectively, an operator giving a definite
integral for processes H € S and semimartingales X. We now wish to define an
operator which will be an indefinite integral operator. Thus its range should be
processes rather than random variables. Therefore for a given process X and a process
H € S as given in (1.2) we define the operator Jx : S — D by:

Jx(H) = HoXo + Y Hi(XT+ — XT), (2.1)
i=1

where the notation X7, for a stopping time T', denotes the process X7 = X,az(t > 0).

Definition 2.2 For an adapted, cidlig process X and H € S, the process Jx(H) is
called the stochastic integral of H with respect to X.



We will also use the notations fg H,dX, and H-X or H-X; to denote the stochastic
integral. That is

Jx(H) /de —H-X
Jx (H): /HdX —H-X,.

Theorem 2.2 Let X be a semimartingale. Then Jx : Sycp — Dyep is continuous.

Proof: Suppose H* € S tends to H uniformly. By linearity, we can suppose without
loss H* tends to 0. Let T* = inf{t : |(H* - X);| > 6}. Then H*1;3 7% € S tends to 0
uniformly as &k tends to co. Thus for every ¢
P{(H*-X); > 68} < P{|H* - Xprp| > 6}

= P{|(H* Ljo.74 X)| 2 8}

= P{IIX(H l[OT"At])I 2 5}
which tends to 0 by definition because X is a semimartingale. Therefore Jx : S, —
D ycp is continuous. We next show Jx : Syep — D yep is continuous. Let § > 0, > 0, -
t > 0. We now know there exists 5 such that ||H||u < nimplies P(Jx(H); > 6) < ¢/2.
Let R* = inf{s : |H¥| > p}, and set H* = H* 1o,y {R,>0}. Then H* € S and
||H’°||u < 7 by left continuity. When R* >t we have (H* - X); = (H* - X);, whence

P((H*-X);>8) <P((H* X))+ PR <)
<e/2+ P ((H"); > 1)
< g,

if k is large enough, since limy_,., P((H*); > ) = 0. [ |

Definition 2.3 Let X be a semimartingale. The continuous linear mapping Jx :
Lyp — Ducp obtained as the extension of Jx : S — D is called the stochastic
integral.

Suppose H is a process in D. We can write the stochastic integral H,_ - X =
fs H,_dX,)i>0 as defined above, as a limit of sums. Let o denote a finite sequence
of stopping times:

0=T0$T1§...ST]¢<OO&.S. (22)

Such a sequence is called a random partition. A sequence of random partitions o,
on: Ty <TI7" < ... LT}
is said to tend to the identity if



(1) lim, sup; T* = o0 a.s.
(i1) llon|| = sup; |T%%, — T?| converges to 0 a.s.

For a process H and a random partition ¢ as in (2.2) we define

k
H? = Hol{o} + Z HT.'l(T.-,T.-+1]- (2.3)

=1

Thus if H is in L or D, we have

+ k
/ H7dX, = HoXo+ Y Hry(XTt — XT), (2.4)
0

i=1

Theorem 2.3 Let X be a semimartingale and let H € D. Let (0,)n>1 be a sequence
of random partitions tending to the identity. Then

H . X = JL%EHT?(XT."-‘H — XT,-n)

with convergence in ucp.
Proof: Let H* € S converge to H in ucp. Then
(H.—H™)- X = (H. - H*)- X + (H* - (H})™) - X + (H})™ = H°") - X. (2.5)

The first term on the right side of (2.5) equals Jx (H_ — H¥), which goes to 0 because
Jx is continuous on Lyc,. The same applies to the third term for fixed &k as n tends
to co. Indeed, (H%)°» — H" tends to 0 as k — oo uniformly in n. As for the middle
term on the right side of (2.5), for fixed k it tends to 0 as n tends to co. Thus one
need only choose k so large that the first and third terms are small, and then choose
n so large that the middle term is small. [ ]

Theorem 2.3 gives an appealing intuitive description of the stochastic integral as
a limit of Riemann-type sums. Of course one can only do this because of the path
regularity of the integrands.

Let us next note some simple and quite nice properties of the stochastic integral.
H will be assumed to be in D, and X a semimartingale in Theorems 2.4 through 2.8.

Theorem 2.4 If X has paths of finite variation. a.s., then H_ - X agrees with the
Lebesgue-Stieltjes integral, denoted [; s H,—dX,.
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Proof: The result is evident for H € S. For H € D, let H™ € S converge to H._
in ucp. Then there exists a subsequence n; such that H™ converges uniformly on
compacts a.s. to H_ - X. Since the convergence is uniform, f; ¢ H*dX, converges as
well to [;¢ H,—dX,, whence the result. |

Recall that for a process Y € D, AY; = Y; — Y;_, and AY denotes the process
(AY})o<t<co. An important feature of the stochastic integral is that the jumps behave
“correctly” — that is, in the same manner as they do for the Lebesgue-Stieltjes
integral. This is part of the reason we use L, rather than, for example, D, as our
space of integrands. (See Pratelli [14] or Ahn-Protter [1] for more on this subject. )

Theorem 2.5 The jump process A(H- - X), is indistinguishable* from the process
H,_AX,.

Theorem 2.6 Let Q < P. Then H_g - X is Q-indistinguishable from H_p - X.

Theorem 2.7 Let P and Q be any two probabilities and X a semimartingale for
each. Then there exists H_ - X which is a version of both H_p - X and H o -X.

Theorem 2.8 Let G be another filtration and suppose H € D(G) N D(F), and that
X is semimartingale for both F and G. Then H_.g - X = H_5 - X.

Proof: For Theorem 2.5 and 2.6, the result is clear for H € S and follows for H_ with
H € D by taking limits in ucp (convergence in P-probability implies convergence in
Q-probability). For Theorem 2.7, let R = (P + @), and apply Theorem 2.6. For
Theorem 2.8, we can use the construction in the proof of Theorem 2.1 to approximate
H € D constructively from H; thus the approximations H" € S are in S(F) N S(G);
the result is clearly true for H in S and thus it follows by again taking limits. |

Theorem 2.6 can be used to show that many global results also hold locally.
We give an example. .

Theorem 2.9 Let X, Y be two semimartingales and H, J be two processes in D.
Let
A={w: H(w) =J.(w) and X.(w) =Y.(w)}

where H.(w) denotes the path of H : t — Hy(w). Let
B = {w : X.(w) is finite variation on compacts}.
Then H_ - X =J_-X on Aas,and H.- X = [;sH,_dX on B a.s.

*Two processes Y and Z are indistinguishable if P{w : t — Y(w) #t — Zi(w)} =0.

8



Proof: Without loss of generality assume P(A) > 0. Define a new @ by Q(A) =
P(A|A). Then H_ = J_ and X =Y under Q. Note that X and Y are also semi-
martingales under Q. Thus H_g X = H_p-X, and one need only apply Theorem 2.6.
The second assertion is a combination of the above idea with Theorems 2.4 and 2.6.

n

The next result is quite important.

Theorem 2.10 Let H € D and X be a semimartingale. ThenY = H_ - X is again
a semimartingale. Moreover if G € D as well, then

G_-Y=G. (H.-X)=(GH)--X.

Proof: If G,H € S, then clearly Y = H_ - X is a semimartingale, and Jy(G) =
Jx(GH). The associativity property extends to H_, G_ with G, H € D by continuity.
Therefore it remains only to show ¥ = H_ - X is a semimartingale. By taking
subsequences if necessary, assume H™ € S converges to H_ in ucp and also H" - X
converges a.s. to H_ - X. For G € S, Jy(G) is defined for any process Y and hence
makes sense a priori. Thus
Jy(G) = Jim G- Y™ =JLI§0G-(H"-X)
= lim (GH")- X = Jx(GH.),

n—oo

since X is a semimartingale. Next let G converge to G in S,. We wish to show
Iy(G™) converges to Iy(G). But

lim Jy(G™) = lim Jx(G"H_) = Jx(GH-)

since G"H_ converges to GH_ in ucp. Then since Jx(GH_) = Jy(G) we have the
result. |

3 Quadratic Variation

A process which plays a key role in the theory of stochastic integration is the quadratic
variation process. We define it using stochastic integration:

Definition 3.1 Let X be a semimartingale. The quadratic variation process, [X, X],
is defined to be

t
X, X]; = X? — 2 /0 X,_dX,. (3.1)
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If X and Y are two semimartingales, the quadratic covariation process is defined to
be
t t
[X,Y]; = XY, — / X,_dY, - / Y,_dX.. (3.2)
0 0

Note that if X is of finite variation, then (3.1) is simply integration by parts, and
if X is also continuous then [X, X]; = X2, and in particular it is constant. Note
further that the bracket [-,:] satisfies a polarization identity:

1
[X,Y]={X+Y, X +Y] - [X,X] - [\, Y]}.
We make the convention that Xo_ = 0 a.s. always.

Theorem 3.1 Let X be a semimartingale. Then [X,X] is in D and has non-
decreasing paths. Moreover [X, X]o = X2 and

(i) AlX, X] = (AX)?;

(i1) If o, is a sequence of random partitions tending to the identity as defined
in (2.2), then

Jm {Xé + 3 (XTh - X )2} = [X, X]

with convergence in ucp;
(iii) for a stopping time T, [X7T,X] = [X, XT] = [XT, X7] = [X, X].

