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Abstract

Elimination of nuisance parameters is a central problefn in statistical inference, and has
been formally studied in virtually all approaches to inference. Perhaps the least studied
approach is elimination of nuisance parameters through integration, in the sense that
this is viewed as an almost incidental byproduct of Bayesian analysis and is hence not
something which is deemed to require separate study. There is, however, considerable value
in considering integrated likelihood on its own, especially versions arising from default or
noninformative priors. In this paper, we review common such integrated likelihoods, and

discuss their strengths and weaknesses relative to other methods.



1. INTRODUCTION

1.1 Preliminaries and Notation

In elementary statistical problems we try to make inferences about an unknown state
of nature w (assumed to lie within some set 2 of possible states of nature) upon observing
the value X = z of some random vector X = {X1,---, X, } whose probability distribution
is determined completely by w. If X has a density function f(z | w), strong arguments
reviewed and extended in Berger and Wolpert (1988)and Bjgrnstad (1996) suggest that
inference about w ought to depend upon X only through the likelihood function L(w) =

f(z | w), which is to be viewed as a function of w for the given data z.

Rarely is the entire parameter w of interest to the analyst. It is common to select
a parametrization w = (0, \) of the statistical model in a way that simplifies the study
of the “parameter of interest”, here denoted 8, while collecting any remaining parameter

specification into a “nuisance parameter” A.

In this paper we review certain of the ways that have been used or proposed for
eliminating the nuisance parameter A from the analysis to achieve some sort of “likeli-
hood” L*(8) for the parameter of interest. We will focus on integration methods, such as
eliminating A by simple integration (with respect to Lebesgue measure), resulting in the

uniform-integrated likelihood v »
LY(9) = / L(8, \)d. (1)

In justifying integration methods, we will occasionally refer to alternative maximization

methods, such as the profile likelihood

L(e) = Slip L(6, )). (2)

(Typically the sup over A is achieved at some value Mo, which we will call the conditional

mle.) However, no systematic discussion of non-integration methods will be be attempted.

Example 1. Suppose Xi,X5,...,X, are ii.d. normal random variables with mean pu
and variance o2 (N(u,0?)). Suppose the parameter of interest is ¢ while p is a nuisance

parameter. (Thus, in the above notation, § = 02 and A = p.) Here, easy computations
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yield
LY(o%) = / L(o?, p)dp

- 1 1
= / 11 o expl—ga(ei - w)?Ydn
=1

1 1 © o
- (27'('0'2)(”'—1)/2\/';1: exp{_r‘_f ;(ml - .T) })
L(0?) = sup L(c0?, ) = L(0?,T)
u

1 1 « o
= @y 5 2 =2
i=1
note that T is the conditional mle. Since proportionality constants do not matter for

likelihoods, LY(¢?) and L(o?) differ only in the powers of o2 in the denominators.

Notationally, we will write integrated likelihoods as

L(8) = /L(e, Am(A|6)dA, (3)
where m(A|6) is the “weight function” for A. (In this paper, we consider only examples
with continuous A taking values in Euclidean space, and consider only integration with
respect to Lebesgue measure.) It is most natural to use Bayesian language, and call w()|6)
the “conditional prior density of A given 6,” although much of the paper will focus on
non-subjective choices of 7(A|f). Also, we will have occasion to refer to a prior density,
7(6), for the parameter of interest . As is commonly done, we will abuse notation by
letting the arguments define the prior; thus 7(6) is the prior for 8, while 7(\) would be
the (marginal) prior for A. |

1.2 Background and Preview

The elimination of nuisance parameters is a central but difficult problem in statistical
inference. It has formally been addressed only in this century since, in the nineteenth
century Bayes-Laplace school of “Inverse Probability” (see for example Zabell, 1989), the
problem was not of particular concern; use of the uniform integrated likelihood LY(8) was

considered “obvious.”

