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Abstract

New developments in default Bayesian hypothesis testing and model selection
are reviewed. As motivation, the surprising differences between Bayesian and clas-
sical answers in hypothesis testing are discussed, using a simple example. Next,
an example of model selection is considered, and used to illustrate a new default
Bayesian technique called the “intrinsic Bayes factor”. The example involves se-
lection of the order of an autoregressive time series model of sunspot data. Clas-
sification and clustering is next considered, with the default Bayesian approach
being illustrated on two astronomical data sets. In part, Bayesian analysis is expe-
riencing major growth because of the development of powerful new computational
tools, typically called Markov Chain Monte Carlo methods. A brief review of these
developments is given. Finally, some philosophical comments about reconciliation
of Bayesian and classical schools of statistics are presented.

1 Introduction

Bayesian Analysis and Astronomy have a long history together. Although Bayesian
analysis is named after Thomas Bayes, who wrote the first paper on the subject (Bayes,
1783), it was Laplace who, in the late eighteenth and early nineteenth centuries, exten-
sively developed the Bayesian approach to statistics, culminating in his revolutionary
statistics book, Laplace (1812). Much of Laplace’s motivation in this development was
the solution of problems in celestial mechanics.

The Bayesian approach to statistics, then called “inverse probability,” dominated the
statistical scene for most of the nineteenth century, but fell into disfavor in the first half
of the twentieth century. It has recently staged a major revival, and is indeed today the
dominant approach in several statistical areas of interest to astronomy, such as image



processing. Use of maximum entropy methods, which is a type of Bayesian analysis, has
also become very popular in some astronomical circles. Additional insight into the use
of Bayesian analysis in the astronomical community is available in the excellent papers
Loredo (1992) and Ripley (1992), from the previous conference.

Virtually any problem involving uncertainty can be approached from a Bayesian
perspective, and the quantity of Bayesian methodological development being undertaken
today is enormous. Hence a review of recent Bayesian developments or assessment of
its future impact is virtually impossible. The goal of this paper is thus considerably
more modest. We will simply try to illustrate some of the features of Bayesian analysis,
with an eye towards helping astronomers to better judge whether or not they should
consider using Bayesian methodology. There is a substantial learning curve involved in
becoming adept at use of Bayesian methodology, and so some indications of the rewards
and potential uses of the methodology can be helpful in deciding whether or not to invest
effort in this direction.

A personal caveat is in order before proceeding. I have had little direct involvement in
the analysis of astronomical problems, and so the illustrations I will consider are rather
sterile, containing rather minimal astronomical content; indeed, the illustrations might
even be “bad science” in terms of astronomical understanding. I hope readers will not
be too distracted by this, and that at least some of the potential of Bayesian analysis is
nevertheless apparent.

Related to this is the caveat that I will be focusing primarily on ‘default’ Bayesian
methodology. This can best be described as a toolkit of Bayesian procedures which can
be used automatically, much the same as many standard classical statistical procedures.
In a sense, limiting the paper to this subject is somewhat unfortunate, because the
Bayesian paradigm is much more; indeed, many argue that it’s greatest strength is to
allow completely general interactive modelling between science, data, and opinions of
the investigator, to reach a holistic end. My own experiences in this regard are not
within astronomy, however, and hence I cannot provide an astronomical illustration of
this possibility.

Even within default Bayesian analysis, I will primarily focus on one issue: use of
Bayesian methods in hypothesis testing and model selection. This area is of consider-
able interest because it is an area in which Bayesian answers systematically differ from
classical answers. (In contrast, when dealing with estimation or prediction problems for
reasonably large data sets, there are typically only modest differences between classical
and Bayesian answers.) Section 2 introduces the subject through an elementary, but sur-
prising, example. Section 3 considers a more involved application to time series analysis.
Section 4 deals with analysis of mixture problems, with applications to clustering.



One of the reasons for the recent upsurge in use of Bayesian methods is the advent
of powerful computational engines based on Markov Chain Monte Carlo procedures. In
Section 5 we give a brief introduction to these techniques. Section 6 concludes with some
philosophical perspective.

2 Bayesian Hypothesis Testing and Model Selection

2.1 Motivation and a Simple Example

The Bayesian approach to hypothesis testing and model selection is conceptually straight-
forward. One assigns prior probabilities to all unknown hypotheses or models, and uses
probability theory to compute the posterior probabilities of the hypotheses or models,
given observed data. The key advantage of this approach is that the answers can be
interpreted as the actual probabilities that the hypotheses or models are true, in con-
trast to standard significance testing which lacks any such interpretation. While there
is a common intellectual appreciation of the difference, the impact of this intellectual
appreciation upon practice seems to be quite limited; the following illustration of the
difference is useful in helping to convince oneself that it is a serious matter.

Example 1. Suppose we observe independent N(8,1) data (i.e., data following the
normal or Gaussian distribution with mean 6 and variance 1), and that it is desired to
test Hy : 8 = 0 versus Hy : 8 # 0. The typical classical procedure that is used is to
compute the P-value or observed significance level, and to consider there to be significant
evidence against H, if this P-value is small enough.