Proof: [X,X] is in D since the right side of (3.1) is in D. It is nondecreasing
a consequence of (ii) above. That (i) holds follows from (3.1) and Theorem 2.5.
Property (ii) is an elementary consequence of Theorem 2.3. Finally (iii) follows easily
from (ii). ' n

Theorem 3.1 gives a method of extending the notion of quadratic variation to
a wider class of processes than semimartingales; namely, those for which a limit of
sums exists in ucp, as given in Theorem 3.1 (ii). This would include, for example,
the Dirichlet processes.

It is worthwhile to calculate the quadratic variation of some basic processes. The-
orem 3.1 (ii) allows one to deduce that [W, W], = t a.s., where W is standard Wiener
process. If A is of finite variation, again Theorem 3.1 (ii) allows one to conclude that
[4, A]: = To<s<t(AA,)?. In particular if N is the Poisson process then [N, N}, = N;.

10



If A is continuous and of finite variation, [A, A]; = A2, and thus if A; = 0 then
[A,A]=0.

The quadratic variation process has a particularly nice property with respect to
stochastic integrals:

Theorem 3.2 Let X and Y be two semimartingales, and let H, K € D. Then
t
[H.-X,K_-Y], = /0 H, K, d[X,Y],. (3.3)

In particular,

t
[H.-X,H_-X], = / (H,-)2d[X, X],.
0
Proof: Without loss we assume Xp = Yp = 0. By symmetry it suffices to prove
t
[H_-X,Y] = /0 H,_d[X,Y],. (3.4)

First assume that H = 1jo,77. Then (3.4) follows from Theorem 3.1 (iii). Next let H =
V1(s,7) where X and T are stopping times and V € Fs. Then H - X = V(X7 — X¥5),
and by Theorem 3.1

[H-X,Y] =V{X"Y]-[X5Y]}
= V{IX, Y - [X,Y)%} = [ Hd[X,Y].
The result now holds for H € S by linearity. For H € D, let H" € S approximate
H_in ucp. Let Z" = H* - X. Then [Z™,Y] = [ H*d[X,Y],, and since H" € S we

have:

(Z7,Y] =YZ"— /Y_dZ" - /Zfdy
, | =Yz - /Y_H”dX '—/szY
which converges to

YZ—/Y_H_dX—/Z_dY=YZ—/Y.dZ—/Z.dY: Z,Y].

Thus,
2,Y] = lim[2",Y] = lim / HM[X,Y], = / H,_d[X,Y],.
But Z = lim Z" = lim H*- X = H_ - X, and we have the result. |

n—0o0 =00
An important special case is that of martingales. If M is a martingale and
E{sup,¢; IM,|’} < oo, then E{M?} = E{[M,M)];}. Therefore Doob’s maximal
quadratic inequality for martingales can be expressed as follows (see [15]):

11



Theorem 3.3 Let M be a local martingale. Then E{sup,,(M;)’} < 4AE{[M, M].}.
In particular if E{[M, M];} < oo, then M is a square integrable martingale on [0,1].

Let W be a standard Wiener process, and let H € D. Then as we previously
remarked [W, W]; = t. Hence

1 11
[H_-W,H_-W]t=fo Hf_ds=/0 H’ds.

E{(/Ot Hs_dW,)z} - /otE{Hf}ds,

by Fubini’s theorem. It is this isometry that K. It6 used when he originally defined
the stochastic integral for the Wiener process.

Therefore,

4 Change of Variables

The change of variables formula in the general case (that is, the case for semimartin-
gales with jumps) often looks strange, but actually it is close to the formula for
Lebesgue-Stieltjes integration. The problem is that the latter formula is not well
known. Of course it is a corollary of the general formula, but we nevertheless state it
first.

Theorem 4.1 Let V be a process with cadlag paths of finite variation on compacts,
and let f be C'. Then

FOR) = 6) = [ F(Ve)Vet T A1) = f(Ver) = £1(Ven)AVL)

0<s<t

and in particular f(V) is again a process with paths of finite variation on compacts.

Note that it is not a priori obvious that the infinite sum above converges. Before
we state the general theorem recall that for a semimartingale X the process [X, X]
is in D and is non-decreasing. Therefore w by w the paths ¢ — [X, X];(w) have a
Lebesgue decomposition into a continuous part and a pure jump part. Indeed, in
light of Theorem 3.1 we can write

[X,X) =X, X]{ + > (AX.)?,

0<s<t

12



and we call [X, X]° the continuous part of the quadratic variation. Note that we also
have for semimartingales X,Y:

[)(’}/h ==[)(a)/]:'+ }E: ZKJXQZXIQ)

0<s<t

and in particular we deduce Foc,<:(AX,)? < 00 a.s. for any semimartingale X. (It is
of course not true in general that Y g<,<; |AX,| is finite a.s.; see example (vi) where
such a term is 0o a.s., each ¢t > 0.)

Theorem 4.2 (Change of Variables) Let X = (X3,...,X¢9) be a d-dimensional
semimartingale, and let f : R? — R be C2. Then f(X) is a semimartingale and
moreover

X)) = 3 [0 gf (X, )dxi (4.)
+ Z/ &/

1<y]<d -+ a$,

+ 3 {f(Xs)—f(X- -3 xoaxi),

0<s<t

(Xs_)d[X‘ Xi)e

Proof: We give the proof for d = 1; the case for d > 1 is analogous but messier.
Thus we want to establish:

FX) = £(X0) = [[ £yt 5 [ £, X
b ¥ 0 ~ 1) - F(Xeo)AX,)

0<s<t

(4.2)

We further assume X, = 0, to eliminate the plus symbols. First suppose f is a poly-
nomial on R. Obviously (4.2) holds for f a constant function. We will use induction
and thus it suffices to prove the following: let g be such that g(X) is a semimartingale
and that (4.2) holds; then if f(z) = zg(z), also f(X) is a semimartingale and (4.2)
holds for f.

Note that the product of two semimartingales is a semimartingale by integration
by parts (formula (3.2) and Theorem 3.1), thus Xg(X) is a semimartingale. Again
using integration by parts (formula (3.2)) we have

FX) = F(X) + [ X-dg(X) + [ 90X )aX, + X, (X))

13



By hypothesis ¢'(X) satisfies (4.2), hence by Theorems 2.5 and 2.10 we obtain:

t / 1 ¢ 4 c
(X)) = f(X0)+ [ Xug(Xe)dX, + 5 [ Ko g (Koo)X, X
+ X X {9(X,) - 9(X,-) - g'(Xo-)AX,} (4.3)
0<:St
+ [ 9(Xuo )Xo + X, 9(X)]:
Next, using Theorem 3.2 we see that

X9 = [ 9(X,)diX, X,

+OE< (AX){9(Xs) — 9(X,-) — ' (Xs-)AX,}) (4.4)
= | " 9(X,_)dIX, X]¢ + ¥ AX{g(X) - g(Xo)}-

Combining (4.3) and (4.4) we see that f satisfies (4.2).
Now we consider the case where f is not a polynomial. Let

T, =inf{t > 0: X, > n}.

Then for each fixed n we can find a sequence (gnm)m>1 of polynomials that converge,
together with their first and second derivatives, respectively to f and its first two
derivatives, uniformly on {z : |z| < n}. There exists a constant K, such that for

lz}, ly| < n,
|f(z) = f(y) = f'(¥)(z — y)| < Knl|z —yP (4.5)
and
gnm (2) = gnm (¥) = Grm (¥)(z — ¥)| < K|z — ylz- (4.6)

Recall we remarked just before stating this theorem that °,,(AX,)? < oo a.s. for
any semimartingale X; therefore using (4.5) and (4.6) and taking limits as m increases
to oo we deduce that for t < T),:

31X = F(Xo2) = f1(Xo-)AX,| < o0 as.

0<s<t

and moreover

im 3 {gam(Xe) = Gum(Xoe) — g (Xos JAX,)

m—oo
0<s<t

= 3 {f(X) = F(Xe) = F(Xon)AX,).

0<s<t
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Furthermore limy, o0 gnm (X:) = f(X3), for t < T,. Note further that f; g, (X,-)dX,
tends to f; ' (X,..)dX, since J is continuous in ucp on L, and also fJ g (X,_)d|X, X]¢
converges in ucp to f§ f"(X,-)d[X, X]¢.

Since T, increases to oo a.s., the process $oc,<: {f(Xs) — f(Xs-) = f(X,-)AX,}
is of finite variation (and thus absolutely convergent as a series a.s. for ¢t > 0) on
compacts. Since the other terms on the right side of (4.2) are all well defined semi-
martingales, we conclude that f(X) is a semimartingale and that (4.2) indeed holds.

|

We remark that the preceding proof, while quick, simple, and elegant, is not
particularly intuitive. A more intuitive proof, using Taylor expansions, can be found
for example in [, pp. 71ff].

If X =(W,...,W?)is a d-dimensional Wiener process, then W' is independent
of Wi for i # j, and one can check that [W!, W7] = 0 for ¢ # j (we assume W = 0).
In this case for f € C? we can write the change of variables formula (known here as
Ité’s formula) in the form

FW) = fWo) = [ VW) -aW, + 5 [ AF(W.)ds

In particular if Af = 0, then f(W) is a local martingale.
Also note that if X = (X?!,..., X?) is such that some of the components of X are
finite variation processes, then f need only to be C! for the corresponding coordinates.

