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1. Introduction. Ranked set sampling (RSS) has established itself as a useful sampling
procedure, specially in environmental studies. See Patil, Sinha and Tallie (1994) for a
comprehensive review of the theory, methods and applications of this procedure. From the
review, it is evident that most of the work has concentrated on evaluating this method and

its variants in the context of estimating the mean of a population.

We focus on the problem of estimating the population variance o?. Stokes (1980)
discussed this problem and provided an estimator. She compared her estimator with the
usual variance estimator based on simple random sampling (SRS) through their mean
squared error (MSE). She concluded that the gain in benefits by using the RSS variance
estimator in place of the SRS estimator is rather small, specially when the population

mean is unknown.

We propose an alternative unbiased estimator when replications are available. We

then compare the performances of all three estimators by comparing their MSEs.

In practice, the rankings of the values may not be perfect. One such situation is when
an auxiliary variable is used to rank the primary variable. We study the effect of this on

our estimator by using a real data set.

2. Variance Estimators. Let S; = (Xii,...,Xim) be random samples of size m from
a population F, 1 <7 < m. Let X(;) be the ith ordered value in S;. Then the ranked set
sample is defined as the m independent values X(;y, 1 <: < m. If this process is replicated
r times and X(;); is the value of X(;) obtained on the jth replication then X(;);,1 <1 <m,

1 < 7 <r is the ranked set sample with mr independent values being quantified.

Stokes (1980) suggested the following estimator of the variance
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The bias and MSE of this estimator were established to be
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To compare this estimator with the usual variance estimator s2, based on mr 1.i.d.

observations on F', note that
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Hence 67 is “better” than s?. However, the estimator 67 does not exploit the replications

to achieve unbiasedness. To obtain an estimator which is unbiased note that
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To write down our estimator, we use the standard convention of (-) denoting that the
corresponding index has been summed and of a bar denoting an average. Our estimator

62 is defined as
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The basic properties of 62 are given by
Result 1. The estimator 67 satisfies
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(c) Letting ub, puf, py denote the second, third and fourth moments of F,
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and the first, second and last term in the variance expression (16) may be replaced

(mr)~! times the above expression.
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Appendix

Proof of Result 1. To prove (a) observe that
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By Cauchy-Schwartz inequality, each term in the first sum is nonnegative. The second

term is nonnegative, again by Cauchy-Schwartz inequality.

(b) is an easy consequence of (13), (14) and the definition of the estimator. To prove (c),
note that &% =T -1
where
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Note that T is a U-statistics with the kernel of order 2, h(z,y) = zy. Hence using Lemma

A of Serfling (1980, page 183)
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It remains to find the covariance between T; and T;. Note that
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Using equation (A3) - (A10), the expression (16) for the variance follows. To prove (d),
observe that from (16), the limit equals
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Observing that u;) = 7(;) + 4,
2
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Note that
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Using (A13) and (A15) - (A17) the expression in (All) equals
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