The following interesting simulation is easy to perform: repeatedly generate ran-
dom data from H; and H,, corresponding to a series of tests of H; versus Hj, and see
where the series of P-values happens to fall. For data generated from H;, this is no
mystery; by definition, the fraction of P-values that would fall in a given interval, say
0.04 < P-value < 0.05, would be the size of the interval (here 0.01). The nonshaded
vertical bars in Figure 1 reflect this, showing the fraction of P-values that would fall
in each of many intervals, were the data generated from H;. (Three separate graphs
are presented, because it is the smaller ranges of P-values that are typically of more
interest.)

Now let us see where the series of P-values happen to fall if they arise from H,. There
1s a certain ambiguity here, because what does it mean to generate data from H,? One
possibility is to simply pick some value of 0, say 2, and generate data from the N(2,1)
distribution. Another possibility is to randomly select § from some distribution =(6),
generate data from the selected 6, and then repeat the process with new 6 arising from
7(0). This latter possibility better mirrors the actual daily use of significance testing,
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and so Figure 1 presents the results of one such simulation, with 7(6) chosen to be a
N(0,2) distribution and the sample size (for each P-value computation) chosen to be
one. (The simulation itself repeats the generation of 6 and data many times.) The
shaded columns in Figure 1 present the fraction of P-values that fell in each interval.
(Note that, while the data for the shaded columns were generated from H,, we still just
compute the P-value relative to Hj.)

The qualitative nature of the results is no surprise: the larger the P-value, the more
likely that it arose from H, than from H;. But the quantitative implications come as a
considerable surprise to those who see this for the first time. For instance, suppose you
observe a P-value in the interval (0.04,0.05). This is a rare event under Hj, happening
only 1% of the time, but it is nearly as rare under H,, happening only about 2% of the
time. Thus, if one had to bet whether this P-value arose from H; or Hs, it would be
prudent to bet on H, at no more than 2 to 1 odds (assuming the two hypotheses were
judged to be equally likely apriori). This last is essentially the Bayesian conclusion from
the problem, that a P-value of 0.05 provides at most weak evidence in favor of H,.

Consider next the case in which the P-value is in the interval (0.009. 0.01). In classical
language this is typically termed “highly significant evidence against H;,” and yet we see
that the likelihood that the data came from H; is only 5 times the likelihood that it came
from H;. Odds of 5 to 1 are meaningful, but hardly carry the level of conclusiveness that
is usually accorded the phrase “highly significant evidence.”

A final comment before leaving this example: one might well be suspicious that the
startling nature of Figure 1 is due to the particular way in which we generated data
from H,. This is not the case. One can make any choices of the parameters under Hs,
and use any sample size (for the P-value computation), and the story remains roughly
the same or worse. For instance, the fraction of P-values that will fall in the interval
(0.04,0.05), when the data is generated under H», can be shown to be at most 0.034,
and so the odds of Hy to H; can be at most 3.4 to 1 when the P-value is in this interval.
Interestingly, the fraction of P-values in the interval has no lower bound, and decreases
rapidly as the sample size increases; thus if one performed this simulation with a large
sample size (for computing the P-value), it would typically indicate that a P-value in
the interval (0.04,0.05) is evidence in favor of H;.

The above example illustrates what is, perhaps, the most attractive feature of Bayesian
analysis, namely that it’s conclusions carry a clear interpretation. While there is noth-
ing “wrong” with the classical P-value here, in that it’s definition is precise and it does
convey information of interest, learning how to interpret a P-value as a measure of the
evidence for H; relative to Hj is extremely difficult, requiring major adjustments for the
sample size and the type of testing that is done (among other things).

The phenomenon in the above example is very general, applying to most testing
problems in which the hypotheses are of differing dimensions, including typical chi-
squared testing of fit. For more extensive discussion, see Edwards, Lindeman, and Savage



(1963), Berger and Sellke (1987), Berger and Delampady (1987), and Delampady and
Berger (1990).

2.2 Notation

Hypothesis testing and model selection are essentially the same from a Bayesian perspec-
tive; we will henceforth use notation that is more designed for model selection. Also, we
will only consider analysis of parametric models.

The data, X, is assumed to have arisen from one of several possible models My, ..., M,,.
Under M;, the density of X is f;(z|;), where ; is an unknown vector of parameters of
fi.

The Bayesian approach to model selection begins by assigning prior probabilities,
P(M;), to each model; often, equal prior probabilities are used, i.e. P(M;) = 1/m. It
is also necessary to choose prior distributions 7(;) for the unknown parameters of each
model; sometimes these can also be chosen in a “default” manner, as will be illustrated
later.

The analysis then proceeds by computing the posterior probabilities of each model,
which elementary probability theory (Bayes theorem) shows to be equal to

P(Mifg) = o ld)mile) 1)
P(M;)m;(z)

o

1

1l

J

where m;(z) = [ f;(z|6;)7;(0;)df;. Typically one selects the model (or models) with
largest posterior probability. Note that, when the prior probabilities, P(M;), are equal,
then the P(M;|z) equal

P, = mi(z)/ 32 mi(a). )

=1

It is common to simply report the P; in the summary of an investigation, since someone
with unequal P(M;) can easily recover their P(M;|z) via the alternate expression