5 Stochastic Differential Equations

We consider here fairly general stochastic differential equations which are sufficient
for most applications. Let D? denote d-dimensional vectors of processes in D.

Definition 5.1 An operator F : D¢ — D is said to be functional Lipschitz if for any
processes X,Y in D? we have

(i) for any stopping time T, XT~ = YT~ implies F(X)T~ = F(Y)T-23
(4) |F(X)e = F(Y),| < Msup | X, — Y.
The following theorem is a special case of a more general result to be proved in

§7.

3The notation X7~ denotes Xeliery + Xo-1i>T)-
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Theorem 5.1 Let Y = (Y,...,Y?) be a vector of semimartingales and let Ji, 1 <
1 < k, be processes in D. Let F},1<:1 <k, 1< j < d be functional Lipschitz
operators. Then the system of equations

Xi=Ji +2 / Fi(X),-d2Z} (5.1)

1=1

has a solution in D, and it is unique. Moreover if the processes J* are semimartin-
gales, then X* are semimartingales as well.

The reader may wonder if the condition F(X),_, instead of F(X), is merely a
technicality to ensure that the integrand of the stochastic integral is in L. It is not,
but rather is essential if one considers driving terms with jumps, and it corresponds
to one’s physical intuition: a jump at time ¢ “kicks” the process according to where
it was just before ¢. Indeed, if one takes the non-random example where Z, = L9y
and X; =1+ foX dZ,, then one has X; =1for 0 <t < 2,and X, =1 + X3, which
gives 0 = 1.

A particularly important special case of (5.1) is the exponential equation: -

t
X; = Xo+ /0 aX,_dY,. (5.2)

One can use the change of variables formula to give an explicit solution of (5.2), called
the stochastic exponential and denoted £(Y):

E(Y): =exp (aK - %2[)/, Y];’) :H< (1 + aAY;) exp(—aAY,). (5.3)

The stochastic exponential has behavior similar to a true exponential, but of course
slightly different due to the semimartingale calculus; for example we have the followmg
pretty result:

Theorem 5.2 (Yor) Let X and Y be semimartingales with Xo = Yo = 0. Then
EX)EY) =E(X +Y +[X,Y)]).

Proof: Let U; = £(X); and V; = E(Y);. By integration by parts U;V, — 1 =
fo Us-dV, + [} , Vs-dU, + [U,V];. Using that U and V are exponentials and lettmg
W = UV this becomes

t
Wt=1+/0 Wed(X +Y + [X,Y])s,
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whence the result. [ |

Using a variation of constants technique we can generalize the stochastic expo-
nential results.

Theorem 5.3 Let H and Z be semimartingales and assume P{AZ; # —1,t > 0} =
1. Let X be the unique solution of

t
Xt - .Ht +A Xs__dZs.

Then X; = Ey(Z); has the form:
En(Z) = &(Z {Ho-l'/ {Hs—[H,Z]s— > (%)}}-

0<u<ls

Proof: Let us assume the solution is of the form Ci&(Z);. Let Uy = €(Z);, and we
wish to determine C. Note that

AXt - A.Ht + Xt_AZt. (5.4)

Integration by parts yields:
dXt = Ct - dUt + Ut_dc’t + d[C, U]t

= Ct_Ut_dZt + Ut—d{ct + [09 Z]i} (55)
from which we deduce
AXt = Xt._AZt + Ut_ACt + Ut_ACtAZt. (56)
Combining (5.4) and (5.5) yields
AH; AH,
AC, = = . .
"TU_(1+AZ)  E£2).-(1+AZ) (5.7)
From (5.6) we have
dH, = U,_d{C, + [C, Z};}
which implies
U -H =C+]C,Z],
- (5.8)
77 =e.a+1c2.2,
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and since [[C, Z], Z] = ¥ AC(AZ)?, and since we know AC by (5.7), we obtain

1 - AH(AZ)?
[C’Z]—' — [H’Z]—ZU_(I-I-AZ) (59)
Using (5.8) and (5.9) we get:
t 1 t 1 AH,(AZ,)? }
= s — ’ = s—H,Z]s — )
G /0 g, 4H: =40, Z; /o U.- d{H 4,2) 0;;53 (1+AZ,)
and the result follows. [ |

6 The Skorohod Topology and Weak Convergence

In this section we recall the essentials of the Skorohod topology and weak convergence.
Since this material is by now classic, we omit the proofs except for Theorem 6.2 which
is recent and the reader can consult any of several expository treatments both in books
and research articles.

Recall that D has been used to denote adapted, cadlag stochastic processes.

We now let D = Dga = Dga[0,00) denote the space of cadlag functions from
[0,00) to R%. A process in D has almost all of its sample paths in D. We wish to
endow D with a topology for which it is a complete separable metric space. A natural
candidate would be uc (uniform convergence on compacts), and the corresponding
metric would be:

(oo}

du(z,9) = 3 5 (min (L, sup o() - (o)) ).

n=1

Such a topology, however, is not separable: for example, the family of functions
Z5(t) = 1[5,00)(), 0 < s < 1, is uncountable, while dy.(z,,2,) = 1 for s # u.
Let R+ denote [0, 00).

Definition 6.1 A time change function A is an increasing, bijective function from
R; to R,. Welet T' denote the class of these functions.

Definition 6.2 A sequence of functions z, € D converges in the Skorohod topology

to x € D if there exists A, € I' such that A, (t) converges to A(t) = t uniformly and
Tn(An(t)) converges to z(t) uniformly on compacts.
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In the uc topology, if z, converges to z, then for large enough n the jumps of s,
must occur at the same time as those of z, and of course the sizes must also converge.

With the Skorohod topology the sizes of the jumps must still converge, but the
jumps need not occur at the same time. The Skorohod topology also allows the times
of occurrence of the jumps to converge. Note that if the limit process z is continuous,
then z,, — « in the Skorohod topology if and only if it converges in uc.

Theorem 6.1 The Skorohod topology is metrizable, and the resulting metric space is
separable and complete.

To prove Theorem 6.1 one can construct a compatible metric. A metric analogous
to the uc metric is:

1 s 1
d (SII, y) = f\l’elgd,\(x, y)

where
21
di(z,y) = sup |A(t) —t| + > — (1 Asup |[z(n A A(2)) - y(n A t)|> . (6.1)
£20 a1 2 120

The metric d' is a compatible metric, but it is not complete.
We give two other compatible metrics which are in fact complete. We define I' to
be the set of Lipschitz continuous functions A € I' such that

(t) A) — A(s)

— 8

log ——=| < 00.

¥(A) = esssup |log N'(¢)| = sup.
20 0<
Next define d*(z,y, A, u) = sup |z(A(t) A v) — y(t A u)|. Finally we can define
£>0

d*(z,y) = /{glf { (A) V/ d(z,y, ), u)du}

For the third metric, we define

0 ft>n+1
d3($,y,n) = inf (v(3) + [|(kaz) 0 A = kny|lze0),

(z,y) = 22 (1A d(z,y,n)).

n>0

1 if t <n,
kn(t)=¢ n+1-t fn<t<n+1,,
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The first distance d! is close to that of the original distance proposed by Skorohod.
The second distance d? is taken from Ethier and Kurtz (1986) and is a modernized
variation of Prokhorov’s distance. The third distance d® is actually that of Prokhorov.
Note that if x,, converges to z in the Skorohod topology and if the limit function z is
continuous, then convergence in the Skorohod topology is equivalent to convergence
in the uc topology. .

While the Skorohod topology seems to be quite nice from the above description,
it has a few traits which can create problems.

Example 6.1 Let 2.(s) = 2(s)l{r,<s} + ¥(8)1{tn<sy, With 1 < t,, dnd z and y
continuous, not zero. Then 2z, converges to a limit z in the Skorohod topology if and
only if:

(i) lim r, = oco; whence z = 0;
(ii) Jim rp, =7 < oo; Jim t, = oo; then z(s) = z(s)l{ts};

(ii1) Jim r, =7 < oo; im ¢, =1 < 0o; and r <t, then 2(s) = z(s)11<s) +
Y(8)lii<s)-

From Example 6.1 two important properties are clear:

It can happen that ,}Lnolo z, =z and nl_l_g)lo Yn = Y, but (6.2)
Jim (zn +yn) # z + y. (Note that if y is continuous, then the above
does hold.) Thus D with the Skorohod topology is not a topological

vector space.

D(R?) # [T&, D(R) in the sense of Cartesian products as topologi- (6.3)
cal spaces. Indeed, the topology of D(R?) is finer than the product
topology D(R)?.

We will say that a subset A of D is relatively compact if it has compact closure.
Note that if A is relatively compact then every sequence has a convergent subsequence
(in the Skorohod topology, of course).

We now wish to pass from convergence in the space of functions to convergence of
stochastic processes. There is a minor problem to make this procedure measurable.
We have the following result. (See [7] for more results of this type.)
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Theorem 6.2 Let X, and X be E-valued stochastic processes, where E is a Polish
space, and suppose lim,_o X, = X a.s. in the Skorohod topology. Then there ezists a
sequence (Ay)n>1 of measurable processes with paths in T such that lim, o dp, (Xn, X) =
0 a.s.

