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method is based on a data dependent prior which is derived from a noninformative
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able priors. This method is compared with existing (modified) Bayesian methods
for testing hypotheses. The examples suggest that the method is widely applicable
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1 INTRODUCTION

In this paper we discuss a unified approach towards testing statistical hypotheses.
It will be shown that this approach has wide applicability; it is applicable not only to
usual testing problems but also to testing multiple hypotheses and testing non-nested
hypotheses. Model selection is also covered.

The approach is aimed at obtaining the post-experimental probability of hypotheses
as Bayesians do. When informative proper priors are not available, there is controversy as
to how to develop automatic Bayesian procedures for testing hypotheses. One tradition
is the training sample idea, where the data is divided into two parts, the first part being
used to obtain proper priors and the second part being used to compute probabilities
of the hypotheses. Example of this approach can be found in , e.g., Lempers (1971),
Frihwirth-Schnatter, S. (1995), O’Hagan (1995) and Berger and Pericchi (1996). This
paper also follows this line.

In Section 2, we define the data dependent prior and the related notion of the
posterior expected marginal likelihood (PEML), giving its motivations and an example.
In Section 3, we review existing Bayesian and modified Bayesian methods briefly but
critically, using the linear regression model as an example. In Section 4, we give further
examples in order to show the wide applicability of the suggested method and to point
out difficulties with other methods.

In this paper, all random variables are distinguished from their realizations by tilde.

2 POSTERIOR EXPECTED MARGINAL
LIKELTHOOD

In statistical practice, it is usual that a statistician has a natural idea of the sample

size for his or her problem. Thus we assume this in this section. The ambiguity about
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this notion will be discussed in the concluding remarks.

Suppose that the observable random variable with sample size n, Z(n) = (£1,- -, &a),
has a parameterized probability density belonging to {p(z|H,0u) | H € H,0y € Oy},
w.r.t. an appropriate measure m(™(-) on rng(&()) (the range of Z(,)). This set is called
the model. The set H is a finite set and its elements are called the hypotheses. The
hypothesis-specific set O is a set of adjustable parameters and it is an open subset of
R or a singleton for a simple hypothesis. In the former case, dim ©y = dy and in the
latter case, dim©y = 0.

We now introduce a density on Oy denoted by py(fx). This is a density w.r.t.
vu(+), which is Lebesgue measure if dim©p > 0 or the one point probability measure if
dim Oy = 0. In the standard situation where we have a probability distribution on H,
(p(H) | H € H), and a conditional probability density on O, p(0y | H), for H satisfying
dim ©y > 0, this density py(fy) is defined by
p(H), dimOy =0

: (2.1)
p(H)p(0y|H), dimOy >0

pu(0n) = {

However, we also need to consider improper prior distribution, and the conditional distri-
bution in the right-hand side of (2.1) can not necessarily be defined in the improper

prior distribution case. For further elaboration of this point, see the Appendix and

Dawid(1995). Thus we instead start with py(6y) and define

p(H) := /@H pr(0)vE(dOg), (2.2)

and, if 0 < p(H) < oo, we define

p(0g|H) := pr(0u)/p(H). (2.3)

for 0 € ©y. This notation is also applied to the posterior distributions. Incidentally,
if O = {60}, then [o  f(0n)vu(dOy) = f(6o). This expression is introduced only for

notational convenience.



Example. Assume that
En) = (21,00, Tn)[0 t.0.d. ~ N(0,1), 0 R,

and the problem is to test H; : 8§ = 0 vs Hy : 8 # 0. Then we have H = {H,, H;},
Op, = {0} and Oy, = R (or Oy, = R — {0} ). In this case, a noninfomative prior that
might be considered is pg, (0) = ¢1 and py, (0u,) = c2, for some appropriate choice of the
ratio of ¢; and c¢;. Note that, whatever this ratio may be, p(Hz) = oo and p(0m,|H.) can
not be defined.

We assume that pg(-) is determined only up to multiplicative constant. Let ng be

the minimal sample size defined to be the sample size for which it holds that

/@ 2Ol vu(@01) < 00, (M) — a.e.z(ny)), (2.4)
H

for any H € H and it holds that

/@ P On|z (1)) va(dfn) = 00, (M V() = a.e.Tnp-1y), (2.5)
H

for some H € H. We assume the existence of the minimal sample size. Let # be a
random variable which is independent of #(,) and has the same distribution as Z(,,) given
H € H and 0y € Oy. We call #’ the imaginary minimal training sample. If we could

observe %! = z!, we would have

p(0n|H,z") « p(z"|H, 05)pr(0n), (2.6)

for H satisfying p(H) = oo. Although this distribution would not be noninformative, it
would be “minimally informative”, since ng is the minimal sample size for the posterior
to be proper. Thus

{p(6u|H,2") | 2" € rng(z")}, (2.7)

is a set of reasonable candidates for the prior for 8. Although we can not observe #7 = z!,

we can estimate the value of p(6y|H, ') by its posterior expectation,
ﬁz(n)(aH | H) = E[P(0H|H7£'I) | Ha"i(n) = x(n)], (28)
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= [ or POt | H ol |H ) ),
rng(z

where
p(mIIH, IE(n)) = / p($I|H7 HH)p(aHlem(n))daH'
On

With this data dependent prior, we define a modified marginal likelihood to be

Bawt) = [ pleclH, 0m)pe (03 H)d0, (29)

which is called the posterior expected marginal likelihood (PEML). Then we define the
post-experimental probability of the hypothesis to be

ﬁ(:v(n)|H) when p(H) = oo

o) o 2.10
P(H|z () {f@Hp(le’GH)p(0H|H)VH(d9H) when p(H) < oo. .

See the Appendix concerning this definition.

Example (continued). The usual improper prior is given by pm,(0g,) o< 1. The
minimal sample size is then ng = 1. The distribution of the imaginary minimal training

sample ! is given by

1 1
p(mIlﬂg, 0H2) = m exp(—E(xI - 0H2)2)'

The conditional distribution on Og,, given 7! = z/, is

1 1
(O, | Hoy ") = T exp(~(0m, — 2")?).