P(Milz) = P(M)- B/ 3. P(M3)- By

Example 1 (continued). Here, the data is X = (Xi,...,X,), where the X; are
independent N(6,1) observations. Model M; corresponds to assuming § = 0, in which
case fi(z|0) is just the standard normal density. Model M, corresponds to assuming
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6 # 0. Since M; has no uspecified parameters, 71(6;) is not needed. For M;, we assumed
in the earlier simulation that 6 has a N(0,2) distribution, which would thus be m,(6).
Computation then yields

ma(e) = fi(el0) =TT (= €7,

=1

o0

my(z) = [ fall0)ra(6)d0

T 2 1 2
_ R ) /2) Ll Pl
_Zo (H \ 2T ¢ \/47re

=1

Evaluation of the above integral, and use of (2) yields

Pi=1-P= [1 + (14 20)"2 exp{nz®/(2 + %)}} - (3)

Thus if n = 1 and |Z| = 1.96 (so that the P-value would be exactly 0.05), then P; = 0.325
and P, = 0.675. These mirror the conclusion from Figure 1 that, even though the P-
value is 0.05, there is almost a (1/3) chance that § = 0 is true (assuming that we initially
give M; and M; equal prior probabilities of being true).

2.3 Default Implementation

The two difficulties in implementing Bayesian model selection are (i) choosing the prior
distributions 7;(d;), and (ii) computing the m;(z). A variety of strategies exist for
carrying out the integrations necessary to compute the m;(z); see Kass and Raftery
(1995) for discussion. Choosing the 7;(§;) is more of a problem.

It may well be the case that subjective knowledge about the §; is available, and can
be incorporated into subjective proper priors for the §;. This is clearly desirable if it
can be done. Thus, in Example 1, one might feel that, if § # 0, then  will be near
5 with an uncertainty of &1. (Perhaps the alternative theory, M,, would predict this.)
Choosing 75(8) to then be, say, a N(5,1) distribution would be reasonable. If one had
no specific alternatives in mind, one might at least want to specify a guess, 7, as to the
likely amount of departure of @ from 0 under H;. Interpretng 7 as a prior “standard
error”, it would then be reasonable to use a N(0,72) prior distribution for m5(#). An
alternative to guessing 7 is to simply specify a plausible range for 7, and see if the desired
conclusion holds for the entire range. This is called robust Bayesian analysis; see Jeffreys
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and Berger (1992) for a simple but interesting astronomical example, and Berger (1994)
for a recent review.

Subjective Bayesian analysis is often avoided, for a variety of reasons. The most com-
mon argument against subjective Bayesian analysis is that “scientific discourse demands
objectivity, and hence one cannot use a subjective Bayesian analysis.” The merits of this
argument are highly debatable (cf, Berger and Berry, 1988), but one cannot deny that
at least the appearance of objectivity can be helpful.

The other primary objection to subjective Bayesian analysis is that it is often too
difficult. This is especially true of model selection problems, in which there may be several
high-dimensional models and eliciting all the needed high-dimensional prior distributions
would be a truly formidable undertaking. (We do not mean to imply that there is
anything wrong with subjective Bayesian analysis - indeed it can be argued that one
should always first try to implement such an analysis - but the difficulties are real.)

For these and other reasons, the most popular Bayesian methods tend to be default
methods, which operate with default prior distributions. For estimation and prediction
problems, the default Bayesian theories are well developed, and use prior distributions
that are designed to be “noninformative” in some sense. The most famous of these
is the Jeffreys prior, named after the famous geophysicist who, through his exemplary
book Jeffreys (1961), was most responsible for the modern Bayesian revival. Mazimum
entropy priors are another well-known type of noninformative prior (although they often
have certain features specified). The more recent statistical literature emphasizes what
are called reference priors, which prove remarkably successful even in higher dimensional

problems (cf., Berger and Bernardo, 1992, and Yang and Berger, 1995).

Testing and model selection has proved much more resistant to the development of
default Bayesian methods. This is because the “noninformative” priors discussed above
are typically improper distributions, meaning they do not have mass equal to one. This
does not typically pose a problem in estimation and prediction, but it does for testing
and model selection. The expressions in (1) and (2) really make sense only if the m;(6;)
(and hence the m;(z;)) are proper distributions.

Jeffreys faced this problem squarely, and considered the various (unappealing) choices.
One choice is to use classical measures, such as the P-value; but their very misleading
nature made that choice especially unattractive. Another choice is to demand subjective
Bayesian analysis, but Jeffreys felt that this was too restrictive a requirement. The third
possible choice is to simply pick some proper prior distributions that seem reasonable
(for the given models), and conventionally use them for default hypothesis testing or
model selection. This was the choice that Jeffreys adopted. Thus, in Example 1, he gave
extensive arguments supporting use of a standard Cauchy distribution as the default
prior. (The choice we made, of a N(0,2) distribution, gives almost the same answers
and is easier to handle computationally.)



In principle, this approach of Jeffreys is our favorite approach. Its major disadvantage
is that there is no well-developed theory for determining default priors for hypothesis
testing and model selection. Hence progress in this direction has been very sporadic, with
only certain special models being treated on a case-by-case basis. Because of this limita-
tion, Bayesian model selection has, instead, typically been performed using an asymptotic
approach which is known as the BIC criterion (see Kass and Raftery, 1995, for discus-
sion). This approach, however, has the usual disadvantages of asympotics, including the
need for regular models and large sample sizes (though see Kass and Wasserman, 1995).