With the Fisher and Neyman rejection of the Bayes-Laplace school, finding alternative

ways to eliminate nuisance parameters was felt to be crucial. Student’s derivation of the
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sampling distribution of the mean of a normal population when the variance is unknown,
and the derivation of the distribution of the sample correlation coefficient of a bivariate
normal population (Fisher, 1915, 1921) are probably the first examples of a frequentist
approach to the problem. They were based on derivation of a pivotal quantity whose
distribution is free of the nuisance parameters. Other famous examples include the Bartlett
(1937) test of homogeneity of variances and the various solutions of the Behrens-Fisher

problem (Fisher, 1935).

There have been numerous efforts to create a likelihood approach to elimination of
nuisance parameters (Barnard et al., 1962). The beginnings of the “modern” likelihood
school can perhaps be traced to Kalbfleisch and Sprott (1970, 1974), in the sense that they
proposed systematic study of a variety of methods for eliminating nuisance parameters

(including integrated likelihood) and opened the way to a rich field of research.

Probably the simplest likelihood approach to elimination of nuisance parameters is
to maximize out the nuisance parameters resulting in the profile likelihood in (2); this
can then be used as an ordinary likelihood. Many examples of misleading behavior of
the profile likelihood (Neyman and Scott, 1948; Cruddas, Cox and Reid, 1989) have given
rise to various “corrections” of the profile, which aim to account for the “error” in simply
replacing A by a point estimate. Among the advances in this area are the modified profile
likelihood (Barndorff-Nielsen 1983, 1988) and the conditional profile likelihood (Cox and
Reid, 1987). These methods were primarily developed to provide higher-order asymptotic
approximations to (conditional) sampling distributions of statistics of interest, such as the
maximum likelihood estimator or the likelihood ratio. As a by-product, these approxi-
mate distributions can be interpreted as likelihood functions for the parameter of interest
and/or used in a frequentist spirit via tail area approximations. However, use of these
methods tends to be restricted to rather special frameworks (e.g. exponential families or
transformation groups). Excellent references include Reid (1995, 1996), Fraser and Reid
(1989); see also Sweeting (1995a, b, 1996) for a Bayesian version of these approaches. A
different way to adjust the profile likelihood, based on the properties of the score function,
is developed in McCullagh and Tibshirani (1990). |

Other likelihood approaches arise when one or more components of the sufficient statis-



tics have marginal or conditional distributions which depend on 6, but not on A. In these
cases, such distributions are often used as the likelihood for 6, and are called the “marginal
likelihood” or the “conditional likelihood.” Basu (1977) gives an interesting example of
conflicting marginal and conditional likelihoods for the same problem, indicating that use

of these techniques is likely to remain somewhat arbitrary.

Marginal and conditional likelihoods are special cases of the more general partial

likelihood (Cox, 1975). If there exists a partition (y, z) of the data z, such that

f(210,A) = h(z) fi(yld, ) f2(zly,0) @

then the terms Af; in (4) or Afs in (5) are ignored, with the other factor being defined
as the partial likelihood for 6. Since the ignored term does depend on 8, there is some
loss of information. Supporters of the approach, however, suggest that one loses only
the information about 6 which is inextricably tied with the unknown parameter A\. Basu
[Ghosh (1988), p. 319] criticizes the idea of partial likelihood on the ground that it usually
cannot be interpreted in terms of sampling distributions, and one is left only with the

possibility of exploring the shape of the particular observed partial likelihood.

;From a subjective Bayesian point of view, the problem has a trivial solution: simply
integrate out the nuisance parameters and work with the marginal posterior distribution
of §. From a philosophical or foundational level, it would be difficult to add much to the
fascinating articles Basu (1975, 1977) in terms of comparison of subjective Bayesian and
likelihood methods for elimination of nuisance parameters. There is, however, considerable
resistance to general implementation of subjective Bayesian analysis, centering around the
fact that elicitation of a subjective prior distribution for multiple parameters can be quite
difficult; this is especially so for nuisance parameters, whose choice and interpretation are

often ambiguous.