The predictive distribution of Z/ given the actual data is

Vn n

I I = \2
p(z” |Hs, (n)) = ————exp(————(z" — T,)?).
(s 1) =~ (s o7 — )
where Z, = (21 + - -+ + z,)/n. Thus the data dependent prior is
- Vn n = \2
Do (0w, | Ha) = —————=exp(— < (01, — T(n))*")- 2.11



For this data dependent prior, the post-experimental odds ratio of H; to H; is given by

ﬁ(Hllx(n)) nz2
— 2 =/2(n 4+ 1) exp(——=
P(Hz|z(w)) (it Dexp(=

). (2.12)

The data dependent prior has the following asymptotic property. Let the true

distribution of (o) = (%1, ,Zn, - ) be Fy(-). We assume that there exists 7 such that

. Jues, e (&) H, 01)pr (00 )d0n
lim —

A PGl I Omday 0 (Pl —ae), (2.13)
U(0%.€) (n)

for any € > 0, where U(0%,¢) = {0y € On|||0x — 05|l < €}. We can refer to Berk (1966,
1970), Sono (1986) and Dmochowski (1995) concerning the assumption (2.13), which
implies that the posterior probability mass on ©y accumulates in the neighborhood of
the value 63 € Oy.

Now we define

POulH,09) = [ p(0u|H, 2 )p(e"|H, 6)m")(dz") (2.14)

rng(£7)

Then we have the following proposition under the assumption (2.13).

Proposition 1. If p°(64|H, 6%) is continuous w.r.t. 6%,

Dany (Ou|H) — p°(0x|H, 0%) (Po(+) — a.e.). (2.15)

Example (continued) When the true distribution of an i.i.d.sequence (%1, - ,p, " -

is the normal distribution with mean 6, and variance 1, then 0%, = 6o and

Pz (0m, | Ha) — \/i_w exp (—M) (a.e.). (2.16)



The following lemma is important in the field of Bayesian testing hypothesis.
Lemma Let p§;(0n) be a proper prior distribution. Assume that p®(0y|H)/py(6n)
is continuous and bounded above. Then under the assumption (2.13), it holds that

Jo, P(&w)|0)p° (0 |H)d0x
Jo P(Em)08)pr(0m)d0x

= 0(1) (Po(+) — a.e.) (2.17)

Note that these three assumptions are corresponding to the conditions for the princ-
ple of stable estimation. See Edwards, Lindman and Savage (1963). By the proposition
1 and the lemma, the following proposition holds.

Proposition 2. Assume (2.13). If p(0u|H, 0%;)/pu(0n) is continuous and bounded
above, then it holds that

p(Ew|H) _
To. 2Gml0mpa(omydsy ~ O () —ae) (2.18)

The data dependent prior here is sensible, although its result is not sequentially

coherent, i.e., it does not hold that
P(H|z1,22) o< p(H |21)p(22|H, 1)

Given Z() = T(n), there could exsit a subjective Bayesian who happens to have the same
prior distribution as the data dependent prior. Since his or her inference is meaningful,
the inference based on the data dependent prior is also meaningful. Recall, also, that this
data dependent prior is minimally informative, so that the ensuing analysis essentially
allows the data to “speak for itselt.” Finally, its limiting distribution is the expectation

on a set of reasonable priors (2.6) w.r.t. the nearest distribution to the true distribution.
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Aitkin (1991) proposed using the posterior distribution from the entire data and a
noninformative prior as the data dependent prior for this problem. Note that it becomes
increasingly informative as the sample size becomes larger, while the data dependent prior
proposed here stays minimally informative. Thus our method agrees with proper Bayes

solutions asymptotically, as is shown above.

3 APPLICATION TO LINEAR MODELS AND
COMPARISON WITH OTHER METHODS

3.1 The PEML Approach
Let 7 be an observable n-dimensional random vector and assume that
glH, By, on ~ No (XuBu,okln) (3.1)

where Xy i1s an n X ky matrix of rank ky. We shall now consider the PEML for this

problem. It is easy to see that ng = max{ky | H € H} + 1. We choose

pu(Bu,on) < 1/om, (3.2)

as the noninformative prior under the hypothesis H. The imaginary minimal training

sample is chosen to be
'\ H, B, 08 ~ Npg (XI,BH,O'?-[Ino) , (3.3)
where X7 is an ng x ky matrix satisfying the condition that
n XL XE = no X4 Xy (3.4)
Note that (3.4) can be rewritten as

nIH[?ﬂﬂaU] = nOIH[gllﬁvU]’ (3'5)
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where Zy[§|8, o] is Fisher information matrix for the model (3.1), so (3.4) is a natural
condition ensuing that the imaginary minimal training sample has information which is
appropriately proportional to the information in the actual data. With some computation
the PEML is given by
kzr 2
_ no I ((n 4+ ng — ky)/2
PIH, Xe) = —Y kH(( — /2) Z
Vrn+ng F/m T ((no — ku)/2)
F(ng - kH)P (TL - kH/2)
I'((n—ku)/2)T (n+no— k)

Hy - XHBH"—n. (36)

3.2 Zellner and Siow’s Method

For testing hypotheses concerning whether the mean in the normal law is zero or not,
Jeffreys (1961) employed the Cauchy distribution as his prior. Zellner and Siow (1980)
generalized his method to the linear regression model.