Recently, two very general default Bayesian methods have appeared: the fractional
Bayes factor approach of O’Hagan (1995), and the intrinsic Bayes factor approach of
Berger and Pericchi (1996a). This last approach appears to be applicable to virtually
any hypothesis testing and model selection problem (even for nonregular models), and
seems to closely correspond to the recommended analyses of Jeffreys for the cases he
considered. Hence we feel that it holds great promise for solving the hypothesis testing
and model selection problem.

There are several versions of intrinsic Bayes factors, with different versions argued
to be particularly useful in certain settings. There is, however, one quite simple version
that seems to work well across all problems, and that is what we will describe here.

The idea behind intrinsic Bayes factors is simple, and is based on an ad hoc method
that has long been used to address the model selection problem. The ad hoc method
is to use part of the data (typically as small a part as possible) as “training data”,
to convert the standard noninformative priors (used in estimation problems) to proper
distributions. Then one uses these proper distributions, with the remainder of the data,
to compute the posterior probabilities in (1) or (2).

Besides being an ad hoc approach with no clear justification, the method was rather
arbitrary in that the choice of the training data is typically arbitrary. The simple idea in
Berger and Pericchi (1996a) was to eliminate this arbitrariness by doing the computation
for all possible choices of the training data (or some reasonably large random subset of
such choices), and then picking an “average” of the ensuing answers. As a general
purpose method, picking the median of the ensuing answers seems to work extremely
well, and defines what we call the median intrinsic Bayes factor. (This is strictly defined
only for pairwise comparisons of models, but pairwise answers can easily be adapted to
deal with multiple models or hypotheses.)

Example 1 (continued). The common noninformative prior for §, under Ms, is
7(f) = 1. This is improper, but if we use just one of the observations, say z,, as a
training sample, then we can convert 7(6) to the posterior distribution

fo(@alf) - 7(6) _ 1 _igmy
 fa(z110) - 7(0)d0 — /2r '

Using this as the (now proper) distribution for 8, and computing (2) for the remaining

7(0]|z1) =
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data zo,...,z,, yields
. -1
P1:1—P2:|:1+\/T_l B_nx2/2'6$?/2:| .

(Here, T is the average of all the data.) Since choice of z; as the training sample was
arbitrary, one can do the computation for all possible choices, and then take the median
of the resulting answers. The result is clearly

- * _1
Pr=1-P= [1 +/n e e 2/2] : (4)

2
n*

where z*° is defined to be the median of ...z

While simple to implement (modulo possible computational difficulties), the intrinsic
Bayes factor approach at first appeared to be just another ad hoc approach. Interest grew
enormously, however, when it was shown that the answers resulting from this approach
correspond very closely to answers from actual proper default prior analyses, of the
type recommended by Jeffreys. One could now obtain reasonable answers without going

through the involved arguments needed for the Jeffreys-type implementation.

Detailed discussion of this approach, its limitations, and advice for its computational
implementation, can be found in Berger and Pericchi (1996a, 1996b). Note, however,
that the median intrinsic Bayes factor is not emphasized therein; we have only recently
come to appreciate it, for its general applicability and stability; except for extremely
small sample sizes, we have not found any serious contraindications to its use.

3 An Application to Time Series Analysis

A situation in which one typically is considering a multitude of models is in time series
analysis. Consider the time series in Figure 2, for instance. This is the famous Wolfer
sunspot series data, consisting of the number of sunspots observed each year from 1770
to 1869. A possibly reasonable model for the series is a stationary autoregressive process
with drift. For instance, the AR(1) model with a linear drift would be described as

Y, =06t + 61 (Yier — Bu(t — 1)) + &, (5)

where Y; is the observation at time ¢, ; is the unknown linear coefficient, ¢, is the
unknown autocorrelation, and the ¢; are i.i.d. N'(0,0?) errors, o2 also unknown.

It is decided to consider autoregressive models of order 1, 2, 3 and 4, and also to
consider constant (C), linear (L), and quadratic (Q) drift. Thus the AR(j) model with
drift of polynomial order & (k = 0,1,2) can be written

J

k k
Y;f = Z ﬂlte + ¢'r(}/t—-'r - Zﬁl(t - T)g) + €. (6)
£=0 1 £=0

rT=
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We are thus considering twelve models (any of the four AR models together with any of
the three polynomial drifts).

The “intrinsic Bayes factor” approach applies directly to this problem. It utilizes only
standard noninformative priors for the parameters (constant priors for the g8; and ¢;, and
1/0? for the variance, 02). Recall that one cannot use these noninformative priors di-
rectly, but must use them through the “intrinsic Bayes factor” algorithm. There is also a
computational complication: because of the stationarity assumption, ¢ = (¢1, @2, ..., ¢;)
is restricted to the “stationarity region,” and so the integration in computation of the
m;(z) must be carried out over this region. Methods of doing this, as well as the relevant
intrinsic Bayes factor algorithm, can be found in Varshavsky (1996). The results are
summarized in Table 1.

Table 1. Posterior probabilities of models,
assuming equal prior probabilities.