Even if one is not willing to entertain subjective Bayesian analysis, we feel that use

of integrated likelihood is to be encouraged. The integration must then be with respect
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to default or noninformative priors. Qur main goal will thus be to discuss and illustrate
integrated likelihood methods based on different choices of conditional noninformative

priors for the nuisance parameters.

In Section 2, we argue in favor of the use of integrated likelihood, on the grounds of
simplicity, generality, sensitivity and precision. In Section 3, we will illustrate the uses
and interpretations of integrated likelihood in various conditional approaches to inference
ranging from the pure likelihood to the fully Bayesian viewpoints. Section 4 reviews
the various integrated likelihoods that have been considered; these primarily arise from
different definitions of conditional noninformative priors for the nuisance parameters. The

last section focuses on criticisms and limitations of integrations methods.

Throughout the paper, we will repeatedly use several examples to illustrate and com-
pare different methods. Several of these examples (Examples 4 and 7, in particular) are
simple to state but of near impossible difficulty to analyze, in the sense that default meth-
ods of any type are questionable. In these examples at least, we will thus be effectively
asking ‘what is the best method of doing the impossible?” While firm conclusions cannot
then be forthcoming, we feel that consideration of such extreme examples can greatly aid

intuition.

1.3 Some Philosophical Issues

In this section we discuss several issues that are somewhat tangential to the main

theme, but relate to overall perspective.

1.3.1 What is the Likelihood Function?

Bayarri, DeGroot, and Kadane (1988) argued that there can be no unique definition
of a “likelihood function,” rejecting as incomplete the usual (and usually vague) definitions

such as the one Savage (1976) attributes to Fisher:
“probability or density of the observation as a function of the parameter”

Such definitions give no guidance as to how to treat the value of an unobserved variable
(for example, a future observation z); should we condition on it, as we do for unknown

parameters, leading to what Bayarri et al. call the “observed” likelihood Lobs(6,2) = f(z |
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6,2)? Or should we treat it like other observations, leading to the “random variable”
likelihood L.v(0,z) = f(z,z | 6)7 They argue that likelihood-based inference will depend
on this choice, and offer examples illustrating that either choice may be the best one in

different examples.

Here, we avoid this difficulty by assuming that the problem begins with a specified

likelihood function of the form

fz,0%,)*16,))

where (as before)  is the observed value of the data vector X, and #* and A* are unobserved
variables of interest and nuisance variables, respectively, having probability distributions
as specified by f. For instance, 6* could consist of a future observation z and/or “random
effects” that are of interest. (Thus any variable with a given distribution is put to the
left of the bar, while those without given distributions are placed on the right.) Following
Butler (1988) we recommend immediate removal (by integration) of the nuisance variable

A*, passing to
F(z,6%16,)) = / F(, 6%, X*16, \)dA*; (6)

this then would be the likelihood we study, in terms of elimination of A. (Most of our
examples lack a “6*,” and so we will typically just write f(z|6,)).) This elimination of
A* by integration is noncontroversial, and should be acceptable to most statistical schools.

See Bjgrnstad (1996) for additional discussion.

Example 2 (Random Effects). Let X; be independent N(u;,1) random variables, with
unobserved means p; drawn in turn independently from the N(¢,72) distribution; we wish
to make inference about 8 = (¢, 7?), ignoring the nuisance parameter \* = y = (u1,. . ., ip)

(the random effects). Here, (6) becomes (with no 6* or A being present)

7



falt) = [ @m e (— > (-TM)
X (271'7'2)_1’/2 exp (— Z (,U_zz_;'zi)z) d,ul o d,up

2\\—P/2 (zi = £)?
(27r(1+7' ) exp( Z2(1+7'2))

x (1+ 72)_1’/2 exp ( —pls? + (z - {)2]/2(1 + 7'2)),

where Z is the sample mean and s? = 3 (z; — 7)?/p.

