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BAYES FACTORS

Bayes factors are the primary tool used by Bayesians for hypothesis testing and model selec-
tion. They also are used by non- Bayesians in the construction of test statistics. For instance,
in the testing of simple hypotheses, the Bayes factor equals the ordinary likelihood ratio.
BAYESIAN MODEL SELECTION discusses the use of Bayes factors in model selection.
STATISTICAL EVIDENCE discusses the general use of Bayes factors in quantifying statis-
tical evidence. To avoid overlap with these articles, we concentrate here on the motivation
for using Bayes factors, particularly in hypothesis testing.

Suppose we are interested in testing two hypotheses:
H, : X has density fi(z]0,) versus H,: X has density fa(z}6,).

If the parameters 6; and 6, are unknown, a Bayesian generally specifies prior densities 7y (6;)
and w;(0;) for these parameters, and then computes the Bayes factor of H; to H; as the

ratio of the marginal densities of z under H; and H,,
B = my(z)/ma(z), (1)

where

mi() = [ fi(o10:)m:(6:)dbs. (2)
The Bayes factor is typically interpreted as the “odds provided by the data for H; to Hj,”
although this interpretation is strictly valid only if the hypotheses are simple; otherwise,
B will also depend on the prior distributions. Note, however, that B does not depend on
the prior probabilities of the hypotheses. If one wants a full Bayesian analysis, these prior
probabilities, P(H;) and P(H,) (which, of course must sum to one), must also be specified.

Then the posterior probability of H; is given by
P(H|z) = B/[B + (P(H:)/ P(H1))] (3)

(and, of course, the posterior probability of Hj is just 1 — P(Hi|z).)
The attraction of using a Bayes factor to communicate evidence about hypotheses is
precisely that it does not depend on P(H;) and P(H,), which can vary considerably among

consumers of a study. Any such consumer can, if they wish, determine their own P(H;)
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and convert the reported Bayes factor to a posterior probability using (3). Although B will
still depend on m(6,) and/or 72(2), the influence of these priors is typically less significant
than the influence of P(H,) and P(H,). Also, default choices of 7;(6;) and m,(0;) are
sometimes available (see section 5), in which case B can be used as a default measure of
evidence. General discussion of Bayes factors can be found in Jeffreys [29], Berger [2], Kass
and Raftery [30], and Berger and Pericchi [11].

Ezample 1. Suppose we observe an i.i.d. normal sample, X1, Xa,...,X,, from a N(6,0?)
distribution, with o2 known. It is desired to test Hy : 8 = 6 versus Hy : 6 # 6. For the
prior distribution of # under H,, it is common to choose a N(6p, 7?) distribution, where the
standard deviation 7 is chosen to reflect the believed plausible range of 0 if H, were true.
(One could, of course, also choose prior means other than 6.)

A simple computation then shows that the Bayes factor of Hy to H is

0_2

B = (1+ 25 exp{—122/(1 + ) B
o? 2 nr?’"’
where z = \/n(Z — 0)/0 is the usual standardized test statistic. A frequently used “default”

choice of 72 is 72 = 202 (the quartiles of the prior on # are then roughly 4o), in which case
1
B=\/1+2nexp{—z2/(2+;)}. (5)

For instance, if n = 20 and |z| = 1.96, then B = 0.983. As this very nearly equals 1,
which would correspond to equal odds for H; and H;, the conclusion would be that the data
provides essentially equal evidence for H; and H,.

Note that |z| = 1.96 corresponds to a P-value of 0.05, which is typically considered to
be significant evidence against Hj, in contradiction to the message conveyed by B = 0.983.
This conflict between P-values and Bayes Factors is discussed further below. For now, it is
interesting to note that the conflict magnifies in severity as n — oo (or 72 — o) in (4).
Indeed, for any fixed z, (4) then converges to oo, so that B would indicate overwhelming
evidence for H; even though z was any (fixed) large value (and the P-value was, correspond-
ingly, any fixed small value). Various versions of this phenomenon have become known as

Jeffreys’s Paradox (Jeffreys [29]), Lindley’s Paradox (Lindley [33]), and Bartlett’s Paradox
(Bartlett [1]). The “paradox” depends crucially on H; being a believable exact point null



hypothesis. While this may sometimes be true, a point null hypothesis is more typically an
approximation to a small interval null, and the validity of the approximation disappears as
n — oo (but not as 7> — o0); see Berger and Delampady [7] for discussion of this and its

impact on the “paradox.”