Let Hy be the largest hypothesis, i.e. {XygB | B € R} C {Xg,B | B € RkHo}
for any H € H. If there is no such hypothesis, we can create it with p(Hy) = 0. Any
hypothesis H is now compared with Hy as follows. First, they reparametrize By, as
Byt = (XyXu) ' XyXn,Bu, and Buye = (XFXH) ' X Xu,Bu, where X3 satisfies
{XB|B € Rmo} = {(Xn, X}) BB € R¥#}, and Xy X = 0. Then, the Zellner and Siow
prior is given by

pHo (/BHol) IBH02) aHo)
1/2

I'((kn, — kn +1)/2) \/Ek”'kHO‘l XA X4 1 -
(14 By X&' X1 B2 /nag,o)(kno—kﬂu)/ nok, | OH,

and py (Bu,on) = ¢/ oH,-

When #H > 2 (#H is the number of elements in H), this prior distribution varies
with each “alternative” hypothesis, H, which is compared with Hy. In this sense, the
mothod is not a pure Bayesian method. As far as these two hypotheses are concerned,

their posterior odds ratio, POg/p,, is given by

JF

Sty v = Xuba|



00 a(kHO _kH_l)/2e_a

0 (2a + n)(kHo—kH)/2

("y ~ X, Br,

20

d
2a+1n @

2
+

—(n—kg)/2
) . (38)

v Xk (XEXE)™ XEy

where Ay = (X4 Xy) ™' Xiyy. When #H > 2, the post-experimental probability of the

hypotheses can be seen to be

(3.9)

S(Hly) o {POH/HO when H # Hy

1, when H = H,.

Note that the exact solution (3.8) is due to the present author; Zellner and Siow(1980)
gave an approximation to (3.8) based on Jeffreys’s idea. Jeffreys(1961) also gave a formula
for the exact solution in a special case but it is computationally more burdensome since
it contains the confluent hypergeometric function as an integrand.

Zellner and Siow’s method is not a pure Bayesian method because it uses the largest
hypothesis as a “pivot”. Interestingly, it is possible to generalize Jeffreys’s method in a
pure Bayesian way by using the smallest hypothesis as a pivot, although we do not pursue

this here.

3.3 Spiegelhalter and Smith’s Method

Suppose that
pr(01) = e (Tulz"10u])"”. (3.10)
Once cp,/m, = cn,/cH, is determined, the posterior odds ratio in favour of H; against
H, is given by

PO(z(m) = ¢ Jou, P(@e| Hr, 01, )P, (O, Jva, (b,
(m)) = CHi/Ha Jou, P(w)| Hz, Or,)Pr, (On, )V, (dOm, )’

(3.11)

which is somewhat misleadingly called the Bayes Factor by Spiegelhalter and Smith (1982)
(see the Appendix). They introduced the following idea to determine cg,;y, when H, is
nested within H,: \

1 =sup {PO(xI)IxI € rng(:il)}. (3.12)
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Since the relation, cm,/m,cH,/H, = cH,/H,, does not hold, one must define cy, g, =
cH, /Ho [ CH, /}10 using one of the hypotheses, Hy, as a pivot. This idea can be seen in
Akman and Raftery (1986), using the smallest hypothesis as a pivot. Since one could as
well use the largest hypothesis as a pivot, there is a degree of arbitrariness here.

For the linear model, the choice of the explanatory variable for the minimal training
sample is controversial, as can been seen in O’Hagan(1995). Here we choose the same ex-
planatory variable as for the PEML, given by (3.4). Then, using the largest hypothesis, Hy,
as a pivot, we have the posterior probability of the hypotheses given by
kg, +1

n

ki /2 .
P(Hly, Xn) o ( ) lv = XuBu| ", (3.13)

|—’IL

where By = (X} Xy)™' X}y. Note that the assumption in (3.10) is essential for this
method. Indeed, if we instead use the prior py(Bu,0x) x of' for the linear model, the
right-hand side of (3.12) is infinity.
This method is defined for nested hypotheses. However, if inf {PO(zI )]

zf e rng(:'i'l)} = —oo and sup {PO (ac’) lz! e rng(i:l)} < 00, this method can be gener-
alized to the case of non-nested hypotheses. In this case, we say that H, is more complex
that H,. For example, it can be shown that the i.i.d. log-normal hypothesis with two-
dimensional unknown parameter is more complex than the i.i.d. exponential hypothesis
with unknown scale parameter, and that the i.i.d. negative binomial hypothesis with
unknown ratio is more complex than the i.i.d. Poisson hypothesis with unknown mean.
Although this generalization is interesting, the method does not handle non-nested prob-
lems in general. For example, if we compare the i.i.d. log-normal hypothesis with two-
dimensional unknown parameter and the i.i.d. Weibull hypothesis with two-dimensional
unknown parameter, neither the infimum nor the supremum is finite, and this method is

not applicable.

3.4 Suzuki’s method

Suzuki(1992) introduced the notion of relative covergence. His definition is equivalent to
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the following definition in our situation.

Definition Let py(0y) be a density on Oy w.r.t. the measure vgy(:) and let
(pu(0m|A) | X € N) be a sequence of densities on Oy w.r.t. wvy(:). We say that
({(pa(@u|)) | H € H) | A € N) converges relatively to (pg(0r) | H € H) iff there
exists a sequence (cy € R|A € N) such that for any H € H

pH(aH) = /\1_1_{120 c,\pH(aHI/\). (3.14)

The pu(0u|X) are called the intermediate priors of py(0n). Let py(0m|z(n)) and
pH(OH| (), ) be posterior densities of py(0r) and py(8g|)), respectively. Under regu-

larity conditions which allow the limit to pass inside the integral, it can be shown that

pr(On|e@m) = Iim pu(Onle(m), A)- (3.15)

Example (continued from Section 2). Let py, (0]A) = p(H1) = 1/2. Let

1D(=A<0g, <A
PH2(9H2|/\)=§( ) ),

where D(proposition) = 1 if the proposition is true and D(proposition) = 0 otherwise.
Then it holds that this sequence converges relatively to the one point probability measure
with p(Hy) =1 and p(H;) = 0, although p(H|\) = p(H2|A) = 1/2 for any A € N. Thus,
for any data, p(Hi|z()) =1 and p(Ha|z@m)) = 0.