Proof: Recall d}(z,y) is defined in (6.1).
Un = {(@,1) € @ x T': d(Xa(w), X()) € & (Xa(e), X()) + 27},

Denote by D and G the Borel fields of D and I' respectively, where T is endowed
with the uniform topology. Then (z,A) — zo X is Borel from D x T into D, and
(z,y) — d'(z(t),y(t);t < n) is Borel from D x D into R. Since X, and X are
measurable from (€2, F) into (D, D), by composition we have U, € F ® G.

The projection 7, (Up) = {w : 3 € T with (w,A) € U,} is equal to all of . By
the measurable section theorem (cf, e.g., [2, p. 18], there exists a random variable
A with values in (T,§) such that P{w : (w,An(w)) € U,} = 1. Since d'(z,y) =
infaer d}(z,y), we have d}_(Xn,X) < d"(Xn, X) + 27" a.s., whence the result. W

We remark that one can improve upon this result to obtain a sure result (instead
of “almost sure”); the proof is complicated and uses a measurable selection theorem

(see, e.g., [T]).

Let us now turn to weak convergence. For a given Polish space E (for our purposes
one can think of E as a complete, separable metric space), let P(E) denote the space
of all probability measures on (E,£). We endow P(E) with the weak topology: this
is the smallest topology making all the mappings

7 [ fap

continuous for all bounded continuous functions f defined on E. We have that P(E)
is also a Polish space for this topology. We have the following elementary properties:

Theorem 6.3 Let E, E' be Polish spaces. Suppose p,, u € P(E) and p, converges
to p weakly. Then

(i) if F is a closed subset of E then limsup p,(F) < p(F);

(i) if f is a bounded function on E that is p— a.s. continuous then nll»nolo pa(f) =
w(f);
(tit) if h : E — E' then p — p o h™1 is continuous from P(E) to P(E') at

each point p such that h is p— a.s. continuous.
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Definition 6.3 A subset A of P(E) is called “tight” if for every € > 0 there exists
a compact subset K of E such that u(K°) < ¢ for all p € A.

Perhaps the most important result in weak convergence is the following:

Theorem 6.4 (Prokhorov) A subset A of P(E) is relatively compact for the weak
topology if and only if it is tight.

We now wish to consider the weak convergence of stochastic processes. Let X,,, X
be R%valued stochastic processes with paths in D. That is, X,, and X have cadlag
paths. (One could replace R with a Polish space E if des1red ) Two obvious ways
X, could converge to X are:

X™(w) = X(w) in D for the Skorohod topology for all w; (6.4)
X" — X in D for the Skorohod topology almost surely. (6.5)

We wish to consider a third way, namely,
E{f(X™)} - E{f(X)} for all bounded Skorohod continuous functions f. (6.6)

Note that if we let w,, p be the distributions respectively of X”, X, then (6.6) is the
same as

/ fdu, — / f du for all bounded Skorohod continuous f. (6.7)

The third type ((6.6) above) will be called the convergence in distribution of X, to X
and it will be implicitly understood that we are always using the Skorohod topology.
We denote X™ = X to mean X" converges in distribution to X.

Observe that for convergence types (6.4) and (6.5), X™ and X must all be defined
on the same probability space, whereas for convergence in distribution (6.6) each X™
and X can be defined on a different space. Such a nuance is important for limit
theorems, since the limit X may of necessity “live” on a strictly bigger space than
the converging sequence X”. On the other hand, combining Theorem 6.2 with the
classical Skorohod representation theorem, one can prove the following:

Theorem 6.5 Let X™ => X. Then there exists a probability space @, F, P) such that

there exists processes (X™)n>1, X defined on ) with L(X™) = L(X™); L(X) = L(X);
and furthermore there ezists a sequence of measurable processes A, with paths in T
such that limy— dp, (X", X) =0, P a.s.*

4L£(X) denotes the law of X; that is, the distribution of X
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(Recall that the metric dy(z,y) is given in (6.2).

The definition (6.6) of convergence in distribution is stated in terms of functions
which are “continuous for the Skorohod topology”. We can relate (6.6) to the more fa-
miliar continuous functions (for the uniform topology) using the ideas of Theorem 6.2
or Theorem 6.5:

Theorem 6.6 X" = X if and only if there exists a sequence of measurable pro-
cesses A" with paths in T’ such that lim,—co E{f(X3n)} = E{f(X)} for all bounded,

continuous f (f continuous in the uniform topology).

Since we will be concerned with the convergence in distribution of cadlag processes
(and not probability measures), it is useful to reformulate Prokhorov’s theorem in
terms of them:

Definition 6.4 A sequence (X™).>1 of stochastic processes with paths in D is said to
be relatively compact in distribution if the sequence L{X™) of its distribution measures
is relatively compact.

Note that Definition 6.4 says essentially that (X™) is tight if there exists a compact
subset K of D such that P*(X" ¢ K) < ¢ for all n.

Theorem 6.7 (Prokhorov) Let (X™),>1 be a sequence of stochastic processes with
paths in D. The sequence (L(X™))n>1 is relatively compact in P(Dg) if and only if
the collection of distribution measures of (X™)n>1 is tight.

7 Weak Convergence of Stochastic Integrals

Let (H™, X™) be a sequence of processes in D. If we assume X™ are semimartingales,
each n, a natural question to pose — which is useful in many applications — is when
do the stochastic integrals [ H} dX converge, and to what do they converge? If
(H",X™) = (H,X), it would be desirable to have sufficient conditions such that X
is a semimartingale too and [ H} dX} = [H,_dX,. We will see that we have a
surprisingly nice answer to this question.

Since we are dealing with weak convergence we may assume that each (H", X™)
is defined on its own space. Let ©" = (", F", P",F") where F* = (F})i>0 is a
filtration satisfying the usual hypothesis, each n > 1.

Before we make the next definition, that of goodness, we must clear up an im-
portant ambiguity. If (H™, X™) is a sequence of processes in D? converging to
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(H,X) in D? in the Skorohod topology, then they could be considered to con-
verge either in Dg2[0,00) or in Dg[0,00) x Dg[0,00). The former convergence is
stronger: for Dg2[0,00) we assume there is one sequence A, of changes of time such
that (HR, (»X4,«)) converges uniformly to (Hy, X;); in Dr[0,00) x Dg0,00) there
are two changes of time, A} and A}, such that (H}; ), X3z (,) converges uniformly
to (H;, X;). We will always use the stronger topology Dg: fO, o0). That is, if we
write (H",X™) = (H,X) it will be understood that convergence is in the topology
Dg2[0,00), and thus one change of time A, applies to both H™ and X™. It turns
out that this is the natural convergence to use for most applications (eg to stochastic
differential equations), since often the jumps of H™ will be intimately related to those
of X”. In addition, the following example shows that the fundamental theorem of
weak convergence of stochastic integrals (Theorem 7.4) fails if one takes convergence
in DR[O, OO) X DR[O, OO)

Example 7.1 Let X! = X; = ly>1) for all n, and let HY = lisipay. Then
JBH dX? =1 fort>1+ %, but the limiting integral fj H,_dX, = 0 for all ¢.

Caveat 7.1 To keep our notation simple we make the convention that when we say,
Jor ezample, that (H",X™), (H, X) are vector processes in D and (H",X") = (H, X),
we mean that X", X are d dimensional vectors of processes with each component a
process in D, and H™ is a k x d matriz of processes with each component in D. The
convergence is of course weak convergence in the Skorohod topology Dprayga[0, 00),
where M*? denotes k x d real valued matrices.

Definition 7.1 Let X™ be a sequence of R%-valued semimartingales on O™, n > 1
and assume X" = X. The sequence X™ is good if for any sequence (H™)n>1 of
d X k matriz processes in D defined on ©™ such that (H*, X™) = (H, X), then X is
semimartingale and [ H? dX? = [H,_dX,.

Observe that in Definition 7.1 we are implicitly assuming that the limit process
X is a semimartingale on a space (2, F, P,F) relative to which H is an adapted,
cadlag process. Thus F may be required to be a bigger filtration than the minimal
one generated by X that satisfies the usual hypotheses.

Recall that X was defined to be a semimartingale if for H in S, satisfying (1.2),
and Ix defined by (1.3), we have Ix : S, — L° were continuous on compact time
sets. In other words, if H" € S converged uniformly to H € S, then [ H*dX, would
converge in probability to [ H,dX,. The following analogous property for sequences
was proposed by Jakubowski, Mémin, and Pages [9]:
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Definition 7.2 A sequence of semimartingales (X™),>1, with X" defined on O, is
said to be uniformly tight, denoted UT, if for each t > 0, the set {ff H* dX?, H" €
S™, |H"| < 1,n > 1} is stochastically bounded (uniformly in n).