MOTIVATION FOR USING BAYES FACTORS

Since posterior probabilities are an integral component of Bayesian hypothesis testing and
model selection, and since Bayes factors are directly related to posterior probabilities, their
role in Bayesian analysis is indisputable. We concentrate here, therefore, on reasons why
their use should be seriously considered by all statisticians.

Reason 1. Classical P-values can be highly misleading when testing precise hypotheses.
This has been extensively discussed in Edwards, Lindeman, and Savage [20], Berger and
Sellke [13], Berger and Delampady [7], and Berger and Mortera [8]. In Example 1, for
instance, we saw that the P-value and the posterior probability of the null hypothesis could
differ very substantially. To understand that the problem here is with the P-value, imagine
that one faces a long series of tests of new drugs for AIDS. To fix our thinking, let us
suppose that 50% of the drugs that will be tested have an effect on AIDS, and that 50%
are ineffective. (One could make essentially the same point with any particular fraction
of effective drugs.) Each drug is tested in an independent experiment, corresponding to a
normal test of no effect, as in Example 1. (The experiments could all have different sample
sizes and variances, however.) For each drug, the P-value is computed, and those with P-
values smaller than 0.05 are deemed to be effective. (This is perhaps an unfair caricature
of standard practice, but that is not relevant to the point we are trying to make about
P-values.)

Suppose a doctor reads the results of the published studies, but feels confused about
the meaning of P-values. (Let us even assume here that all studies are published, whether
they obtain statistical significance or not; the real situation of publication selection bias
only worsens the situation.) So the doctor asks the resident statistician to answer a simple
question: “A number of these published studies have P-values that are between 0.04 and

0.05; of these, what fraction of the corresponding drugs are ineffective”?



The statistician cannot provide a firm answer to this question, but can provide useful
bounds if the doctor is-willing to postulate a prior opinion that a certain percentage of
the drugs being originally tested (say, 50% as above) were ineffective. In particular, it is
then the case that at least 23% of the drugs having P-values between 0.04 and 0.05 are
ineffective, and in practice typically 50% or more will be ineffective (see Berger and Sellke
[13]). Relating to this last number, the doctor concludes: “So if I start out believing that a
certain percentage of the drugs will be ineffective, say 50%, then a P-value near 0.05 does
not change my opinion much at all; I should still think that about 50% are ineffective”.

This is essentially right, and this is essentially what the Bayes factor conveys. In Ex-
ample 1 we saw that the Bayes factor is approximately one when the P-value is near 0.05
(for moderate sample sizes). And a Bayes factor of one roughly means that the data are
equally supportive of the null and alternative hypotheses, so that posterior beliefs about the
hypotheses will essentially equal the prior beliefs.

We cast the above discussion in a frequentist framework to emphasize that this is a fun-
damental fact about P-values; in situations such as that above, a P-value of 0.05 essentially
does not provide any evidence against the null hypothesis. (Note, however, that the situation
is quite different in situations where there is not a precise null hypothesis; then P-values and
posterior probabilities often happen to be reasonably similar — see Casella and Berger [16].)
That the meaning of P-values is commonly misinterpreted is hardly the fault of consumers
of statistics. It is the fault of statisticians for providing a concept so ambiguous in meaning.
The real point here is that the Bayes factor erssentially conveys the right message easily and
immediately.

Reason 2: Bayes factors are consistent for hypothesis testing and model selection. Consis-
tency is a very basic property. It’s meaning is that, if one of the entertained hypotheses (or
entertained models) is actually true, then a statistical procedure should guarantee selection
of the true hypothesis (or true model) if enough data is observed. Use of Bayes factors guar-
antees consistency (under very mild conditions), while use of most classical selection tools,

such as P-values, C,, and AIC, does not guarantee consistency (cf. Gelfand and Dey [25]).