Model P(M;|z) | Model P(M;|z)
AR(1),C _~0 [|AR(3),C 0.740
AR(1), L ~ 0 AR(3),L  0.001
AR(1),Q ~0 |AR(3),Q 0.001
AR(2),C 0.161 |AR(4),C  0.076
AR(2), L 0.011 |AR(4),L  0.006
AR(2), Q  0.001 |AR(4),Q  0.001

The AR(3) model with no drift is clearly the preferred model, although the AR(2)
model with no drift receives some support, and should not be ruled out on the basis of
this data. Higher or lower autoregressive structures receive little support.

Note that the analysis very strongly discourages including any drift term in the model;
none of the models with a drift term has posterior probability greater than 0.011. Indeed,
there was no scientific reason to include drift terms in the model, but we did so as a
pedagogical illustration. One of the highly attractive features of the Bayesian approach
to model selection is that it acts as a natural “Ockham’s razor”, in the sense of favoring
simpler models over more complex models, if the data provides roughly comparable fits
for the models. Here, the models with drift will certainly fit the data slightly better
than will the models without drift, but the Bayesian analysis automatically prefers the
simpler non-drift models in the absence of a clearly superior fit. And this is without
having to introduce any explicit penalty, such as reduced prior probabilities for the more
complex models (although this is often also recommended - cf, Jeffreys, 1961).

In classical statistics, overfitting is avoided by introducing an ad hoc penalty term
(as in AIC), which increases as the complexity (i.e., the number of unknown parameters)
of the model increases. Not only are such corrections ad hoc, but the standard ones do
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not sufficiently penalize complex models. For instance, a recent bias corrected version of
AIC, designed for time series (see Hurvich and Tsai, 1989), when applied to the above
data selects as the top four models the (AR(4), Q), (AR(4), C), (AR(4), L), and finally
(AR(3), C) models. For an interesting historical example of Ockham’s razor, and general
discussion and references, see Jefferys and Berger (1992).

We have limited the discussion of this example to the model selection question. There
is, of course, considerably more of interest to the problem. One might also want to es-
timate the parameters of the selected model (and provide associated standard errors),
and/or use the selected model for optimal prediction. Any such inferences are readily
available in the Bayesian approach; for instance, the noninformative priors mentioned
earlier in the example could be used to compute the posterior distribution of the param-
eters, from which any inferences follow directly.

One item of special interest here is that the analysis would automatically incorporate
the stationarity constraint, since the prior distribution is supported only on the station-
arity region for the autocorrelation parameters. Incorporating this constraint in classical
analysis is problematic; maximum likelihood estimates will often be on the boundary
of the stationarity region, in which case the standard errors produced from likelihood
asymptotics will usually be considerably too small.

Prediction also deserves special mention. It is a well-known problem that predictions
based on selected models typically turn out to be much less accurate than the model
would have suggested. This is especially so if the selected model is used in raw form, with
estimated values of the parameters inserted. The obvious reason for this overly optimistic
prediction is that one is pretending to know the model and the parameter values, when
one really does not. To obtain reasonable estimates of predictive accuracy, one must
not only incorporate the uncertainty in parameter values (as reflected by their posterior
distributions), but also must incorporate the uncertainty in the model. In the above
example, for instance, it would be reasonable to base the predictions on the appropriate
weighted mixture of predictions from the (AR(3), C) and (AR (2), C) models. For
discussion on this general issue, see Draper (1995).

4 An Application to Classification and Mixture
Models |

Figures 3 and 4 show two different sets of bivariate observations that arose in an as-
tronomical setting. It was desired to (i) identify how many clusters are present in each
set of data; (ii) determine which data set exhibits stronger clustering; (iii) provide a
characterization of the clusters in each figure; and (iv) classify each observation in terms
of cluster membership.
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The natural Bayesian approach to this problem is to model the data as arising from
a mixture distribution. We will talk as if each cluster can be identified with a separate
distribution from this mixture, and that each distribution in the mixture corresponds to
a separate population of observations. These interpretations are not strictly necessary,
but they are useful conceptually and will often be reasonable as an explanation of the
underlying process.

We will assume the observations arise from an additive mixture of bivariate normal
populations; thus the overall density of an observation z = (z1, z2) is

f(z) = Z_: v fi(zlus, 25),

where m is the number of populations (clusters) in the mixture; -y, is the probability that
an observation arises from population j (i.e., 7; is the proportion of elements in cluster
7); and f; is a bivariate normal distribution with mean vector u; and covariance matrix
;. Here we will assume that m and all the v;, u;, and ¥; are completely unknown.
Frequently, one might want to make further assumptions (such as assuming that the ¥;
have a specified form or are all equal), but for analysis of the data in Figures 3 and 4 we
make no such assumptions.

The mixture model is a difficult model for classical statistical analysis because stan-
dard asymptotics fails, and because maximum likelihood methods are often very unstable
due to the presence of multiple modes in the likelihood. For Bayesian analysis there are
also difficulties, primarily because standard (improper) noninformative priors cannot be
used. (Subjective Bayesian analysis of mixture models is relatively straightforward, if
one is willing to make the investment in prior specification; cf, Lavine and West, 1992).

