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We consider the problem of estimating the mean squared error of M-estimates of the
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1. INTRODUCTION.

Consider the linear regression model
y]:/ng+€j) jzla”'an (11)

where the regressors (zj,j > 1) are nonrandom. The errors (¢;,7 > 1) are assumed to be
independent. Let 1) be a real valued function. Then an M-estimate of # corresponding to

1 is defined as the value 8, of § which solves

n

> xid(y;—Bz)=0 ... ... (1.2)

i=1
Under appropriate conditions on 9, (€;,7 > 1) and (z;,7 > 1), this estimate is asymptotic

normal.

If ¥(z) = z, then B, is the least squares (LS) estimator, given by

Br,Ls = Z T yj/zx§ ...... (1.3)

Note that . . \
V(Bn,Ls) =Y 2% o} ( mf) ...... (1.4)
. —

where 012 =V(e),7 2> 1.

Several estimators of this variance were compared by Liu and Singh (1992). To explain
their results, let
= 2 2 = 9
2 T 0 20

n
J=1 " 7=1
Ln=gx2- Vp = ———, vF =
,1]’ rz -’ r nL,
J=

n

They classified their estimators as being either efficient or robust. Let V, g and V, r
denote respectively any efficient and robust estimator. Then under certain conditions,

n

(Vo —v}) =L Z(e — 02+ 0p(n7t) ... .. (1.5)
n(Va,g — vn) =nL;? Z zi(ed =03} + Op(n™h) ... .l L (1.6)
i=1



The bootstrap and the weighted jackknife estimators were shown to be of type V, g,
satisfying (1.5). The jackknife, paired bootstrap, external bootstrap and the weighted
bootstrap estimators were shown to be of type V, g satisfying (1.6). Babu (1992) showed
that the half sample estimator also belongs to the robust class and satisfies (1.6).

Note that V(8n) = vn. When (e;,j > 1) are heterogenous (that is, o} are different)
typically v, # v}. Thus from (1.5), the efficient estimators are inconsistent under hetero-

geneity. From (1.6), the robust estimators typically remain consistent under heterogeneity.

On the other hand, from (1.5) and (1.6), the ratio of the asymptotic variances of V,, g

and V, g is given by
(22 = n71L,)?
n-l
Z T (1.6)

So typically, the robust estimators have larger variance than the efficient estimators. There

appears to be a trade off and one cannot be both efficient and robust.

Liu and Singh (1992) and Babu (1992) provide a clear picture of the situation for the
LS estimator. It does not, however, provide any clues to what might happen for general
M-estimators. In this paper we address this issue but for simplicity restrict our attention

to two estimators jackknife and weighted jackknife, one each from the two classes.

Under suitable conditions, we derive expansions similar to (1.5) and (1.6) for these two
estimators. In general, these expansions involve extra terms, coming from the derivatives of
. Hence the issue of categorization by efliciency and robustness is not so straightforward.
We demonstrate that in contrast to the least squares case, the jackknife may be more

efficient than the weighted jackknife while remaining robust.

2. THE MAIN RESULTS. We assume E(e¢;) = 0 for all j > 1. Recall that the

estimator G, solves

n
Z:Ej P(y; — PBz;) =0 ... ... ... (2.1)
i=1
Using the delta method, it is seen that the asymptotic variance of g, is given by

]é 22 B p2(e;)
(J; 22 E ¢'(ej)>2

3

...... (2.2)

Vp =



The values f(;), 1 <i < n are obtained by solving

n
Z.’BJ‘ ¢(yj—ﬂmj)=0, ].SZSTL .
i=1

i

The pseudovalues of 3 are then defined as

Exactly as in the i.i.d. case, the jackknife estimator of v, is

n

Vo, g =(n(n —1))7") (J; = Ba)* ...

j=1

n

n—1, «
=(—)>_ (B = B2 - .
=1
The weighted jackknife estimator of v, is defined as

L ~ 2
Vaws = -1 Z z;” (Jj = Br)

j=1

-1 Ln ° —
B (nn ) w2 =i (B = Ba)?

i=1

defined as

(2.3)

(2.4)

(2.5)

(2.6)

(2.7)

(2.8)

To establish the probability expansions, we need to impose conditions on (zj,j > 1),

€5,) = 1) and 9. For the sake of clarity we did not aim for the minimal set of conditions.
J

Thus some of the conditions given below can surely be relaxed.