In model selection it is sometimes argued that consistency is not a very relevant concept
because no models being considered are likely to be exactly true. There are several possible
counterarguments. The first is that, even though it is indeed typically important to recognize
that entertained models are merely approximations, one should not use a procedure that
fails the most basic property of consistency when you do happen to have the correct model
under consideration. A second counterargument is based on the results of Berk [14] and
Dmochowski [18]; they show that asymptotically (under mild conditions) use of the Bayes
factor for model selection will choose the model that is closest to the true model in terms
of Kullback-Leibler divergence. This is a rather amazing and compelling property of use
of Bayes factors. It should be noted, however, that not all criteria support Bayes factors
as optimal when the true model is not among those being considered; see Shibata [37] and
Findley [23], for examples.

Reason 3. Bayes factors behave as automatic Ockham’s razors, favoring simple models
over more complex models, if the the data provides roughly comparable fits for the models.
Overfitting is a continual problem in model selection, since more complex models will always
provide a somewhat better fit to the data than will simple models. In classical statistics
overfitting is avoided by introduction of an ad hoc penalty term (as in AIC), which increases
as the complexity (i.e., the number of unknown parameters) of the model increases. Bayes
factors act naturally to penalize model complexity, and hence need no ad hoc penalty terms.
For an interesting historical example and general discussion and references, see Jefferys and
Berger (28).

Reason 4. The Bayesian approach can easily be used for multiple hypotheses or models.
Whereas classical testing has difficulty with more than two hypotheses, consideration of such
poses no additional difficulty in the Bayesian approach. For instance, one can easily extend
the Bayesian argument in Example 1 to test between Ho: 60 =0,H; : 6 <0, and H; : 8 > 0.
Reason 5. The Bayesian approach does not require nested hypotheses or models, standard
distributions, or regular asymptotics. Classical hypothesis testing has difficulty if the hy-
potheses are not nested or if the distributions are not standard. There are general classical
approaches based on asymptotics, but the Bayesian approach does not require any of the

assumptions under which an asymptotic analysis can be justified. Consider the following



example as an illustration of some of these notions.
FEzample 2. Suppose we observe an i.i.d. sample, X, X5, ..., X, from either a normal or a

Cauchy distribution f, and wish to test the hypotheses
Hy : fis N(g,0o?) versus Hy : f is C(p,0?).

This is awkward to do classically, as there is no natural test statistic and even no natural
null hypothesis. (One can obtain very different answers depending on which test statistic is
used and which hypothesis is considered to be the null hypothesis.) Also, computations of
error probabilities are difficult, essentially requiring expensive simulations.

In contrast, there is a natural and standard automatic Bayesian test for such hypotheses.

In fact, for comparison of any location-scale distributions, it is shown in Berger, Pericchi,
and Varshavsky [12] that one can legitimately compute Bayes factors using the standard
noninformative prior density 7 (u,0?) = 1/02. For testing H; versus H, above, the resulting
Bayes factor is available in closed form (see Franck [23] and Spiegelhalter [38]).
Reason 6. The Bayesian approach can account for model uncertainty and is often predic-
tively optimal. Selecting a hypothesis or model on the basis of data, and then using the same
data to estimate model parameters or make predictions based upon the model, is well known
to yield (often severely) overoptimistic estimates of accuracy. In the classical approach it is
often thus recommended to use part of the data to select a model and the remaining part
of the data for estimation and prediction. When only limited data is available, this can be
difficult.

The Bayesian approach takes a different tack: ideally, all models are left in the analysis
with, say, prediction being done using a weighted average of the predictive distributions from
each model, the weights being determined from the posterior probabilities (or Bayes factors)
of each model. See Geisser [24] and Draper [19] for discussion and references.

Although keeping all models in the analysis is an ideal, this can be cumbersome for
communication and descriptive purposes. If only one or two models receives substantial
posterior probability, it would not be an egregious sin to eliminate the other models from
consideration. Even if one must report only one model, the fact mentioned above, that

Bayes factors act as a strong Ockham’s razor, means that at least the selected model will



not be an overly complex model, and so estimates and predictions based on this model will
not be quite so overly optimistic. Indeed, one can even establish certain formal optimality
properties of selecting models on the basis of Bayes factors. Here is one such:

Result 1. Suppose it is of interest to predict a future observation Y under, say, a symmetric
loss L(|Y — Y]), where L is nondecreasing. Assume that two models, M; and M,, are under
consideration for the data (present and future), that any unknown parameters are assigned
proper prior distributions, and that the prior probabilities of M; and M, are both equal to
1/2. Then the optimal model to use for predicting Y is M, or M2, as the Bayes factor
exceeds, or is less than, one.