We have recently modified the intrinsic Bayes factor algorithm to also enable analysis
of mixture models. The idea is to, again, use (small) parts of the data as training samples;
however, since we do not know which populations gave rise to which data, this has to
be done as an iterative simulation involving the classification probabilities of the data.
Details of the algorithm can be found in Shui (1996). The output of the algorithm is the
posterior distribution of all unknown parameters. For m, only the values 1, 2, and 3 were
considered, and the posterior probabilities of each (assuming equal prior probabilities of
1/3) are given in Table 2 (for both the data set in Figure 2 and that in Figure 3).

Table 2. The posterior probability of m = 1,2, or 3 clusters, in each of the data sets
in Figures 3 and 4.
m
1 2 3
Data Set 1 8.1 x 107 57x1071% ~1

Data Set 2 1.3 x 107 0.918 0.082
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For Data Set 2, there is overwhelming evidence that at least two clusters are present,
and little evidence to support more than two clusters. This last is another illustration of
the automatic Ockham’s razor effect of Bayesian analysis; the simpler two-cluster model
is preferred, because three clusters do not provide a markedly better fit.

The situation with Data Set 1 is more interesting. The two-cluster model is much
preferred over the one-cluster model (the “odds” would be the ratio of the posterior
probabilities, here 703), but three clusters is the overwhelmingly preferred model. The
reason is that there are a number of obvious “outliers” in the lower right quadrant of
Figure 2, and these outliers become their own “cluster”. This effect is typical of normal
mixture models, as normal distributions do not admit outliers. In a sense, this is not
bad, since outliers often deserve special identification and treatment.

Table 3 gives the Bayesian estimates (here, posterior medians) of all parameters in
the various populations for Data Set 1. (Standard errors of these estimates are also
available, but are not reported here.) The populations, or clusters, have been labelled in
terms of their size, with “1” being the largest.

Table 3. Estimates (posterior medians) of parameters in the mixture model for
Data Set 1.

Model

Parameter 1-Cluster 2-Cluster 3-Cluster
" 0.774 0.749
U1 (0.892,—0.325) (1.236,—0.408) (1.266,—0.363)
> 0.628 —0.095 0.223 0.010 0.201 0.001
~1 —0.095 0.147 0.010 0.157 0.001 0.057
Yo 0.226 0.226
Uy (—0.309, -—0.075) (—0.290, —0.051)
> 0.193 0.001 0.166 0.000
2 0.001 0.040 0.000 0.037
Vs 0.025
Us (1.195, —1.729)
5 0.203 -0.011
~3 —0.011 0.265
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There are no surprises in these results. For the preferred 3-cluster model, the third
component indeed appears to be the outliers, and has the very small 43 = 0.025. (There
were 174 observations in all, so 45 intuitively reflects about 4 outliers.) Note that the
covariance matrices seem to be quite different, in both the 2-component and the 3-
component models.

The final output available from the algorithm is the posterior probability that each
observation arises from each cluster. This is given in Table 4 for the labeled observations
from Figure 3. (As before, the clusters are labeled according to their size, with “1”
being the largest and “3” the smallest.) There are no surprises in the table, although
note that there is considerable uncertainty attached to the classification of some of the
observations. Ordinary classification and clustering algorithms do not typically allow for
reflection of such uncertainty.

Table 4. Posterior probabilities that the labeled observations from Figure 3 belong
to cluster 1, 2, or 3, in the favored three-cluster model.

Belongs to Cluster
Observation “1” “27 “3”

0.002 0.998 ~0
0.429 0.571 ~0
0.654 ~0 0.346
~1 ~0 ~0
0906 ~0 0.094
~0 ~0 ~1

S Ot AW N =

5 Advances in Bayesian Computation

5.1 Introduction

Recent computational tools have allowed application of Bayesian methods to highly com-
plex and nonstandard models. Indeed, for many complicated models, Bayesian analysis
has now become the simplest (and often only possible) method of analysis.

Although other goals are possible, most Bayesian computation is focused on calcula-
tion of posterior expectations E*[g(#)], where E* represents expectation with respect to

the posterior distribution and g(0) is some function of interest. For instance, if g(8) = 6,
then E*[g(0)] = E*[0] = u, the posterior mean; if g(f) = (8 — u)?, then E*[g(0)] is the
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posterior variance of 8; and, if g() is 1 if § > C and 0 otherwise, then E*[g(8)] is the
posterior probability that 8 is greater than C. Another common type of Bayesian com-
putation is calculation of the posterior mode (as in computation of MAP estimates in
image processing); we do not formally discuss this here, although a number of techniques
discussed below can also be useful in this regard.

5.2 Traditional numerical methods

The ‘traditional’ numerical methods for computing E*[¢g(0)] are numerical integration,
Laplace approximation, and Monte Carlo Importance Sampling. Brief introductions to
these methods can be found in Berger (1985). Here we say only a few words, to place
the methods in context and provide references.

A successful general approach to numerical integration in Bayesian problems, using
adaptive quadrature methods, was developed in Naylor and Smith (1982). This was very
effective in moderate (e.g., 10) dimensional problems.

Extension of the Laplace approzimation method of analytically approximating E*[¢(6)]

leading to a reasonably accurate general technique, was carried out in Tierney et al. (1989).

The chief limitations of the method are the need for analytic derivatives, the need to redo
parts of the analysis for each different g(#), and the lack of an estimate of the error of the
approximation. For many problems, however, the technique is remarkably successful.