In the above definition S™ denotes the simple predictable processes on ©".
Definition 7.2 gives a theoretically compelling criterion, but it is perhaps not
- easy to verify in practice. We will give another criterion that is indeed easy to
verify in practice and which turns out to be equivalent. A first step is to modify
a semimartingale in such a way as to work with processes with bounded jumps. A
standard procedure in the theory of stochastic integration is simply to subtract away
the jumps bigger than a certain size: that is, if X is a given semimartingale, and
6 > 0 is given, let"

Xy = {Xt— > AXsl{le,|>s}} + D AX.lgax.i>5) (7.1)

0<s<t 0<s<t

where of course AX, = X, — X,-. The sums converge since w by w they have only a
finite number of terms before each ¢ > 0, since X has cadlag paths. The problem with
this approach is that it is not a continuous operation for the Skorohod topology! We
will instead propose a similar procedure which — while it is a bit more complicated
— is indeed a Skorohod continuous procedure! Instead of removing the large jumps,
we shrink them to be no larger than a specified § > 0. We define A5 : Ry — R, by
hs(r) = (1= §&/r)*, and J; : D(R?) — D(R?) by

Tt =Y hs(|Az,|)Az,. (7.2)

0<s<t

For a semimartingale X set X° = X — Js(X), and analogously for a sequence
X" X™ = X" — Js(X™). Then X° will have all of its jumps bounded by §. A
. semimartingale with bounded jumps has many nice properties. The most important
ones for us will be as follows. Let Y be a semimartingale with jumps bounded by
6 > 0; then we have:

Y is locally bounded; that is, there exist stopping times (7)1 (7.3)
increasing to oo a.s. such that YT = (Yiar),>0 is bounded a.s.;

[Y,Y] is locally bounded; (7.4)
Y has a decomposition Y = M + A where M is a local martingale and  (7.5)
A € D has paths of finite variation on compacts, and M and A both
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have bounded jumps (by, e.g., 26);

The processes A in (7.3) can be taken to be “natural” (see [15]), or (7.6)
equivalently, predictably measurable.®

The processes M and A in (7.3) are each locally bounded. Moreover the (7.7)
total variation process of A, denoted [ |[dA,|, is also locally bounded.

Suppose X™ is a sequence of semimartingales and § > 0. We can form X™ for each
n and we then obtain decompositions such as (7.5) for each n : X™5 = M™% 4 A",
As in (7.4) and (7.7) there will exist stopping times 7™* increasing to co a.s. in k
such that [M™®, M™®] and [ |dA,| are locally bounded; the next definition makes the
dependence of each T™* on k uniform in n; note that this is a little subtle, since each
sequence (T™F);>; is a priori defined on a different space .

Definition 7.3 A sequence of semimartingales (X"),>1 is said to have uniformly
controlled variations (UCV) if there exists 6 > 0, and for each o > 0, n > 1,
there exist decompositions X™° = M™® + A™® and stopping times T™ such that
P{T™* < a}) < L and furthermore

tAT™ ™
sup En{[anﬁ,Mnﬁ]MTn,a + /0 ldA’;'5|} < . (7.8)

Note that it is implicit in Definition 7.3 that each semimartingale X™ (and hence
also X™% M™® A™® and T™) can be defined on a different probability space ©™.
Definition 7.3 is taken from [10].

Theorem 7.1 Let (X"),> be a sequence of semimartingales, X € D, and suppose
X" = X. Then X™ satisfies UT if and only if it satisfies UCV .

Proof: Suppose first (X™),»; satisfies UT. By considering stopping times of the
form T' = inf{t > 0 : [ X]'| > c}, and then H of the form H = 1;o)(t) (which is in
S™), it follows that {sup,,|X7|;n > 1} is stochastically bounded. Using this and
Theorem 3.1 (ii) which approximates [X, X] as a limit of sums of squared increments
of X in ucp), we see that [X™, X™] is also stochastically bounded. Therefore, the
number of jumps of X™ bigger than §(n > 1) is stochastically bounded, whence (X™?)
is stochastically bounded too. Apply the preceding again to deduce that [X™5  X™¢]
is also stochastically bounded.

5The predictable g-algebra on Q@ x Ry is R = o(L).
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Let X™% = M™® 4+ A™® be the decomposition of X™® where A™° is taken to be nat-
ural (as mentioned in (7.6)). Given ¢ > 0, one can find K such that P"([X™%, X™%] >
K) < e. Let T™* = inf{t > 0 : [X™?, an]t > K} At. Then P(T™* < t) < ¢, and

moreover

E{[Xn'67Xn16]T"'k} <K+ 462,

using (@ + b)? < 2a% + 2% and also (7.5). Since A™® is natural one has that
E*{[M™° A™]g} = 0 for stopping times R such that M™° is bounded. Since
[X™8, X™8] = [M™, M™8] + 2[M™*, A™%] 4+ [A™®, A™%], we deduce

E™{[M™, M™ ) ns} < EM{[X™, X™|pnx} < K + 46°%. (7.9)
If H™ € S*, |[H"| < 1, then by Doob’s maximal quadratic inequality we have
T 2 Tk
E{( sup [ H:dM;"") } < 4E{ i (H;‘)zd[M”'5,M"'5]s}
r<Tn.k J0 0
SAE{[M™, M™)|7ns} < K + 462
by (7.9), and combining this with the UT property of X™°, and since

2
P(IM™, M™]gar > K) < ¢ +K;;45 ,

we have that . ,
{/ HrdA™, H" € S™, |H"| < 1,n > 1}
0
is stochastically bounded. Note that
n,5
——ldA;6| = H™ € D has |HM| =1,
dAy

and since A™® is natural we can take H™® € L without loss. Therefore we have that

lim Y P4 - A2 = 1Az,

t enk

and we deduce [; AT |dA™| is stochastically bounded for each K. Since the jumps
of A™5 (and hence also of |A™?|) are bounded by 26, it follows that we have UCV.

Next suppose (X™)n>1 satisfies UCV. Since X™ => X, there exists § > 0 such
that Js(X™) is stochastically bounded. By UCV we also have that

1
{ [ 1aazs), 1078, M) > 1}
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is stochastically bounded. This implies that X™ — M™¢ satisfies the property:
{/K:_d(xn — M™); K € D;|K"| < 1;n > 1}
is stochastically bounded. Now let € > 0. There exists K such that P*([M™%, M™®], >
K) < ¢ for all n. Define
T™ = inf{s : [M™*,M™®], > K} At.
Then P*(T™ < t) < e. Next let H™ € D, |H"| < 1. Then we have

P*(J(H™ - M™®),| > K) < P (sup |(HT - M™%),| > K)
s<t
< P*(sup |(H™ - M™®),| > K)+e
s<T"

< L B{sup ((H® - M™),)%) +¢
K s<T"

1 nb rm K + 4¢?
< BV ) e < B

This last quantity can be made arbitrarily small, and thus M™® satisfies UT as well.
' ||

We note that without the hypothesis that X™ = X, we have that if (X™) satisfies
UT, then it satisfies UCV, but if it satisfies UCV we need the extra hypotheses that
Js(X™) is stochastically bounded to prove it satisfies UT.

Next we give some general conditions that imply UT"

+E.

If (X™)a>1 is a sequence of supermartingales such that (7.10)
inf(inf X') 26 (b€ R)

then (X™) satisfies UT (cf [9]);

If (X™)np1 is a sequence of local martingales and if for each ¢ < co (7.11)

one has
sup E™{sup |AX]}|} < o0
n <t
then (X™) satisfies UT (cf [8, p. 342]).

Clearly the condition UCV gives conditions which are easy to verify in practice. We
give two examples:

Let (X™)n31 be a sequence of semimartingales with decompositions (7.12)
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1
X" = M™ + A" such that sup{E"{{[M", M"];} + E”{/ |[dA%|}} < oo,
n 0
each t > 0. Then (X™),»>, satisfies UCV;
Let (X™)n>1 be a sequence of semimartingales with decompositions (7.13)
t
X" = M™ 4+ A" such that sup{ Var (M}*) + E"{/ |dA7|}} < o0, each
n 0

t > 0. Then (X™),»; satisfies UCV. (Here Var (M) refers to the
variance of the random variable M}.)

Note that (7.12) and (7.13) are trivially equivalent. Combining (7.11) and (7.12) we
get:

Let X™ = X and suppose X™ has decompositions X" = M™ + A™ (7.14)
such that

t
sup {E" {sup IAMSI} + E" {/ |dAZ|} } < oo.
n 3St 1]
Then (X™),»; satisfies UT and UCV.

Theorem 7.2 Let (X"),>1 be a sequence of vector valued semimartingales, X a vec-
tor valued process in D, and assume X™ = X and that (X™),>; is a good sequence.
Then (X")n>1 satisfies UT and UCV.

Proof: We treat the scalar case. By Theorem 7.1 it suffices to show that UT holds.
Suppose (X™)x>1 is good but UT does not hold. Then there must exist H" € S,
|H"| <1, and constants ¢, increasing to co such that for some ¢ > 0,

limian"{ [ Hzaxy > cn} > e.

n—oo

But this implies that

1
Iiﬂng“{ / —Hy.dX? > 1} >e (7.15)
as well. Since |H"| <1 we have that iH " converges uniformly in distribution to the
zero process. The goodness of (X™)n>; then implies that [ L H™ dX" converges in

Cn

distribution to 0, which contradicts (7.15). [ |

The next theorem is a key step to showing that each of UT and UCV imply
goodness. For a sequence of vector processes (H",X™) each defined on a space O,
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we let H™ = (H})s>0 denote the smallest filtration making (H™, X™) adapted and also
satisfying the usual hypotheses. H = (H,;):»0 is analogous for the limiting process
(H,X).