(7)

Again, most statistical schools would accept elimination of u by integration here; for
instance, the usual alternative of maximizing over the unobserved parameters p; would

lead instead to the profile likelihood

£(6) = sup (27) P/ exp (‘ > (_T”)> (anrty ey (‘ > %;g))

RERP i=1

L (g - ) ®)
— (47272)~P/2 . (zi =€)
(et ey (- 30 2
o« 7 Pexp (—p[s® +(z - €)’]/2(1 + %)),
which differs from L(#) by having a singularity at 7 = 0 that strongly (and wrongly)
suggests that any data support an inference that 72 ~ 0. In situations such as this
- 1t is often suggested that one use a local maximum of the likelihood. Interestingly, no

2 < 4. Even if s> > 4, the local maximum is an inconsistent

local maximum exists if s
estimator of 72 as p — oo; for instance, if 72 = 3, the local maximum will converge to 1 as
p — oo. Figure 1 indicates the considerable difference between the likelihoods; graphed,
for p=6,5> =4, and T = ¢ are L(r%) = f(z|r%,¢ = T) and L(r2,Z). Note that we have
“maximized” over { to eliminate that parameter for display purposes. Had we integrated

over ¢ in f(z|0), the difference would have been even more pronounced.

1.3.2 The Subjective Bayesian Integrated Likelihood

Since integrated likelihood methods can be viewed in a Bayesian light, it is useful

to review the purist Bayesian position. For subjective Bayesians there is no ambiguity
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concerning how to treat nuisance parameters; all inference is based on the joint probability
distribution f(z,6,A) of all parameters and variables, whether or not observed, which
can be constructed from any of the conditional data distributions along with appropriate
subjective prior distributions. In problems without nuisance parameters, for example, the
joint density is f(z,6) = f(2|6)7(6), the product of the likelihood and the prior distribution
7(0) for 0; in this setting, Bayes’ Theorem is simply the conditional probability

Figure 1. Integrated and profile likelihoods for the random effects model.
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calculation that the posterior density for 6 is

w(6le) = 7 ;((;“"'g)):((g)) s o< L(O)x(©). (9)

In the presence of a nuisance parameter A, a subjective Bayesian will base the analysis
on a full prior 72(6,)), which can also be written as B(6,)) = wB(0)7B()\|6), where

78(6) and 7B()|9) are the marginal and conditional prior densities of § and A (given ),

respectively. The subjective Bayesian still seeks 7(6|z), and would accept an integrated
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likelihood L(8) if it satisfied 7(6]z) o< L(8)7B(6). It is easy to see that the only L(#) which

satisfies this relationship is given (up to a multiplicative constant) by
L3(6) = / F(@]6, \)rB(A6)d. (10)

This thus defines the unique integrated likelihood that would be acceptable to a subjective

Bayesian.

1.3.3 Why Eliminate Nuisance Parameters?

First, an explanation of the question: while, almost by definition, final inference about
f needs to be free of A, it is not clear that one must pass through a likelihood function,
L(6), that is free of A. Most non-Bayesian analyses pass through some such intermediary,
but Bayesian analyses need not. For instance, many Bayesian analyses today proceed by
Monte Carlo generation of a sequence of random variables (6, X)), ... ((™ A(™)) from
the full posterior distribution 7(8, A|z); inferences concerning 6 then follow from direct use
of the simulated values 81, ...,8("™) (e.g., the usual estimate of § would be the average
of these simulated values). There is then no apparent need to explicitly consider an L(§)
that is free of A. (Indeed, it is even common for Bayesians to introduce artificial nuisance

parameters to simplify the Monte Carlo process.)
There are, nevertheless, several uses of L() in Bayesian analysis, which we list here.

(i) Scientific reporting: It is usually considered good form to separately report L(6) and
7(8]z) (often graphically) in order to indicate the effect of the prior distribution. This also

allows others to utilize their own prior distributions for 6.