Reason 7. Bayes factors seem to yield optimal conditional frequentist tests. The standard
frequentist testing procedure, Neyman-Pearson testing, has the disadvantage of requiring the
report of fixed error probabilities, no matter what the data. (The data-adaptive versions of
such testing, namely P-values, are not true frequentist procedures and suffer from the rather
severe interpretational problems discussed earlier.) In a recent surprising development (based
on ideas of Kiefer [32]), Berger, Brown, and Wolpert [5] and Berger, Boukai, and Wang
[6] show for simple versus simple testing and for testing a precise hypothesis, respectively,
that tests based on Bayes factors (with, say, equal prior probabilities of the hypotheses)
yield posterior probabilities which have direct interpretations as conditional frequentist error
probabilities. Indeed, the posterior probability of H; is the conditional Type I frequentist
error probability, and the posterior probability of Hj is a type of average conditional Type
II error probability (when the alternative is a composite hypothesis). Note that the reported
error probabilities thus vary with the data, exactly as do the posterior probabilities. Another
benefit that accrues is the fact that one can accept H; with a specified error probability (again
data dependent).

The necessary technical detail to make this work is the defining of suitable conditioning
sets upon which to compute the conditional error probabilities. These sets necessarily include
data in both the acceptance and the rejection regions, and can roughly be described as the
sets which include data points providing equivalent strength of evidence (in terms of Bayes
factors) for and against H;. Computation of these sets is, however, irrelevant to practical

implementation of the procedure.



The primary limitation of this Bayesian - frequentist equivalence is that there will typi-
cally be a region, which is called the “no-decision region,” in which frequentist and Bayesian
interpretations are incompatible. Hence this region is excluded from the decision space. In
Example 1, for instance, if the default N(0,20%) prior is used and n = 20, then the no-
decision region is the set of all points where the usual z-statistic is between 1.18 and 1.95. In
all examples we have studied, the no-decision region is a region where both frequentists and
Bayesian would feel indecisive, and hence its presence in the procedure is not detrimental
from a practical perspective.

There are more surprises arising from this equivalence of Bayesian and conditional fre-
quentist testing. Omne is that, in sequential testing using these tests, the stopping rule is
largely irrelevant to the stated error probabilities. In contrast, with classical sequential test-
ing the error probabilities depend very much on the stopping rule. For instance, consider a
sequential clinical trial which is to involve up to 1000 patients. If one allows interim looks
at the data (after, say, each 100 patients), with the possibility of stopping the experiment if
the evidence appears to be conclusive at an interim stage, then the classical error probability
will be substantially larger than if one had not allowed such interim analysis. Furthermore,
computations of classical sequential error probabilities can be very formidable. It is thus a
considerable surprise that the conditional frequentist tests mentioned above not only pro-
vide the freedom to perform interim analysis withou;L penalty, but also are much simpler
than the classical tests. The final surprise is that these conditional frequentist tests provide

frequentist support for the stopping rule principle (see Berger and Berry [4]).

CARE IN SPECIFICATION OF HYPOTHESES

In classical statistics, whether one formulates a test as a one-sided or a two-sided test makes
little practical difference; the alpha level or P-value changes by at most a factor of two. In
Bayesian hypothesis testing, however, the difference between the formulations can lead to
strikingly different answers, and so considerable care must be taken in formulation of the
hypotheses. Let us begin with two examples.

Ezample 3. Suppose one is comparing a standard chemotherapy treatment with a new

radiation treatment for cancer. There is little reason to suspect that the two treatments



could have the same effect, so that the correct test would be a one-sided test comparing the
two treatments.

Example /. Suppose two completely new treatments for AIDS are being compared. One
should now be concerned with equality of treatment effects, because both treatments could
easily have no (and hence equal) effect. Hence one should test the null hypothesis of no
treatment difference against the alternative that there is a difference. (One might well
actually formulate three hypotheses here, the null hypothesis of no difference, and the two
one-sided hypotheses of each treatment being better; this is perfectly permissible and adds
no real complications to the Bayesian analysis.)