Monte Carlo importance sampling [see Geweke (1989) and Wolpert (1991) for discus-
sion] has been the most commonly used traditional method of computing E*[g(6)]. The
method can work in very large dimensions, and carries with it a fairly reliable accuracy
measure. Although one of the oldest computational devices, it is still one of the best,
being nearly ‘optimal’ in many problems. It does require determination of a good ‘im-
portance function’, however, and this can be a difficult task. Current research continues
to address the problem of choosing a good importance function; for instance, Oh and
Berger (1993) developed a method of selecting an importance function for a multimodal
posterior.

5.3 Markov chain simulation techniques

The newest techniques to be extensively utilized for numerical Bayesian computations are
Markov chain simulation techniques, including the popular Gibbs Sampling. [Certain of
these techniques are actually quite old — see, e.g., Hastings (1970); it is their application
and adaption to Bayesian problems that is new.] A brief generic description of these
methods is as follows:
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Step 1. Select a ‘suitable’ Markov chain on the parameter space ©, with p(:,-) being
the transition probability density (i.e., p(f,6*) gives the transition density for
movement of the chain from 8 to §*). Here ‘suitable’ means primarily that the
posterior distribution of  given the data =, 7(|z), is a stationary distribution
of the Markov chain, which can be assured in a number of ways.

Step 2. Starting at a point 8(°) € O, generate a sequence of points (), (), .. 0™ from
the chain.

Step 3. Then, for large m, 8™ is (approximately) distributed as 7(8|z) and
1 & 1)\ A~ I
— > 9(69) = E*[g(0)]. (7)
mi—
The main strengths of Markov chain methods for computing E*[g(6)] are:

(1) Many different g can simultaneously be handled via Step 3, once the sequence
6™, ..., 0 has been generated.

(2) Programming tends to be comparatively simple.

(3) Methods of assessing convergence and accuracy exist and/or are being developed.

The main weaknesses of the Markov chain methods are:

(1) They can be quite slow. It is not uncommon in complicated problems to need m to
be in the hundreds of thousands, requiring millions of random variable generations
if the dimension of § is appreciable.

(2) One can be misled into prematurely judging that convergence has obtained.

The more common Markov chain methods, corresponding to different choices of p(-, -),
will briefly be discussed. A recent general guide to these methods, and their use in
practice, is Gelman, et. al. (1995). See also Smith (1991) and Besag, et. al. (1995).

Metropolis-Hastings algorithm: One generates a new §* based on a ‘probing’ distribution,
and then moves to the new 6* or stays at the old 6 according to a certain ‘accept-reject’
probabilities, see Hastings (1970).

Gibbs sampling: The Markov chain moves from () to 8(*1) one coordinate at a time
(or one group of coordinates at a time), the transition density being the conditional
posterior density of the coordinate(s) being moved given the other coordinates. This
is a particularly attractive procedure in many Bayesian scenarios, such as analysis of
hierarchical models, because the conditional posterior density of one parameter given
the others is often relatively simple (or can be made so with the introduction of auxiliary
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variables). Extensive discussion and illustration of Gibbs sampling can be found in
Gelfand and Smith (1990), Gelman and Rubin (1992), Raftery (1992), and Smith and
Gelfand (1992). We confine ourselves here to a very elementary example, but one which
illustrates the basic technique.

Example 3. The following posterior density is a very simplified version of posterior den-
sities which occur commonly in Bayesian analysis, and which are particularly amenable
to Gibbs sampling. Suppose the posterior density is

7 (01, 03| data) = %exp{—@l(l +62)) (8)

on the domain 6; > 0, —co < #; < co. Many posterior expectations involving this
density cannot be done in closed form. Gibbs sampling, however, can easily be applied
to this distribution to compute all integrals of interest.

Note, first, that the conditional distribution of 6,, given 6;, is Normal with mean
zero and variance 1/26;; and, given 0, 6; has an exponential distribution with mean
1/(1 + 6%). Hence the Gibbs sampling algorithm can be given as follows:

Step 0. Choose an initial value for 6,; for instance, the maximizer of the posterior,
99 = 0.

Step i(a). Generate 6 = E/(1+ [0£i_1)]2, where € is a standard exponential random
variable.

Step i(b). Generate Hgi) =7/ 20@, where Z is a standard normal random variable.
Repeat Steps i(a) and i(b) forz =1,2,...,m
Final Step.  Approximate the posterior expectation of g(61,6;) by

Elg(6:,8,)] = / ) / (61, 05)7(81, 05| data)dd,df,

L g0, 060, (9)

=1

12

For instance the typical estimate of §; would be its posterior mean, approximated by

b, = (1/m) Z 6. Table 5 presents the results of this computation for various values of

m. Note that the true posterior mean here is 0.5.

Table 5. Approximate values of posterior
mean of #; from Gibbs Sampling
m 100 500 1,000 10,000 50,000

6, 0.43761 0.53243 0.48690 0.49857 0.50002
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Hit and run sampling: The idea here is roughly that one moves from 90 to Ui+1)
by choosing a random direction and then moving in that direction according to the
appropriate conditional posterior distribution. This method is particularly useful when
O is a sharply constrained parameter space. Extensive discussion and illustration can

be found in Belisle et al. (1993), and Chen and Schmeiser (1993).