This last phenominon was noted by Bartlett (1957). Since the phenomenon should
be avoided, Suzuki(1983) proposed that uncertainty concerning each hypothesis should

be balanced. Specifically, when there are no simple hypotheses, he proposed the condition
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for the intermediate prior probability distributions that the entropies of p(8y|H, \) are
the same. Here we put p(H|)X) = 1/#H, because of the reason in the Appendix. For the

linear model, the intermediate prior probability distributions,

P(,BH,O'H|H, /\) = %D(—/\(“Hl“) / 2 <log oy < /\ZkHl+1) / 2)
H
ky . .
H D(=ATuD) [2 < By < ATr¥ [2), (3.16)
=1

satisfy the above condition where By = (Bm1,---,BHky). The posterior probability is

given by
rkul? n—k X
p(Hly, Xn) o IX}]XHII/ZF ( 5 H) "y — XuPu

7, (3.17)

where By = (X4 Xu)™" Xpy. However, if we replace (X} Xg /n)/2 8y by By, this reparametriza-
tion yields
n — kH

) o= Kb

Thus Suzuki’s method is not invariant under reparametrization. Furthermore, the solu-

—(n—k
7 (3.18)

k2
Pl i) o T

tion depends on the choice of unit of the dependent variable. The idea of obtaining a
“balanced” prior through intermediate priors is, however, of considerable importance. See

the reference in Suzuki (1992) for more about this idea.

3.5 Klein and Brown’s Method

Klein and Brown(1984) considered a different type of intermediate prior. Given a
sequence of probability densities, (p(8g|H, )|} € N), for H satisfying dim©y > 0, they
chose ((p(H|A)|H € H)|\ € N) to minimize

> p(H\Nlogp(HN) + 30 p(HINI(HIN), (3.19)
HeH H:dim®y>0
where I(H|A), the index of the prior information of the conditional distribution under H,

is either

I4(H|) := Efllog p(0u|H, M)|H, \] - Ellog p(2|H,0)|H, )], (3.20)
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or

p(éylH, ‘ila ’\)
Ig(H|)) := E[—log —=——"*|H, }], 3.21
( I p(aHlH? )‘) ( )
where %! is an imaginary training sample and 0y is a random variable whose density is

p(0n|H, A). The quantity (3.19) can be considered to be the total prior information. The

resulting intermediate posterior probailities of the hypotheses are given by
p(Hlo, X) & p(HIN) [ plage H, O )p(0n H, X)db, (3.22)
H

where p(H|A) o exp (—I(H|))). The final posterior probability is obtained by taking the
limit of the intermediate posterior probabilities.

Note that (3.22) depends on the choice of intermediate priors. For instance, in the
example in Section 2, the posterior probability when the intermediate prior is chosen to
be normal and that when the intermediate prior is chosen to be uniform are different, even
if both of the intermediate priors converge to Lebesgue measure relatively. Since I4(H|A)
is not invariant under reparametrization, Ig(H|)) is theoretically more appealing.

For the linear model, Klein and Brown’s intermediate prior is given by

1 exp (_ (B — Borr)' V' (Bu ~ ﬂw)) ,  (3.23)

(2m)eul2ayf VA2 208,

p(ﬂHle aH,/\) =

and
D(log 615 < logoy < log és))

p(lOgO’HlH,)\): lOg&zA—IOgalA

, (3.24)

where V) is a kg X kg positive definite symmetric matrix and the minimum eigenvalue of
V) goes to infinity as A — oo. It is also assumed that §;y, — 0 and 635 — o0 as A — oo.
Their imaginary minimal training sample is a kgy-dimensional random vector when H is

true and its conditional distribution is
§'\H, B, on ~ Ny (XEBu, 0% ey ) (3.25)
where XII{ is a kg X kg matrix such that
XL XL = Xg'Xu/n. (3.26)
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Their intermediate prior under a hypothesis converges relatively to the prior (3.10). The

limiting posterior probability of the hypothesis is given by

1 —-n
p(Hly, Xm) ¢ g lly — XuBull ™™ (3.27)

Klein and Brown discussed the relationship between parametrization and invariance
w.r.t. the choice of explanatory variables which leave the subspace spanned by their
columns unchanged. Use of their suggestion is compatible with use of (3.26), which, in
addition, leaves the posterior probability invariant.

Bernardo(1980) and Pericchi (1984) tried a similar idea, but they defined the infor-
mation index differently to be
P(Ou|H, &(n), \)

p(0u|H, A)

where #(,) is the real observable random variable. Since I BP(H|\,n) is a function not

IBP(H|\, n) := E[-log | H, ], (3.28)

only of the prior information but also of the sample size, it is not a pure index of the prior

information. Thus it is more controversial.

3.6 Berger and Pericchi’s Method

Berger and Pericchi (1993,1995) proposed the intrinsic Bayes factor. There are two
versions of the intrinsic Bayes factor, the arithmetic and the geometric, but here we
consider only the former because the authors think it more important.

First they assume that py(6p) is proportional to the usual noninformative prior. Let
z(l) := (zgy, -+, 2i,) for I = {iy < -+ <ix} C{l,---,n}. Let Lbeasetofl € {1,---,n}
such that for any H € H, p(H|z(l)) < oo and for any proper subset I’ C [, there exists a
hypothesis H € H such that p(H|z(l')) = co.

If H; is nested in Hj, their intrinsic Bayes factor is defined to be

Al . 1 f@H2 p(w(lc)IH%0H2)p(0H2|H2’m(l))d0H2
B = T 2 Tou P, O )0, 1, o(0) B, (3.25)
1
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where PO(z(,))i; is the posterior odds ratio in favour of the hypothesis H; against H;
based on the noninformative prior above. The latter factor in (3.30) is called the correction
factor. Note that the undefined constants are canceled out by multiplying the two factors.