The difference in Example 3 is that the standard chemotherapy treatment is presumably
known to have a nonzero effect, and there is no reason to think that a radiation treatment
would have (nearly) the same nonzero effect. Hence possible equality of treatment effects is
not a real concern in Example 3. (In Bayesian terms, this event would be assigned a prior
probability of essentially zero.) Note, however, that if the second treatment had, instead,
been the same chemotherapy treatment, but now with (say) steroids added, then equality
of treatments would have been a real possibility, since the steroids might well have no effect
on the cancer.

Deciding whether or not to formulate the test as testing a precise hypothesis or as a
one-sided test thus centers on the issue of deciding if there is a believable precise hypothesis.
Sometimes this is easy, as in testing for the presence of extrasensory perception, or testing
that a proposed law of physics holds. Often it is less clear; for instance, in medical testing
scenarios it is often argued that any treatment will have some effect, even if only a very small
effect, and so that exact equality of treatment effects will never occur. While perhaps true,
it will still typically be reasonable to formulate the test as a test of no treatment difference,
since such a test can be shown to be a good approximation to the “optimal” test unless the
sample size is very large (cf. Berger and Delampady [7]).

Another aspect of this issue is that Bayesians cannot test precise hypotheses using confi-
dence intervals. In classical statistics one frequently sees testing done by forming a confidence
region for the parameter, and then rejecting a null value of the parameter if it does not lie

in the confidence region. This is simply wrong if done in a Bayesian formulation (and if the



null value of the parameter is believable as an hypothesis).

USING BAYES FACTORS

Several important issues that arise in using Bayes factors will be discussed here.
Computation: Computation of Bayes factors can be difficult. A useful simple approximation
is the Laplace approximation; see BAYESIAN MODEL SELECTION for its application
to Bayes factors. The standard method of numerically computing Bayes factors has long
been Monte-Carlo importance sampling. There have recently been a large variety of other
proposals for computing Bayes factors; see BAYESIAN MODEL SELECTION and Kass and
Raftery [30] for discussion and references.

Multiple hypotheses or models: When considering k (greater than two) hypotheses or models,
Bayes factors are rather cumbersome as a communication device, since they involve only
pairwise comparisons. There are two obvious solutions. One is just to report the marginal
densities, m;(z), for all hypotheses and models. But since the scaling of these is arbitrary,

it is typically more reasonable to report a scaled version, such as
k
Py =my(z)/(D_m;(2)).

i=1
The P’ have the additional benefit of being interpretable as the posterior probabilities of the
hypotheses or models, if one were to assume equal prior probabilities. Note that a consumer
of such a report who has differing prior probabilities, P(H;), can compute his or her posterior
probabilities as

P(Hi|z) = PZ-*P(Hi)/[Z: PrP(H;)).

Minimal statistical reports and decision theory: While Bayes factors do summarize the evi-
dence for various hypotheses or models, they are obviously not complete summaries of the
information from an experiment. In Example 1, for instance, along with the Bayes factor
one would typically want to know the location of § given that H, were true. Providing the
posterior distribution of 6, conditional on the data and H, being true, would clearly suffice
in this regard. A ‘minimal’ report would, perhaps, be a credible set for 6 based on this
posterior, along with the Bayes factor of course. (It is worth emphasizing that the credible
set alone would not suffice as a report; the Bayes factor is needed to measure the strength

of evidence against H;.)
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We should also emphasize that, often, it is best to approach hypothesis testing and model
selection from the perspective of decision analysis (see Bernardo and Smith [15] for discussion
of a variety of decision and utility based approaches to testing and model selection.) It
should be noted that Bayes factors do not necessarily arise as components of such analyses.
Frequently, however, the statistician’s goal is not to perform a formal decision analysis, but to
summarize information from a study in such a way that others can perform decision analyses
(perhaps informally) based on this information. In this regard, the ‘minimal’ type of report
discussed above will often suffice as the statistical summary needed for the decision-maker.
Updating Bayes factors: Full posterior distributions have the pleasant property of summa-
rizing all available information, in the sense that if new, independent information becomes
available, one can simply update the posterior with the new information through Bayes rule.
The same is not generally true with Bayes factors. Updating Bayes factors in the presence
of new information typically also requires knowledge of the full posterior distributions (or,

at least, the original likelihoods). This should be kept in mind when reporting results.