(ii) Sensitivity analysis: It is often important to study sensitivity to 7(6), and having
L(0) available for this purpose is valuable. (Of course, sensitivity to m(A|f) is also a

potential concern, but frequently this is of less importance.)

(iii) Elicitation cost: It is typically very expensive (in terms of time and effort) to obtain
subjective prior distributions. Under the frequent cost limitations with which we operate,
elicitation efforts may have to be limited. It is often cost effective to eliminate nuisance
parameters in a default fashion, resulting in L(#), and concentrate subjective elicitation

efforts on 7(6).
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(iv) Objectivity: Although most statisticians are justifiably skeptical of the possibility
of truly “objective” analysis, there is an undeniable need, in some applications, for an

analysis which appears objective. Using L(6), with default 7(A|#), can satisfy this need.

(v) Combining likelihoods: If one obtains information about 6 from different independent
sources, and the information arrives as likelihoods, L;(#), then one can summarize the
information by H L;(0). This is the basis of many important meta-analysis techniques.
One cannot, of (;ourse, simply multiply posteriors in this way. (But see Section 5.2 for

cautions concerning multiplication of likelihoods.)

(iv) Improper priors: Focusing on integrated likelihood seems to reduce some of the

dangers of using improper priors. This is illustrated in Section 3.2.
2. ADVANTAGES OF INTEGRATED LIKELTHOOD

Once one departs from the pure subjective Bayesian position, one cannot argue for
integrated likelihood solely on grounds of rationality or coherency. Here we present a
mix of pragmatic and foundational arguments in support of integrated likelihood. Other

advantages will be discussed as we proceed.
2.1 Integration Versus Maximization

Most of the non-integration methods are based on some type of maximization over
the nuisance parameter. This can be very misleading if the likelihood has a sharp “ridge”,
in that the likelihood along this ridge (which would typically be that obtained by maxi-

mization) may be quite atypical of the likelihood elsewhere. Here is a simple example.

Example 3. Suppose Xj,...,X, arei.i.d. N(6,1) random variables, while Y is (inde-

pendently) N(\, exp{—n6?}). Here § and ) are unknown, with § being the parameter of

interest. The joint density for X = (Xy,...,X,) and Y is
1o 2 —\)2

f(z,y|0, ) = (27r)_"/2 exp (— 3 Z(m, — 9)2) (2me™ ™0 )_1/2 exp (— M)

2e—n02
=1

_ —(n 2 n._ — (y - )‘)2
= (271') ( +1)/ eXp(—§($2 — 22130) — W), (11)

where T is the sample mean. For n = 1 and the data z = 1,y = 0, the overall likelihood

L(8,)\) = f(1,0]6,A) is graphed in Figure 2 for § > 0. Note the sharp ridge.
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The profile likelihood is easy to compute, since the conditional mle for A is just o =v.

Thus
L(6) = f(=z,y16,%6)

o exp(nTh),

(12)

ignoring multiplicative constants that do not involve 6. Note that this is a very strange

“likelihood” rapidly growing to infinity as § — oo or § — —o0, depending on the sign of z.

Figure 2. The likelihood surface for Example 3, when n =1,z =1, and y = 0.
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In contrast, the Uniform Integrated Likelihood is

LV(9) = / F(z, 16, \)da

ox exp(—5 (%~ 0)°),

(13)

which is clearly proportional to a N(%,1/n) distribution, just as if ¥ with its entirely
unknown mean A had not been observed. These two likelihoods would, of course, give

completely different impressions as to the location of 6.