Hybrid methods: Complex problems will typically require a mixture of the above (and
other) methods. Here is an example, from Miiller (1991), the purpose of which is to do
Gibbs sampling when the posterior conditionals [e.g., 7(0;|z, other 6;)] are not ‘nice’.

Step 1. Each step of the Markov chain will either

e generate 0§-i) from 7(6;|z, other 0,(:)) if the conditional posterior is ‘nice’ or

e generate 9§-i) by employing one or several steps of the Metropolis-Hastings
algorithm if the conditional is not nice.

Step 2. For the probing function in the Metropolis-Hastings algorithm, use the relevant
conditional distribution from a global multivariate normal (or t) importance
function, as typically developed in Monte Carlo importance sampling.

Step 3. Adaptively update the importance function periodically, using estimated poste-
rior means and covariance matrices.

Other discussions or instances of use of hybrid methods include Geyer (1992, 1995),
Gilks and Wild (1992), Tanner (1991), Smith and Roberts (1993), Berger and Chen
(1993), and Tierney (1994).

5.4 Software Existence and Development

Availability of general user-friendly Bayesian software would rapidly advance use of
Bayesian methods. A number of software packages do exist, and are very useful for
particular scenarios. An example is BATS (cf., Pole, West, and Harrison, 1994, and
West and Harrison, 1989), which is designed for Bayesian time series analysis. A listing
and description of pre-1990 Bayesian software can be found in Goel (1988) and Press
(1989).

Four recent software developments are BAIES, a Bayesian expert system (see Cowell,
1992); [B/D], an ‘expectation based’ subjective Bayesian system (see Wooff 1992); BUGS,
designed to analyze general hierarchical models via Gibbs sampling (see Thomas et.
al. 1992); and XLISP-STAT, a general system with excellent interactive and graphics
facilities, but limited computational power (see Tierney 1990). Numerous other Bayesian
software developments are currently underway.

Two of the major strengths of the Bayesian approach create certain difficulties in
developing generic software. One is the extreme flexibility of Bayesian analysis, with
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virtually any constructed model being amenable to analysis. Classical packages need
contend with only a few well-defined models or scenarios for which a classical procedure
has been determined. Another strength of Bayesian analysis is the possibility of extensive
utilization of subjective prior information, and Bayesians tend to feel that software should
include an elaborate expert system for prior elicitation. This is hard, in part because
much remains to be done empirically to determine optimal ways to elicit priors. Note
that such an expert system is not, by any means, a strict need for Bayesian software; it
is possible to base a system on use of noninformative priors.

6 Conclusions

Papers on Bayesian analysis frequently tout the advantages of Bayesian over classical
methods, and this paper has been no exception. In a sense, this is unavoidable since,
for a scientist to try Bayesian methods, a considerable retooling and investment of effort
may be required, and the case must be made that this effort is worthwhile. At the same
time, criticism of classical statistics is rather unfortunate, because Bayesian statistics
and classical statistics share a great deal in common, and have much the same aims.
Indeed, the two schools of statistics have been drawing closer together of late, so much
so that one can envisage at least a philosophical unification sometime in the near future.

As an example of this, consider the situation of Bayesian testing, as illustrated by
Example 1. We were quite critical of the use of P-values in that example, but P-values
are also criticized by classical frequentist statisticians, in part because they are not true
frequentist procedures having an interpretation in terms of a long-run error rate. In
a recent surprising development (based on ideas of Kiefer, 1977), Berger, Brown, and
Wolpert (1995) and Berger, Boukai, and Wang (1994) show for simple versus simple
testing and for testing a precise hypothesis, respectively, that Bayesian tests (with, say,
equal prior probabilities of the hypotheses) yield posterior probabilities which have direct
interpretations as conditional frequentist error probabilities. In Example 1, for instance,
P, in (3) can be interpreted as the conditional Type I frequentist error probability, and
P, can be interpreted as an average conditional Type II error probability. Note that the
reported error probabilities thus vary with the data, in contrast with the usual Neyman-
Pearson error probabilities. Also, use of these conditional error probabilities is arguably
greatly superior to use of the usual Neyman-Pearson error probabilities, even from the
frequentist perspective.

The necessary technical detail to make this work is the defining of suitable condition-
ing sets upon which to compute the conditional error probabilities. These sets necessarily
include data in both the acceptance and the rejection regions, and can roughly be de-
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scribed as the sets which include data points providing equivalent strength of evidence
for and against H;. Note that computation of these sets is not necessary for practical
implementation of the procedures.

The primary limitation of this Bayesian - frequentist equivalence is that there will
typically be a region, which is called the no- decision region, in which frequentist and
Bayesian interpretations are incompatible. Hence this region is excluded from the de-
cision space. In Example 1, for instance, and if n = 20, then the no-decision region is
the set of all points where the usual z-statistic (1/n|Z|) is between 1.18 and 1.95. In
all examples we have studied, the no-decision region is similarly a region where both
frequentists and Bayesian would feel indecisive, and hence its presence in the procedure
is not detrimental from a practical perspective.

- While a philosophical reconciliation of the statistical schools appears to be within the
realm of possibility, the ease of interpretation of Bayesian answers and the comparative
simplicity in implementing the (default) Bayesian techniques will still argue in favor of
their use.
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