ASSUMPTION A.

(a) sup Jo;] < ¢ < oo,
J

> a? B y(e))

(b) Foralln,0 < ¢; < =1 < ey < 00

n

(¢) 1 is twice differentiable and " is Lipschitz.

(d) inf E /() >0



(©) sup B [19(e5) + 4" (6)]+ W&y < o
Define
a; = z; P(&), af =a;/z;
b; = 2} (¥'(e:) — EY'(e)), b = b/

¢ = xf’ FE 1/)”(6,-),

Sl = zn:ai’ S; = ia’:‘
=1 =1

S = St — Bad), S = Y (af? — Baf?)
=1

S5 = ;bi, s;:Z; bt

n

M, = zn::c? E ¢'(e;), N = Z Ci
i=1

=1

o Z Blaiby), P! = ima:b’:)

Qn= ) E(}), Q5 =) E(a)
i=1 =1

L. 3 E $¥(e;)
=1
n M2

PROPOSITION. Under the Assumption (A), the following in probability expansions
hold:

(2.9)



nMn(Vn,WJ—'U;;)Z 52 _251 (Pn _ QnNn>

L M, ‘M \M, M
(2.10)
53 Q; -1
— 2E Mn + Op(n ) .........

PROOF OF PROPOSITION. In Lahiri (1992) a stochastic expansion is derived for
Br under the added restriction that (e;,j > 1) are i.i.d. This expansion is based on prob-
ability inequalities of Fuk and Nagaev (1971). It may be verified that with appropriate
modifications, his arguments remain valid under our assumptions, thus yielding the follow-

11

ing expansions for B, and f(;). We will use “/” to denote expressions computed without

involving the :th observation.

5 Ss 1 SN,
ﬂn—ﬁ——m<1—m>+-2— M3 +Rp ... ... (2.11)
where R, = Op(M;1) = O,(n71).
S/ S} 1 S2N!
ﬂ(z)_'B:—M_i’(l_ﬁz>+§ W-{-R; ...... (212)
where R), = O,(M., ') = O,(n™Y) ... ... (2.13)
Subtracting (2.12) from (2.11),
Bo—=B =Tri+Toi —T3i+Tai+ Tsi +€ni -.. ... (2.14)
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where

a; S3
le - Mn (1 - E)

T = b,-(a;-v.r;l S1)
Ty = .a,-(c,- ]—w-;Vn)51
T, = a?(czij\;gNn)
Tsi = ;}5:;
It is easily seen that
S T2 (1 %)% Lo, L

(2.15)

(2.16)

(2.17)

(2.18)

If equation (2.14) is squared then it yields the above three terms and several other terms.

Using the facts that R, = O,(n~?) and R/, = Op(n~?%) and Assumption A which allows to

obtain the variance of some of these terms, it is seen that all the other terms are O,(n~2).

The details involve pages of tedious computation which we omit.

REMARK 1. If ¥(z) =z, then Sy = P, = Q, = N, = 0,M,, = L,, and the expansions

agree with (1.5) and (1.6) as they should.



REMARK 2. It is clear from the expansion (2.9), that V,, s — vn£>0 even when the
(ei,2 > 1) are heteroscedastic. Thus V, s is robust to departure from homogeneity of

variance.

From (2.10), Vo, ws — v:£>0. In general v, and v} will have different limits (see
their definitions in (2.2) and before the Proposition) and hence V;, w s is in general an
inconsistent estimator of v%. If V(1(e;)) = o2 for all ¢, then v} = v,. Hence V,, w s becomes
consistent in this case. Thus it is interesting to compare the (asymptotic) variances of V,, s

and V, w.