Theorem 7.3 Let (H",X™), (H,X) be vector processes, each in D, and suppose
(H*, X™) = (H,X). Assume UT or equivalently UCV holds. Then X is an H

semimartingale.

Proof: X € D by hypothesis. If H™ € S(H), |[H*| < 1, and limy—oo H™ = 0
uniformly, we need to show lim,,—,oo H™+X = 0 in probability. Note that for H™ € S,
H™ - X is well defined for any X € D. Since the limit is 0 — a constant — it suffices
to show that H™ - X converges to 0 in distribution. Thus it suffices to show that

{H™. X,H™ ¢ S(H),|H™| < 1} (7.16)

is stochastically bounded.
Let
JH,X)={s>20: P(AH, # 0 or AX, # 0) > 0}. (7.17)

One can check fairly easily (cf, eg, {8, p. 313]) that j(H,X) is at most countable.
Therefore, Q@ = R, \ j(H, X) is dense. Since (H", X™) = (H, X), we have that the
finite dimensional distributions, restricted to @-valued tuples, of (H™, X™) converge

o (H,X). (Typically this is denoted (H™, X™) 48 (H,X)). This fact, together
with the UT property of (X™)n>1, is enough to conclude, using simple approximation
arguments, that (7.16) is stochastically bounded. [}

The next theorem (Theorem 7.4) is the key result in the theory of weak conver-
gence of stochastic integrals. One can prove it using the UT approach (see [9]) or the
UCYV approach (see [10]). The UT approach is fairly intuitive given our definition of
a semimartingale as a good integrator, but it is a little complicated to execute. The
UCYV approach is intuitively very simple, as is the proof. The main disadvantage is
that we need a technical result concerning the Skorohod topology. Note that we will
generalize this approach in Section 7 later. To motivate the argument of the proof
let us first make an observation.

Let (Zn)n31, T, (Yn)n>1, y be functions in D where (z,,,y,) — (z,y) in the Skoro-
hod topology (that is Dg2[0,00), not Dg[0,00) X Dg[0,00)!). Assume further that
Yn is piecewise constant and the number of discontinuities of y, in a bounded time
interval is uniformly bounded in n. Assuming all terms make sense, we then have

(2m3m [ 2n(s=)dun(s), [ vals=)dzn(s)) = (2, [ 0-die, [30-dz,) (1.8
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in the Skorohod topology Dg:[0,00). In view of (7.18), it makes sense to try to
- approximate the processes involved by piecewise constant processes, but in such a
way that they converge along with the approximating processes. Before giving The-
orem 7.4 we establish a lemma that plays an essential role in its proof.

Suppose (E, p) is a metric space, and let (6x)k>1 be a sequence of i.i.d. random
variables, uniform on [1,1]. Fix 2z € D, € > 0, and define inductively

To = 0,
Ti41 = inf{t > Ty : p(z4, 27,) V p(24—, 213,) 2> €6}

~ and let yi(2) = zr,. (Note that T, = Ti(z); that is for each 2z we get a different
sequence of times T;.) We define

IE(Z)t = yk(Z) lf Tk S i< Tk+1. (719)

Then p(2,1°(2):) < ¢, for all t. The role of the (fx)k>1 is to “spread” ¢ over an
interval which then ensures the almost sure convergence of the T = T;(2") when 2"
converges to 2.

Lemma 7.1 For I° defined as in (7.19), if limy_.eo 2, = z in the Skorohod topology
Dg[0,00), then (24, I°(2,)) — (2,1°(2)) a.s. in the Skorohod topology Dg2[0, c0).

We refer the reader to [10, p. 1067] for a proof.

Theorem 7.4 If (H™,X™) defined on O™ converges in distribution in the Skorohod
topology to (H,X) and if (X™)n>1 are semimartingales satisfying UCV (or equiv-
alently UT ), there ezxists a filtration H such that X is an H semimartingale and
moreover

(H", X", H" - X")=> (H,X,H_ - X). (7.20)

. That is, the sequence (X" )n>1 is good.

Proof: That (UT) and (UCV') are equivalent under these hypotheses is Theorem 7.1.

That X is an H semimartingale is Theorem 7.3. Thus it remains to establish (7.20).
Recall that for x € D and é > 0, we defined Js(z) in (7.2) as an operator that

is used to shrink the large jumps to the size §. Then X™° = X" — Js(X™) is a
semimartingale with jumps bounded by §. We define '

Z" = (H", X", Js(X™), X™%).
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Let I¢ be as defined in (7.19). Then I*(Z") is adapted to a filtration K™ = H* v U,
where U is independent of H*. (By the independence, we note that X™ remains a
semimartingale for the larger filtration K™.) Let H™* denote the first component of
Z™ (which is M*® valued in general, where M*? represents k x d matrices). Then
|H™ — H™*| < ¢ and moreover

(H™, X", J5s(X™), X™8, H™) = (H, X, J5(X), X%, H").

Next define:
/ H™ dX™;

= [Hpraxps + [ Hzdiy(x").;
U = / H,_dX,;
= [ Heaxi + [ H,d5(X),.
Then it follows as in (7.18) that
(H™, X", U™ = (H, X, U*).

Finally we let

.
Then
/ — HM)dX™ 5
= [(Hz - Hp)aMrt + [(HE ~ HE Az

where X™® = M™%+ A™® is a decomposition of X™° into the sum of a local martingale
and a finite variation process. Using Doob’s maximal quadratic inequality we have
that for any stopping time T,

1 tAT
E { sup |R;‘"|} <e {2E { [M™ M"’ﬁ]:AT} +2E { / |dA;""|}} :
s<tAT 0

An analogous estimate holds for U — U*. We now apply the UCV hypothesis to
conclude that (A", X", U™) = (H, X, U). [

We wish to make several remarks. First note that if we combine Theorems 7.2
and 7.4, we have that if (H",X") = (H,X), then (X"),>1 is good if and only if
UCYV (or equivalently UT') holds. Second, if convergence in distribution is replaced
by convergence in probability in the hypothesis of Theorem 7.4 (in this case of course

32



all processes are defined on the same space), then convergence in probability will also
hold in the conclusion. '

Third, we can use Theorem 7.4 to prove some nice properties of goodness (Theo-
rems 7.5 through 7.7). The first theorem shows that goodness is inherited via stochas-
tic integration. The proof is similar to the proof of Theorem 7.2.

Theorem 7.5 Suppose (H",X") = (H,X), and (X™),>1 is a good sequence of semi-
martingales. Then Y™ = H" - X™ is also a good sequence of semimartingales.

Proof: We treat the scalar case. By Theorem 7.4 it suffices to show (Y™),>; satisfies
UT. Suppose it does not. Then as in the proof of Theorem 7.2 there exists a sequence
K™ e S, |[K™| <1, and constants ¢, such that for some £ > 0,

ligng"{ [ Kz avy > cn} >,
or equivalently

limian”{ Lxm Hrax > 1} >e. (7.21)

n—0o Cn

The hypothesis that (X"),>1 is good implies that the integrals in (7.21) converge to
0, which is a contradiction. ||

Theorem 7.6 Let (X™,Y™),>1 be a sequence of semimartingales such that (X, Y") =
(X,Y), and both (X™)n>1 and (Y™)n>1 are good. Then

(XY™ [X"Y"]) = (X,Y,[X,Y]) (7.22)
and also [X™,Y™] and X"Y™ are good.
Proof: Integration by parts yields
Xy = [ Xpdvy+ [vraxy +[xn,ym,

and (7.22) follows trivially. By Theorem 7.5 it suffices to show that [X™,Y™"] is good.
But goodness implies UCV by Theorem 7.2, and the goodness of [X™,Y™] follows
easily. ]

Theorem 7.7 Let (X™)n>1 be good, and suppose f : R* x Ry — R is C? on R? and
Cl on Ry. Let Y* = f(XP,t). Then (Y™).»1 is also a good sequence.
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Proof: One need only apply the change of variables formula, and Theorems 7.6 and
7.5. |

We remark that the convergence in (7.22) is not as robust as it might seem.
The next example, due to Jacod [6, p. 395], shows that one can have X" = X,
but [X™, X"] # [X, X]; thus a condition such as goodness is truely needed for the

convergence of the quadratic variations.

Example 7.2 Let X™ be the non-random process X' = E’llt]( 1)‘1. Then |X"| <
%, whence X™ = 0. On the other hand,

2?1 12 [n?]
xx=Y (5) =57

which converges to t. Since [X,X] = 0 trivially, we have [ X", X"] # [X, X].

One of the primary uses of Theorem 7.4 is to the study of stochastic differential
equations, which is the topic of §8.