DEFAULT BAYES FACTORS

Ideally, m1(6,) and/or w(6,) are derived as subjective prior distributions. In hypothesis
testing, especially nested hypothesis testing, there are strong reasons to do this. In Example
1, for instance, the Bayes factor clearly depends strongly on the prior variance, 72. Thus, at
a minimum, one should typically specify this prior quantity (roughly the square of the prior
guess as to the possible spread of 8 if H; is true) to compute the Bayes factor. An attractive
alternative for statistical communication is to present, say, a graph of the Bayes factor as
a function of such key prior inputs, allowing consumers of a study to easily determine the
Bayes factor corresponding to their personal prior beliefs (cf. Dickey [17] and Fan and Berger
21]).

Another possibility is to use robust Bayesian methods, presenting conclusions that are
valid simultaneously for a large class of prior inputs. In Example 1, for instance, one can
show that the lower bound on the Bayes factor over all possible 72, when z = 1.96, is 0.473.
While this is a useful bound here, indicating that the evidence against H; is no more than 1

to 2, such bounds will not always answer the question. The problem is that the upper bounds
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on the Bayes factor, in situations such as this, tend to be infinite, so that one may well be
left with an indeterminate conclusion. (Of course, one might very reasonably apply robust
Bayesian methods to a reduced class of possible prior inputs, and hope to obtain sensible
upper and lower bounds on the Bayes factor.) Discussions of robust Bayesian methods in
testing can be found in Edwards, Lindman, and Savage [20], Berger [2], Berger and Sellke
[13], Berger and Delampady [7], and Berger [3].

Sometimes use of noninformative priors is reasonable for computing Bayes factors. One-
sided testing provides one such example, where taking limits of symmetric proper priors as
they become increasingly vague is reasonable and can be shown to give the same answer as
use of noninformative priors (cf. Casella and Berger [16]). Another is non-nested testing,
when the models are of essentially the same type and dimension. Example 2 above was of
this type. See Berger, Pericchi, and Varshavsky [12] for discussion of other problems of this
type.

In general, however, use of noninformative priors is not legitimate in hypothesis testing
and model selection. In Example 1, for instance, the typical noninformative prior for
(under H,) is the constant density, but any constant could be used (since the prior is im-
proper regardless) and the resulting Bayes factor would vary with the arbitrary choice of the
constant. This is unfortunate, especially in model selection because, at the initial stages of
model development and comparison, it is often not feasible to develop full subjective proper
prior distributions. This has led to a variety of alternative proposals for the development of
default Bayes factors. A few of these methods are briefly discussed below. For discussion of
other methods and comparisons, see Berger and Pericchi [11] and Iwaki [27].

The most commonly used default procedure is the Bayes Information Criterion (BIC) of
Schwarz [36], which arises from the Laplace approximation to Bayes factors. See BAYESIAN
MODEL SELECTION for discussion. BIC is often a quite satisfactory approximation (cf.
Kass and Wasserman [31]), but it avoids the problem of prior specification only by simply
ignoring that term of the expansion.

Another common approach is to simply choose default proper prior distributions. Thus, in
Example 1, we commented that the N(0,20?) distribution is a standard default prior for this
testing problem. Jeffreys [29] pioneered this approach (although he actually recommended a
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C(0, 0%) default prior in Example 1); see also Zellner and Siow [40] and the many references
to this approach in Berger and Pericchi [11].

An attempt to directly use noninformative priors, but with a plausible argument for
choosing particular constant multiples of them when they are improper, was proposed for
linear models in Spiegelhalter and Smith [39].

Two recent default approaches are the intrinsic Bayes factor approach of Berger and
Pericchi [9, 10, 11] and the fractional Bayes factor approach of O’Hagan [34, 35]. These use,
respectively, parts of the data (“training samples”) or a fraction of the likelihood to, in a
sense, create a default proper prior distribution. These approaches operate essentially auto-
matically, and apply in great generality to hypothesis testing and model selection problems.
And the better versions of these approaches can be shown to correspond to use of actual
reasonable default proper prior distributions. They thus provide the best general default

methods of testing and model selection that are currently available.
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