Pure Bayes factors possess the properties that B;; = 1/Bj; and B;; = B;/Bji. The
arithmetic intrinsic Bayes factor does not possess these properties, so that generalizations
to non-nested cases and multiple comparison cases need rather involved modifications.
In the nested case,B{s/ must be defined to be 1/Bj because, if one tries to define BA!
by (3.29), the correction factor does not converge when n is large. Since, under the
assumptions in the Lemma in Section 2, the ratio of PO(z(n))21 and any subjective Bayes
factor is O(1), the divergence should be avoided. However, in non-nested situations, it
can be unclear as to which hypothesis should be H; in (3.29). Furthermore, there are
cases where correction factors diverge for both definitions. For example, consider the
model #(n)|01,0; i.5.d. ~ N(01,0;) and the hypotheses, H; : 0; = 1 v.s. Hy : 6, = 2.
The most natural solution to this difficulty is to create, if necessary and if possible, an
encompassing hypothesis, within which the other hypotheses are nested, and to define the
intrinsic Bayes factors by using this hypothesis as a pivot.

An interesting feature of the intrinsic Bayes factor is that, in many interesting cases,
there exists a pair of proper priors on Oy, and Oy, which yield a genuine Bayes factor
which is equivalent to the intrinsic Bayes factor in the sense that the ratio between the
two converges to 1 as the sample size grows. These priors are called the intrinsic priors.
Intrinsic priors need not be unique. In many interesting nested models, the conditional
probability of the parameter of interest given the nuisance parameter under the alternative
hypothesis is proper. The existence of intrinsic priors not only reinforces the validity of
the method, but the approach also provides a systematic way of deriving a default priors
for testing hypotheses. More details about the existence and integrability of the intrinsic
prior can be found in Dmochowski (1995).

In the linear regression model, there are intrinsic priors for each hypothesis compared
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with the encompassing hypothesis. However, this does not hold in general for multiple
comparison problems. For example, consider the model Z)|0;,0, i.5.d. ~ N (01, 62) and
the hypotheses, H; : 0, = 0,0, =1, H, : 6, = 0,0, € (0,00) and Hp : 6; € R,0, € (0,00).
Although Hj is the encompassing hypothesis in this model, the intrinsic prior on Hy
is incompatible when it is compared with H; and H,. But, in this case, it is possible
to construct a set of coherent intrinsic priors by choosing the smallest hypothesis as the
pivot. This strategy is also useful when the method is applied to the change-point problem
discussed in Booth and Smith (1982), Broemling and Tsurumi (1987), Iwaki (1988) and
Perez (1994).

For the linear regression model with the prior py (B, 0r) oc oF' the intrinsic Bayes

factor in favour of Hy against H is

where

Pyl X) = [X'X| 7T ( ) o X8,
k =rankX,
B=(X'X)"'X"y,
y({in <o <ing}) = Wirs "5 Ying) s
X({ir <o <ing}) =A{ziy, -, Tipy)  for X = (x1,---,2),
L={c{l,---,n} | #l=ng AV € [rankXg(l) = rankXy|},
and

no = rankXy, + 1.

It should be remarked that the result of this method is invariant w.r.t. the choice
of the explanatory variables, in so far as the subspaces spanned by their columns are the
same, while additional assumptions concerning the explanatory variables are needed to

obtain the results for the other methods. For example, the assumption (3.4) is important

for the method of the PEML.
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3.7 O’Hagan’s Method

O’Hagan (1995) proposed the fractional Bayes factor for testing hypotheses. The

fractional Bayes factor is defined to be

(x| H)
Bu(h):= LE LS (3.32)

where
_ Jou p(z|08)pr(0H)vH(d0H)

zy|H) =
)= g el o () (@)
for 0 < b < 1. Note that this definition requires py(6r) to be defined only up to

(3.33)

a multiplicative constant. If we apply this method to the regression model with the

)

where Ay = (XyXu)™" Xyy (H = Hy, Hy). O’Hagan is not specific as to how to choose

noninformative prior (3.2), we have

n,
312(70) =

I((n — ku,)/2)0((no — ki,)/2) (Hy — Xu, B,
F((n - kH2)/2)F((n0 - kHl)/z) ||y - XH1BH1

ne or b. However, we choose ng = 1 + maz{kuy|H € H}, following the spirit of his

numerical examples and Berger and Pericchi (1995).

3.8 Numerical Examples and Comparisons

We first apply the above methods to Hald’s regression data from Draper and Smith
(1966). There are four potential regressors, which we denote by 1,2,3,4 and a constant
term (included in all hypotheses) which we denote by c¢. The sample size is n = 13, and
the minimal training sample size is ng = 6.

In Table 1, we give the post-experimental probabilities of the hypotheses that the
indicated subset of the regressors is correct, for the PEML, for Zellner and Siow’s method
(denoted by ZS1), for the pure Bayesian extension of Jeffreys’s method (denoted by Z52),
for the method of Spiegelhalter and Smith (denoted by SS), for the method of Suzuki with
(3.18), for the method of Klein and Brown (denoted by KB), for the AIBF with (3.2),
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and for the method of O’'Hagan (denoted by FBF). We also give the expected values of
the dimension (EVD) of the hypotheses for each method.
We next specialize the formulas to the ANOVA1 model. The independent observa-

tions are
gij!ﬂl,"'wﬁl)ojNN(IBi’O-z) 1= 17?‘[7]: 1?"'aJ3

and we wish to compare the hypotheses,
H, Z,@] = v =ﬂ[E§RVS H,: (,31,"',8[) € §RI.

We analyze two data sets which appeared in Box and Tiao (1972, pp.246-247), with I = 6
and J = 5, for the various methods. Note that the difference between ZS1 and ZS2
disappears because we have only two hypotheses. So we write just ZS.

It seems that the method of Suzuki prefers is seriously weighted towards the more
complex hypotheses. However, it should be remembered that the result of this method
depends on the choice of the scale in the dependent variable. If this choice is not sensible,
the interpretation of the results may not be sensible. This choice requires a possibly
difficult subjective judgement.

Spiegelhalter and Smith’s method also seems to prefer the more complex hypotheses.
This is because their posterior odds ratio in favour of the simpler hypothesis is always
less than 1 for the minimal sample size. This ratio might be deemed to be the infimum
of the reasonable automatic post-experimental odds ratios.