8 Weak Convergence of Stochastic Differential Equa-
tions
In this section we consider stochastic differential equations in a form similar to those

of § 5. Let (X™)n>1 be a sequence of semimartingales, and (J” )n>1 be a sequence of

processes in D. Let
F,F™ : Dg«[0,00) = Dpsm [0, 00)

have property (i) of Definition 5.1: that is, for £ > 0 we have F*(X ), = F"(X*); and
- F(X); = F(X"),, which is a non-anticipation requirement. Note that we do not make
the Lipschitz hypothesis ((5.1)(ii)). We will study equations of the type

t

Xp=Jr + /0 F™(X™),_dZ" (8.1)

and give conditions that imply X™ = X, where X is a solution of the limiting equation
t

X, =Ji+ / F(X),-dZ,. (8.2)

Note that without the Lipschitz assumption on (F™),>; nor F we do not have
uniqueness of solutions either for (8.1) or for (8.2). If we are willing to assume that a
priori the solutions (8.1) are relatively compact, we have the following simple result:
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Theorem 8.1 Suppose that (J*, X", Z") satisfies equation (8.1), that (J",X",Z")
is relatively compact in the Skorohod topology for Dg2r4m[0,00), and that (J*, Z") =
(J,Z) and that (Z™)n3, is good. Assume further that F™, F satisfy

if (Znyyn) — (z,y) in the Skorohod topology, then (8.3)
(Zry Yny, F*(z0)) — (z,y, F(z)) in the Skorohod topology. '

Then any limit point of the sequence (X™)n>1 satisfies (8.2).

Proof: Suppose a subsequence of (X"),>; converges in distribution. Then along a
further subsequence, the triple (J*, X", Z") will converge in distribution, to a process
(J,X,Z). Theorem 7.4 then gives that X satisfies (8.2). [

The assumption (8.3) is that F'* and F' are Skorohod continuous. Some examples
of such are the following:

Example 8.1 Let g : RF x R, — M*™ and h : R, — R, be continuous. The
following functionals are non-anticipating and Skorohod continuous.

(1) F(z): = g(z4,1)

(it) F(z), = -/: h(t — 8)g(zs, s)ds
If k=m =1, then:

() F(x)e = sup h(t = s)g(z., 5)

(iv) F(z); = sup h(t — s)g(Az,, s).

Before stating our main result we need to make some definitions.

Definition 8.1 (X,T) is a local solution of (8.2) if there exists a filtration F for
which X, J, and Z are adapted, Z is a semimartingale, T is a stopping time, and
such that

tAT : :
Xonr = Jinr + /0 F(X),-dZ,. (8.4)

We say that we have strong local uniqueness if any two solutions (X!, T?), (X?,T?)
satisfy X} = X2, 0<t < T'AT?

To define weak local uniqueness (that is, local uniqueness in the sense of distribu-
tions), we need the stopping times to be functions of the solutions.
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Definition 8.2 A tuple (J, 2,5(: , fl:’) _is a weak local solution if (f , Z) is a version
of (J,Z), and (8.4) holds with (J,Z,X,T) replacing (J,Z,X,T). We say that weak
local uniqueness holds for (8.2) if for any two weak local solutions (J',Z', X1, T?)
and (J?, Z%, X%, T?) with T* = hi(X*) and T? = hy(X?) for measurable hy, hy, then
(X1, (hy A hg)(XY)) and (X2, (k1 A B2)(X?)) have the same distribution.

We need to make some technical assumptions on the functional coefficients which
are stronger than simple Skorohod continuity. Nevertheless Examples 8.1 can be
shown to satisfy Condition 8.1 below.

Condition 8.1 Let A denote the collection of increasing maps A of R, to R, with
Ao =0 and Agyp, — Ay < h, all t, b > 0. Assume that there exist mappings G",
G : Dgx[0,00) x A — Dypxm [0,00) such that F™(z)o ) = G*(z o), )), and F(z)o X =
G(z o A, )). Assume further

(a) For each compact subset H C Dgx[0,00) x A and ¢ > 0, (8.5)

lim sup sup|G"(z,)), — G(z, )| =0,
N0 (2 )eH s<t

(b) For (zn,An) € Drx[0,00) x A, if lim,_,c0 SUP,<; [%n(s) — ()] =0
and lim sup |A,(s) — A(s)] = 0 for each ¢ > 0,
=00 gy

then lim sup |G(zn, An)s — G(z,A)s| = 0.
n—00 oy
Theorem 8.2 Suppose (J*,Z") = (J, Z) where J*, J € D; Z" are semimartingales,

and (Z™)n>1 is good. Suppose F™, F have representations in terms of G*, G satisfying
Condition 8.1. For b> 0, let

7 =inf{t > 0: |[F"(X")| V |F*(X™)=| > b}
and let X™® denote the solution of

t
X;* = 0+ [ Loty (=) FA(X™),-d2;

that agrees with X™ on [0,n}). Then (J", X™, Z™) .5, is relatively compact and any
limit point (J, X*, Z) gives a local solution (X°,T) of (8.2) with T = 7, for any ¢ < b.

Moreover if there exists a global solution X of (8.2) and weak local uniqueness
holds, then (J™, X", Z") = (J, X, Z).
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The proof of Theorem 8.2 involves some technical points, and we refer the reader
to [10].
We next give two examples to show how Theorem 8.2 can be used.

Example 8.2 (Duffie-Protter) We can use Theorem 8.2 to help to derive and to
Justify models in continuous time stochastic finance theory as limiting cases of discrete
models. As an example, let (Y*)i>1 be the periodic rate of return on a security (such
as a stock) with initial price So. After k periods the price of the security will be

k
P =S+

=1

Let 7} = T yn and Sy = Sy Since Spyy — Sp = SPY)", we can write

i=1 ¥;
Sn= 8o+ /Ot Sm dzn.

If (Z™)n>1 is good with Z™ => Z then the limiting equation is
Si=50+ [ 8.4z,

which is the stochastic ezponential and has a unique global solution, and thus if S§ =
So, by Theorem 8.2, S™ = S. Moreover by Theorem 7.5 we also thus know that
(X™)a>1 is good, hence if (0} )k>1 represents a trading strategy and

6= “gr_dsr

where 07 = 0p,; represents the resulting “gain” from the strategy 0", and if (2™, 0", Sg) =
(Z,8,50) with (Z™)n31 still assumed to be good, we have G* = G, with G given by

G = /ot 6,_ds,.

Many naturally occurring models have the property that (Z™),>1 is good.

Example 8.3 Emery [/] has discovered a class of martingales that have the Chaos
Representation Property (CRP). A necessary condition to have this property, if
(M, M), =1, is that the local martingale M satisfy an equation of the type [M, M]; =
t+ [Ep,dM,. A special case is:

d[X,X]; = dt + f(X,_)dX:, (8.6)
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where f : R — R is continuous. Therefore it is of interest to know when solutions of
(8.6) exist. One can show existence for any such f by defining a sequence of discrete
time martingales and then showing the sequence is relatively compact and that the
limit satisfies (8.6). If one sets AY = Y\, — Y and assumes YJ* = 0, then the
discrete time analogue of (8.6) becomes

(AYp) = = + f(FM)AYL. (8.7)

S|

One then solves (8.7) for AY:

Ay FYE) £ X)) +4/n
T = :

= 2

Call the solutions Zt and Z~. In order for Y™ to be a martingale we are forced to
choose 7-

PAY = 2%) = w2

and

P(AY? = Z7) =1- P(AY! = Z*).

We then define X = Yina and show it is relatively compact and that the limit satisfies
(8.6). See [10, p. 1044] for details. The above argument also applies to the more
general equation

d[X, X, = dt + F(X)i-dX,, (8.8)

where F' satisfies Condition 8.1. Note that a martingale is called a normal martingale
if (M,M), =t and it has CRP, thus solving equations (8.6) or (8.7) is a way to
generate candidates for normal martingales. Emery [{] has shown that if M satisfies

d[M, M]t =dt -+ ,BMt—th; Mo =z,

then M is a normal martingale for —2 < f < 0. Note that 8 = 0 corresponds
to Brownian motion, § = —1 is Azéma’s martingale, and B = —2 is the parabolic

martingale (|M;| = V).

In many situations the approximating semimartingales are not good. We give an
example to illustrate this phenomenon.
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Example 8.4 Let W = (W,)i0 be a standard Wiener process (that is, standard
 Brownian motion). Let us approzimate W with an “approzimate identity” as follows:

t
Wr = n_/t_-l W,ds.

Then W™ is defined on the same space as W, W™ is adapted to the same filtration, and
limpneo W™ = W a.s., uniformly on compacts. However (W™) is not good. Indeed,
consider the equations

1
XP=o+ /0 Xt W™ (8.9)

Then X} = z exp(W}*). But for the limiting equation
t
X;=z+ [ X,dw,
()

we have X; = zexp(W; — 3t). Thus W™ = W, but X" # X. This could not happen
if (W™)a>1 were good by Theorem 8.2.

If in Example 8.4 we rewrite W" as W* =W + (W™ - W) = Y™ + Z", then we
have Y™ = W and (Y™),>1 is good (in this case Y™ = W {for all n, so the convergence -
and goodness are trivial), and Z" is a sequence of semimartingales converging to 0.
Equation (8.8) can be re-written

Xr=X +/0tX;‘dY," + /otX;‘dZ;‘.

This idea allows us to handle naturally arising situations where goodness does not
apply. It generalizes a well-known approach due originally to E. Wong and M. Zakai.