In the least squares case (¢(z) = z), when (e;,7 > 1) are i.i.d., Liu and Singh (1992)
proved that V, w s always has a smaller asymptotic variance compared to V,, s (See equa-
tion (1.6) given in Section 1.). Compared to the least squares case, now the expansions
involve two additional random terms, S; and S3. This makes the comparison of the vari-
ance of V,, y and V,, ws cumbersome. We will impose a few restrictions on % and the errors

(ei,2 > 1) to facilitate the comparison.
ASSUMPTION B.
(a) ¥ is anti-symmetric. That is, ¥(z) = —¥(—z)

(b) (ei,z > 1) arei.i.d. each with a distribution F' which is symmetric around 0, V(¢(e;)) =
o2, By'(e1) = p, V(¥2(e1)) = o2. It may be noted that the restriction on ¢ is quite
reasonable. (See Hoaglin, Mosteller and Tukey (1983 page 365) for a discussion on

desirable properties of ¢ in general).

As a consequence of our assumptions, ¥’ is symmetric and ¥" is anti-symmetric. Hence
E (1) =0, E 9(e1)¥'(e1) = 0 and E "(e1) = 0. This implies that N, = P, = Py =0,
M, =p Lp,Qn = 0% L,,Q% = no?. Thus from (2.9) and (2.10) we obtain

20'(2)53

MA(Vs—v,) = Sp - +0,(1)

= J + 0,(1), say

20’353

L, .
My(Vwy —v;) = — 53 - +0p(1)
= WJ + 0p(1), say
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Now

n

VW) -VWI) =08 3 at = 422 3 ot Cov (¥¥(er) ¥'(e1)
i= i=1

=1
2 2 2
- |78 2 - 4% L2 Cov (g, () (2.19)
n I2 2
= (; z} — n—;‘) (0'3 - 470 Cov (¢2(61),¢'(61))) ......

Unlike the least squares case, here the jackknife estimator will be more efficient than the

weighted jackknife estimator if the second factor in the above expression is negative.

Example 1. (Huber’s ¢-functions). Let
v if Jul<ec
p(u) = :
c if Ju| > e

Then
, 1 ifjul<e
P'(u) =

0 if jul>c¢
Letting F' denote the (continuous) cdf of €1, p = P(—c¢ < & < ¢),

c

Cov (¥2(e1), ¥'(e1)) = / 2? dF(z) ( / 2* dF(z) + / c2dF(x)) ( / 1-dF(a:))

-C —cC |x|>c —C

=(1—p)/w2 dF(z) - (1-p) p &

= (1 —p)/(:v2 —c*) dF(z) <0

Thus in this case V,  is always less efficient than V,, w s for all symmetric distributions.
Example 2. Let for 0 <c <1,

o= M=

0 otherwise



Let (€;,¢ > 1) be 1.i.d. U(—1,1). It can be easily checked that
Ey'(e)=c, E¢*(a)=c"/3,

E[*(e1) ¥'(e1)] = ¢*/3, E ¢*(e1) = /5.

Upon simplifying (2.19), it follows that V(J) < V(W J) if

(EY'(e))[E ¢*(er) + 3(E $*(e1))’] < 4B[*(e)|E[* (e1)¢'(e1)] - ... (2.20)

Using the above expected values, it follows that V/(J) < V(WJ) if ¢ < 33/45, V(J) >
V(WJ)if ¢ > 33/45 and V(J) = V(W J) when ¢ = 33/45.

Example 3. Let ¢ be Tukeys’ biweight function,

u(l —u?)?, 0<|ul<1
P(u) =
0 otherwise

Let (e;,z > 1) be i.i.d. with the density

foa) (@—;’) (1—’it|>a, 0<|z| <t

0 otherwise
where 0 < a,t < 00.

In principle it is possible to write down all the expected values that are needed for the

comparison. After a little trial and error, we chose a = 0.05, ¢ = 11. With this choice,
V(4*(e1)) = 1.986 x 107*, Cov (¥*(e1),%'(€1)) = 6.38 x 1077

Ev?(e1) = 34.5465 x 107, E¢'(e;) = 0.4436 x 1074
Using these values, simple computation shows that V(J) < V(W J).
REMARK 3. It is expected that as in the LS case, the different bootstrap estimators

will obey the appropriate expansions (2.9) or (2.10). The detailed technical proofs will be

quite involved, long and tedious.
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