It should be noted that the difference between ZS-1 and ZS-2 in Table 1 is not
negligible. This suggests that the choice between the largest hypothesis and the smallest

hypothesis as a pivot is an important decision in general.
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Hypothesis ZS-2 AIBF 7S-1 FBF PEML KB SS Suzuki
1,234,c 001 0.05 0.07 0.06 0.05 0.07 018 0.36
1,2,3,c 009 0.17 0.18 020 023 0.23 025 0.20
1,2,4,c 0.10 0.19 0.19 020 024 023 0.25 0.20
1,3,4,c 0.08 0.16 0.15 0.16 016 0.16 0.17 0.15
2,3,4,c 002 0.04 0.03 004 0.01 001 0.02 0.03
1,2,c 054 028 0.28 024 025 025 011 0.05
1,3,c 0.00 0.00 0.00 000 0.00 0.00 0.00 0.00
l4,c 0.17 0.11 0.10 0.10 0.05 0.05 0.02 0.01
2,3,c 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2,4,c 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
3,4,c 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

l,c 0.00 0.00 0.00 0.00 0.00 0.00 0.00 o0.00
2,c 0.00 0.00 0.00 0.00 0.00 0.00 o0.00 0.00
3,c 0.00 0.00 0.00 0.00 000 0.00 0.00 0.00
4,c 0.00 0.00 0.00 0.00 0.00 0.00 o0.00 0.00
c 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

EVD 3.30 3.66 3.69 3.72 3.76 3.77 4.04 4.30

Table 1: The Post-experimental Probabilities for Hald’s Data.

data set ZS AIBF FBF PEML KB SS Suzuki
D1 0.15 0.16 0.18 0.05 0.17 0.00 0.00
D2 0.99 0.96 0.99 1.00 1.00 0.88 0.01

Table 2: The Post-experimental Probabilities of H; for the Data from Box and Tiao (
1972).
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4 OTHER EXAMPLES

4.1 Testing for a Particular Value of a Normal Mean

Let (|0 i.i.d ~ N(0,1) and let H; : 6 = 0 and H, : § € R. In Table 3, the
post-experimental odds ratios are listed. Zellner (1984) said “the posterior odds ratio’s
‘value reflects (a) the prior odds ratio’s value, (b) relative precision of prior and posterior
distributions for parameters, (c) relative goodness of fit of the two models ( hypotheses
in our terminology), and (d) extent to which prior and sample information regarding
parameters’ values are in agreement.” In Table 3, we decompose the odds ratios into the
product of three factors corresponding to (a)x(b), (c) and (d). The relative goodness of
fit (c) is common to all these methods. The factor corresponding to (d) is normalized to
be 1 when z = 0. Jeffreys (1961, p.274) uses the Cauchy prior for this model, and the
approximation to his posterior odds is also listed in the Table. The posterior odds ratio of
Spiegelhalter and Smith (1982) and Klein and Brown (1984) are the same for this model,
if we use the normal distribution as the intermediate prior for the latter method. This
common value is listed for SS and KB. The intrinsic prior for the adjustable parameter

of the hypothesis H; is

P01 = ——oxp (—%) | (1)
The Bayes factor corresponding to this proper prior is listed as IP. O’Hagan’s fractional
Bayes factor with b = 1/n is listed as FBF. Suzuki’s method is not applicable to this
model.

When we view this Table, we notice that the factor (c) is dominant and the results
of all the methods are close to each other if n is la,rge.r But when the factor (c) is not
dominant, the factor (d) may cause non-negligible differences.

The PEML does not cause disagreement between the prior belief regarding the
parameter and the data information because the data dependent prior is used. The

method of SS and KB does not cause disagreement because they use noninformative
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(a)x(b) () (d)

PEML  /2(n +1)/n 1

Jeffreys /2 1+ z2
SS and KB 1 vnexp(—nz?/ 2) 1
IP (2n+1)/n exp (nz?/2(2n + 1))
O’Hagan 1 exp(z?/2)

Table 3: The Post-experimental Odds Ratios in favour of H; decomposed into three

factors.

priors. On the other hand, the intrinsic prior and Jeffreys’s prior under the alternative
hypothesis prefer the value suggested by the null hypothesis, and this causes disagreement.
The fractional Bayes factor behaves the same way. The methods of the former type are
characterized by totally noninformative prior information, while the methods of the latter
type presuppose at least partial prior information, explicitly or implicitly. Such prior
information might be natural in many applications. But if these latter methods are used
automatically and the information is not from real prior belief, the larger discrepancy
between this fictitious prior information and the data makes the results more dubious.
When the discrepancy is small, the PEML and the intrinsic prior are almost the
same. When it is large, the PEML prefers the more complex model to a greater extent
than does the intrinsic prior. Spiegelhalter and Smith’s method prefers the more complex

hypothesis to an even larger extent.
4.2 Testing for Equality of Two Exponential Parameters
Let the density of Z = (%;; |1 =1,2;5 =1,---,n;) be
p(Z11, -+ s T, 01, 02) = 071 e 1191052 e 1%, (4.2)

where t; = 3% 2. Let Hy : 0 =0, = 0 € R and H, : (61,6,) € R?. The priors
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are py,(0) < 07! and pp,(0:1,02) < 07'0;'. The imaginary minimal training sample is

#' = (#1,%]), and its density is
p(al, 25| Hy,0) = 6%~ (=420, (4.3)
and
p(z1, 25 | Hy,01,0) = 017717 0,e773% (4.4)

The data dependent prior under each hypothesis is, respectively, given by

00 3 _—z0
5(60|Hy) = 1)(t + )"0 / e d .
p( l 1 n(n + )( 1 + 2) 0 (tl + t2 + z)n+2 2 (4 5)
and
0 6 IH H tn' /00 Zie_z.'Gi . L6
1,Y2 2 n; o t 1 Zi)ni+1 23y ( . )
where n = n; + ny. The PEML is given by
_ 3l(n +2)
H) = , 4.7
Pl = S T ) n + 3 T ) (47)
and
- r +1)I' +1
P($]H2) _ (nl ) (n2 ) (4.8)