Theorem 8.3 Let Y™, Z" be semimartingales on O, and let f : R — M™ be C?
and bounded with bounded derivatives of first and second order. Define matrices of
processes in D by

i
HP = / Zr dzr ¢
0

and

Kp=[Y"2Z":.
Assume (Y")>1 (H™)n31 are good, and Z™ = 0. Moreover assume
A" = (X3, YY", Z",H",K") = A = (X,Y,0,H,K).

6Matrix entries: (H})Y = fot Z:'de;"j;(Kt")"j = [Yy®izZmd],
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Let X™ be the solution of:
n n ¢ n n t n n
Xp=Xp+ [ fx)ay; + [ f(xz)az;. (8.10)
Then (A™, X™) is relatively compact and any limit point (A, X) satisfies

Xe=Xot /ot F(Xe-)dYs + 3 /(: Oif (X, ) f*(Xo-)d(HY — K7P),  (8.11)

1,5,k

where O; denotes the partial derivative with respect to the i** variable, f7 denotes the

7 column of f, ete.

Before we prove Theorem 8.3, we remark that the boundedness assumptions on
f and its derivatives can be dropped, and X§ can be replaced with an exogenous
process (JI')i>0. See [10]. Also since Z® = 0, it follows that H and K will
fortiori be continuous. Also, we have not assumed that (K ")n>1 is a good sequence
in Theorem 8.3; however the hypotheses will imply that (K™),>; is also good (see
(8.14) in the proof to follow).
Proof of Theorem 8.3: The proof will follow from the change of variables formula,
and integration by parts. First observe that

. . .. . t . , t . )
(274,27 = 25 - 732y — [ Znidz - [ ziazy,
0 0
and therefore if I = [Z™iZ™7],, it follows that
I = _(HY 4 HY), (8.12)

Since I™** is non-decreasing and converges in distribution to a continuous process, it
follows that I™* is good. Moreover we can estimate the increments of I™ by the
increments of I™** and I™# to deduce that (I"),; itself is a good sequence.

Since f is assumed to be C?, letting X™ be the solution of (8.9), by the change of
variables formula we have

XD = P + T [ (X0 )X + R,
k

- where the increments of R™*J are dominated by a linear combination of the increments
of [Y™*,Y™*] and [Z™*, Z™¥], whence (R™)n>1 is good.
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Next we integrate by parts to obtain:
t .. . .. . .. . t . . k
/ XYz = (XD 2 ~ f9(X§)Z5° = 3 /0 O fH(X7)Z X
0 k
t . t . . ,
._/ Z:‘leR:m,J - Z/O O f*? (X:_)d[X"'k, Zn,J]s + [Rn,m, Zn,J]t
0 k
t .
=U =3 [ G X ) 22 dz
ke 70

o k¢ ¢ j ¢ j
— 3 [ B R Y, 29, + (274, 279,),
kL
where U™ = 0. Continuing:

— Un _ ta 17 X'n k.l X" d Hn,j,l Kn,l,j In,l,j 8.13
R 1 E 0 kf ( s—)f ( s—) ( s + s + s ) ( * )
k.l

We have already seen that (I™),>1 is good, and we calculated its limit in (8.12). Note
further that

. , 1 , , n R n -
[ — K| < S {, Y i + TRE = (Y, Y - IR (8.14)

and it follows that (K™),»>; is good. Therefore it remains only to substitute (8.13)
into (8.9) to complete the proof. u

9 Applications to Numerical Analysis of SDE’s

Let us consider a simple stochastic differential equation driven by a semimartingale

Y:
X, = Xo + /0 F(X,_)dY, O 01)

where f is a continuous function (not necessarily Lipschitz). One is often interested
in estimating quantities of the form E{g(X,)} for a fixed time a. One could use a
Monte Carlo method if the law of g(X,) or of X, were known, but in general it is
not. Therefore one uses the structure of the SDE (9.1) to estimate the law of X,.
The simplest method is the Euler method. (There are more complicated numerical
schemes that converge faster, but we intend to combine our results with a Monte
Carlo procedure, and since Monte Carlo convergence is slow, we do not consider
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them here.) A straightforward extension of the Euler method of ordinary differential
equations leads to an Euler scheme of the type

0 <0 <0
X'tk+1 = th + f(th)(.Ytk-H - 1/tk) (9'2)
where 7" = {0 = #, < t; < ... < &, = a} is a sequence of partitions of [0, a] such

that lim,_,o, mesh (7#™) = 0. We denote X° to be the approximation (the dependence
on n is implicit) to distinguish it from a solution X of (9.1).

It is convenient in this context to use a different scheme than the naive one (9.1).
However note that for our scheme (9.4) below, the two schemes will agree on the
partition points (tx)k>1 of 7#"[0, a]. We define

n(t) =t for tp <t < tp (9.3)

for a partition 7°[0,a] = {0 < o < ... < t}, = a} where again the dependence on n
is implicit. Let X satisfy the equation:

- t
X, = X, + /0 F Koo Y, 9.4)

so that the integrands in the stochastic integral are piecewise constant. Note that
Yt,‘ = ng for partition points (tx)s>1. We can put more general assumptions on 7,
as the next lemma shows.

Lemma 9.2 Let (Y") be a sequence of semimartingales, X™ € D, and 5, € D,
nondecreasing, n,(t) < t, and lim,_oo n(t) = ¢ for all t > 0. Assume also (Y™)n>1
is good and that (X™,Y") = (X,Y). Then

[ Xond¥e = [X,-av,.

Proof: Recall the notation Js introduced in §7 (equation (7.2)). Then for § > 0 we
have _

[ (X" ap0m) = Ts(X™),2) d¥ = 0.

Therefore there exists a sequence (6,)n>1 tending to 0 such that
[ (Jou Xy = (X)) d7

However the asymptotic continuity of X™® implies that (X" — X:;l,’,?tt))izo = 0,
whence

n

[ (Xt - X ) avy = o,
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and therefore
/(X:L- - :)Ln(s—))dYan =0

and the lemma is proved. [ |

Theorem 9.1 Let (Y™) be a good sequence of semimartingales such that Y™ = Y.
Let n, be as in Lemma 9.2. Let f : R? — MF™ be bounded and continuous, and let
X" satisfy

X, =Xo+ /: f (Y:"(s—)) ay;. (9.5)

Then (X", Y™) is relatively compact and any limit point satisfies

X, = Xo + /0 XA, (9.6)

If all Y™ are defined on the same sample space asY and if Y™ converges toY in ucp
and pathwise uniqueness holds for (9.6), then X" converges to X in ucp as well.

Proof: The relative compactness is complicated and we refer the reader to Kurtz-
Protter (1991).

The fact that any limit point satisfies (9.6) then follows from Lemma 9.2.

Under the assumptions of the final assertion, we can treat (X, X) as a solution
of a single system. The uniqueness then gives us that (X ,X) = (X, X), whence
X" — X = 0, and the conclusion follows. |

We note that often in applications we will have Y™ = Y for all n; such a sequence
is of course trivially good.

In certain circumstances we can give an analysis of the error in the Euler scheme;
that is, we can determine the asymptotic distribution of the normalized error. Here
weak convergence is essential, as we will see by considering the Brownian case in
Example 9.1.

Theorem 9.2 Let Y be a given F semimartingale and let f be a C* M%™ matriz
valued function. Let 0 = T§ <17 < ... be F stopping times and define

ﬂn(t) =Tg fTy <t< TI:1+1,

and let X satisfy (9.5). Let an, be a sequence of positive constants tending to oo,
and set

U™ = an(X" - X)
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and define .
nid = g /0 (Vi = Yi,.,) dYs.

Assume that (Z")n>1 is good and that (Y,Z™) = (Y, Z). Then U™ = U, where U
satisfies

=% [ VAKX Y + T [ S ouf (K )fHXo)dzE. (0.1
i V0 i 0 &

Proof: The hypothesis imply that (9.6) has a unique solution, hence
X", X,Y,Z") = (X,X,Y, 2).
Let us treat only the scalar use (d = m = 1). Observe that
X, — Y: (=) = f(Xn (s—))(Y— You(s-))-

Therefore

Up = /Ot e (FO02) = 106)) ¥, = [ (F(R) = () a,
) = £(X)
0 X-—n - Xs—

§—

- / F(X) +f (an(a—)-)l (Y- - Yo(eo))
—f( ﬂn(-"_)) (Y;_ - Y;In(-‘")) dZ:

Next let T™¢ = inf{t > 0 : |U}| > a}. Then Ul pna is relatively compact, and
any limit point will satisfy (9.7) on [0,T°], where T* = inf{t > 0 : |U;| > a}. But
lim,,0o T'* = 00 a.s., so U™ = U. |

Ur dy,

Example 9.1 Let us take Y; = ( V;/} ) in Theorem 9.2, where W is an n — 1 di-

mensional standard Wiener process (or Brownian motion). Let n,(t) = Ll. Then
taking an, = /n, we have (Y, Z") = (Y,Z), where Z is independent of Y. Moreover
Zm = Z™ = 0, and since Z% are continuous local martingales with [Zi, Z%), =

0 y#k

Lt ij= ke we conclude that Z is also a Brownian motion, independent of W.

Note that since Z is independent of W, it need not “live” on the same space as W,
Thus the limiting process U could appear only through weak convergence, in general.
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