4(2ny + 1)(2ne + 1)1 32
In this example, we point out a difficulty with O’Hagan’s method. For this model,
the fractional Bayes factor is given by

b )T(bny) [ (4 + ty)mtn2 )’
B!, = POY UM :
12 — 012P(b(n1+n2)) t;z,ltg,g y (4 9)

where

fooo p((L'IHl, H)le(H)dH
fooo fooo P(leZa 0)PH2(91, 92)d01d02
[(ny + no )ty 157
F(nl)F(n2)(t1 + tz)"”’"z )

POY,

Let us consider the situation where we have far more data about 6, than 6,; specifically

suppose ny, = n?. If we choose the fraction b = 2/(n; + n,), then it is easily seen that
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135]1\; / Bb, = o(1) (a.e.). Let B, be the Bayes factor of a subjective Bayesian whose
prior density w.r.t. the noninformative prior is continuous and bounded above. Since the
assumptions in the lemma in Section 2 hold, it follows that B,/ 136]1\; = 0(1) (a.e.), so
that

BS /B =0 (ae) (4.10)

This problem may be avoided by introducing two fractions, b; and b,, for the hypothesis

H, but the approach then becomes considerably more complicated.

1}
0.8

0.6

0.4}

0.2}

Figure 1: The Post-experimental Probabilities of Hy versus n; when H; is False: PEML
(Solid Line ), FBF ( Dotted Line ) and Subjective Bayesian’s .

Fig.1 shows the performance of the post-experimental probabilites of these methods

versus n; with ny = n?. The true values are §; = 1 and 6, = 0.75; thus H; is false.
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The prior of the subjective Bayesian is p(6]H1) = (2.5)%0 exp(—2.50), and p(64, 05| H,) =
exp(—0; — 1.56).

4.3 Testing for a Particular Value of a Poisson Parameter

Let Z(,) be an i.i.d. sequence of random variables from the Poisson distribution with
mean §. Let Hy : 0 = 6y and H, : 6 € (0,00). The noninformative prior density under the
hypothesis Hj is given by pg,(8) o< 6~'/2. The minimal sample size is 1. Then the data

dependent prior concerning 4 is given by
e’ n X T(t+2+1/2) '
S0\ H.) = t+1/2 , 411
P(0IHz) I‘(t+1/2)\/§(n+1) jz,(n+1)2z!1“(z+1/2) (4.11)

and the PEML of H, is given by

_ nt+1/2 ©  P(t4241/2)?
PEmlt) = R 12) i 1 1) Zz%, T(z +1/2)2\(n + 1)2=° (412)

where t = Y0, z;

There is a problem with the method of Klein and Brown when it is applied to
this model. Indeed, if we use the gamma distribution with scale parameter A~! as the
intermediate prior for 8, which converges to pg,(6), under the hypotheses H, and we

adopt Ip as the information index, it follows that

 p(Hilew)
lim ————— = 00. 4.13
i oo, V) (4.13)

This fact means that the hypothesis H; is always selected without regard to the data if

A is small enough.

4.4 A Non-nested Multicomparison Example

Let () be an i.i.d. sequénce of random variables. Suppose that they are from the ex-
ponential distribution with mean §~! under Hj, their logarithms are from N(g,o?) under

H, and they are from Weibull(«, 8) under Hs. The noninfomative priors are py, (6) o 671,
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pH,(p,0) o< 07! and py, (e, B) x a~!f~! . The minimal sample size is 2. The PEMLs are

given by
_ __nl(n)
Plewith) = 55 e (4.14)
i VAT + /20 +1/2)
Bz Hz) = — ) 5 (4.15)
T i £ 27T ((n — 1)/2)0(n + 1) (T2, (log 21 — 4)7)
and
2
p(zm)|Hs) = zlwz/ / x(n),zl,xz) llogac1 logmzldxlda;z, (4.16)

9(Z(w))
where i = Y7, log z; /n and

9(zw) = / (H x) ” (é w?) - " 2da.

Proschan (1963) presents the following 30 time intervals (in hours) between failures
of the air conditioning system of an airplane: 23, 261, 87, 7, 120, 14, 62, 47, 225, 71, 246,
21,42, 20, 5,12, 120, 11, 3, 14, 71, 11, 14, 11, 16, 90, 1, 16, 52, 95. For this data, we obtain
the post-experimental probabilities by the PEML: p(Hy |z (n)) = 0.414, p(Hz|2z(n)) = 0.3699
and p(Hs|z@)) = 0.217.

4.5 A Non-stationary Example

Let Z(,) be an independent sequence and let #;|0 ~ N(,:). Let H; : § = 0 and

H, :0 € R. If we choose
' ~ N(0, f5) (4.17)
as the imaginary training sample, the posterior odds ratio in favour of H; against H is

2(f0+Fn) F, A

T exp(— 2“02), (4.18)
where F,, = ¥, i71, and 0= Fryr /i
The IBF is
Bl = PO, (1 ii (—x—?»_l , (4.19)
n /i
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where

02
POY, = \/F, exp (- d . ) . (4.20)

However, since

lE [Zn:i exp (—5}—’2) 0} — 0, (n — o) (4.21)
O eV 2 ’ ’
and
iV [Lexp (—ﬁ) 9] /i < o0
A ’
by the strong law of large numbers,
Eg/ﬂﬁ-ﬂ@ (a.e.). (4.22)

Since the assumption (2.13) holds, the ratio between 13?)1\; and a subjective Bayes fac-
tors is O(1) almost everywhere under the assumptions concerning subjective priors in
the lemma in Section 2. Therefore, the ratio between the intrinsic Bayes factor and a
subjective Bayes factor also diverges almost everywhere. This example shows that, in
non-stationary models, the choice of simple arithmetric averaging in the IBF may not be
appropriate. Also, it might be difficult to choose statistically meaningful weights among
the many possibilities. On the other hand, non-independency is not a serious obstacle
to this method and, indeed, Varshavsky (1995) applied this method successfully to a
stationary time series model.

The fractional Bayes factor is

—by ) 1
an(.’l’!) = eXp (—1 9 Fnﬁz) b—- (423)

Thus the automatic choice of b, = 1/n is inappropriate and the choice should satisfy

boF, = O(1)

5 CONCLUDING REMARKS

Jeffreys’s method and its extension by Zellner and Siow (1980) can not be generalized

to non-nested models such as the model in Subsection 4.4. For multiple comparison
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models, there is arbitrariness concerning the choice of the “pivot.” For non-normal cases,
Jeffreys (1961) gives an interesting suggestion. See also Kass and Wasserman (1995).

Spiegelhalter and Smith’s method was originally defined only for nested models.
Generalization to non-nested models is possible in some cases but not always. This
method also has a degree of arbitrariness about the “pivot” for multiple comparison
models. Finally, it seems to excessivly favour the more complex models.

Suzuki’s method can be applied only when there are no hypotheses which have
proper priors concerning the adjustable parameters. For this method, subjective elements
such as the choice of unit of measurement and parametrization are crucial. We have an
example where Klein and Brown’s method is inappropriate in Subsection 4.3. Berger and
Pericchi’s method needs rather involved modifications when it is applied to non-nested
or multiple comparison models, so it is more a “strategy” (Berger and Pericchi (1995)
) than an algorithm. We gave an example where O’Hagan’s method results in a serious
discrepancy from reasonable subjective Bayesian methods in Subsection 4.2.

The most important notion is the balance of prior uncertainty. Since this can not
be formulated in terms of an improper prior directly, Suzuki (1983) introduced the notion
of an intermediate prior. Jeffreys keeps the balance by, roughly speaking, relating the
amount of information in the prior to the amount of information contained in a unit
observation, as is shown in (3.7). See Kass and Wasserman (1995) for more details.
Other methods use the notion of the (imaginary) minimal training sample in their own
ways.

However the general definition of the (imaginary) minimal training sample is diffi-
cult. The definition of Berger and Pericchi (1993) is general to some extent, but their idea
is connected with using simple arithmetic or geometric means, which is inappropriate for
non-stationary models such as the model in Subsection 4.5.

For non-stationary models or models with complex experiments, the PEML method

needs a non-automatic definition of the imaginary training sample. However, this sub-
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jective judgement is mainly concerned with the degree of uncertainty, and other aspects
of subjective judgement are determined automatically. Also this judgement is directly
related to the statistical model. Furthermore, for any finite sample, we can investigate

the data dependent prior to judge wheter or not it is reasonable.
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A REMARKS ON FORMAL ASPECTS OF THE
DISCUSSION

For testing hypothesis problems, the statistical model of the observable random

variable % is given by the set of densities w.r.t. an appropriate underlying measure,
{p(z0)|0 € O}. (1.1)

Here © is the direct sum of (Oy|H € H) defined as

© = ][] ox (1.2)
HeH

= | 6u, (1.3)
HeH

where Oy = {H} x ©. Note that Hy # H, = O, NOg, = 0. A more abstract definition
of the direct sum of sets can be found in Nihon Sugakkai (1977). In this paper, Oy is
an open subset of R or a singleton. For example, the parameter space of the model in
Subsection 4.4 is

(:) = {Hl} X R U {Hz} X §R2 U {H3} X §R2, (14)
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and the model is
Ezp(6-1) when § = (H,0) € {H:} xR
Fmyi-i.d. ~ { log N(p,0%)  when § = (H,(u,0)) € {Hy} x R . (1.5)
Weibull(a, 3) when 8 = (H, (e, B)) € {H3} x ®?
A Bayesian has a probability distribution on o, P(-). (From this, we define the
probabilities of hypotheses, the conditional probability distribution given the hypothesis
H and the restriction of the probability distribution on the hypotheses H:

p(H) := P(®n), (1.6)
. P(A N (:)H)
P(A|H) := — (1.7)
Py(-): {BNOy|B € domP(-)} 2 A~ P(A) € [0,1]. (1.8)

It is assumed that p(H) > 0. In our case, P(-|H) and Pg(-) are absolutely continuous
w.r.t. Lebesgue measure, and their densities are written as p(-|H) and pm(-), respectively,
when Oy is an open subset of ®¢#. This notion is generalized to the case where P(0) = oo
when no prior information is available. Even in this case, the analysis is done by Bayes

formula:

P(df|z) « p(z|0)P(df). (1.9)

However, since 3H € H[p(H) = o], the conditional probability, P(-|H), can not be
defined for this H. Thus the Bayes factor

Jou, P(z|H,0m,)p(0n,| H1)d0n,

) 1.10
Ton, P(o1Ha, 01, p(0 1, | )0, (1-10)

can not be defined. However, we can define the posterior odds ratio by
f@)Hl p(x|Hl’0H1)pH1 (0H1)d0H1 (111)

fOH2 p(le% 0H2 )sz (9H2)d01{2 .

This argument can be found in Dawid (1995).
It is natural to define py(0r) = cuqu(0y) where gy (0x) is the usual noninformative

prior of the model {p(z|0x)|0n € On}. The problem here is how to choose the ratio
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between cp /ey for the noninformative case. Several possible answers were discussed in
the text. Once this ratio is determined to be, say 1, for the noninformative case and the
statistician feels that H is k times more likely than H’, this information may be expressed
by setting this ratio k. However, since this strategy seems to require more judicious study
on foundations of Bayesian statistics, we restricted consideration to the noninformative
case. For the methods using the training sample idea, we can formally define the prior
probability of hypotheses after observing the training sample. However, we also restricted

consideration only to the noninformative case, and we set this probability being 1/#H.

34