The integrated likelihood answer can also be produced by a classical conditionalist.
One can obtain the marginal likelihood for X by integrating out Y'; the answer is clearly
LY(#). There would thus be little disagreement as to the “correct” answer here, but the

example does serve to indicate the danger inherent in maximization.
2.2 Accounting for Nuisance Parameter Uncertainty

Related to the discussion in the previous section is that replacing A by its conditional
mle, 5\.9, would appear to be dangerous in that it ignores the uncertainty in A. Example
1 demonstrates a very mild version of this problem; the profile likelihood has one more
“degree of freedom” than it should, given the replacement of p by z. We will mention a
more serious standard example of this in Section 3.4, but do not dwell on the issue because
it is a well-recognized problem. Indeed, many of the modifications to profile likelihood that
have been advanced have, as one of their primary goals, adjustments to account for nuisance
parameter uncertainty. It is important to emphasize that such modifications can be crucial,
especially because “raw” likelihood procedures will typically be anti-conservative, erring
on the side of suggesting more accuracy than is actually warranted. Among the many
disturbing examples of this is the exponential regression model (see Ye and Berger, 1991,

and the references therein for discussion).

In contrast, integration methods automatically incorporate nuisance parameter un-
certainty, in the sense that an integrated likelihood is an average over all the possible
conditional likelihoods given the nuisance parameter. We do not claim that (default)
integration methods are guaranteed to incorporate nuisance parameter uncertainty in a
satisfactory way, but they certainly appear more naturally capable of doing so. As a final

comment, note that if the conditional likelihoods do not vary significantly as the nuisance
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parameter A changes, then the integrated likelihoods will be very insensitive to choice of

m(Al9).

2.3 Simplicity and Generality

In comparing the simplicity of integration versus likelihood methods, it is difficult to
draw firm conclusions because of the wide range of possible methods under each label.
For instance, the profile likelihood in (2) is very simple to use while, on the integration
side, the simplest is the uniform-integrated likelihood in (1). The various adjusted profile
likelihoods and marginal likelihoods form an array of likelihood methods of modest to
great complexity. Correspondingly, “optimal” integrated likelihoods can require difficult
developments of noninformative priors. Computational considerations also come into play,
although the historical wisdom that Bayesian computations are harder has today been

reversed by the advent of MCMC computational techniques.

The key to comparison is judging the quality of the answers relative to the simplicity
of the method. For instance, comparison at the simplest level, profile versus uniform-
integrated likelihood, convinces many that the latter is considerably more effective in
producing good answers in practice. Not many comparisons have been done at higher

levels of complexity (Liseo (1993) and Reid (1996) are exceptions).

A few general observations are worth mentioning. First, integration methods are
all based on the same basic idea; the only difference is in the prior distribution used
to perform the integration. In contrast, the various profile, conditional, and marginal
likelihood approaches are based on very different rationales, and obtaining a feel for when

each approach should be applied is not easy.

Second, the default Bayesian approaches have lately been used, with apparently great
success, on a very large variety of complex applied problems. There are fewer successes
in complex applied problems for the likelihood methods. This could, of course, be due to

other factors, but is not irrelevant in terms of judging effectiveness versus difficulty.

A second relevant issue is generality of application. Likelihood methods are well known
to have difficulties with non-regular problems, such as problems where the parameter is

restricted to a certain range and the sample size is modest (so that likelihood surfaces can
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have strange shapes). Even worse is when the range restriction is affected by the data
(e.g., a model where z; > 6,7 = 1,...,n) in which case standard asymptotics do not apply

(Barndorft-Nielsen, 1991).

Another very difficult class of problems for likelihood methods is the Gleser-Hwang
class, discussed in Section 5.1. A third difficult class is that consisting of problems in-
volving discrete data and especially, discrete parameters. These are “difficult” because
the discreteness very much reduces the possibility of developing reasonable “adjustments”

when basic methods are unreasonable. Here is a classic illustration.

Example 4 (Binomial (N,p)). Consider k independent success counts s = (s1,..., k)
from a binomial distribution with unknown parameters (IV,p), and assume that N is
the parameter of interest with p being the nuisance parameter. This problem has been
discussed in Draper and Guttman (1971), Carroll and Lombard (1985), Kahn (1987),
Raftery (1988), Aitkin and Stasinopoulas (1989), Lavine and Wasseman (1992) and the
references therein. Most of the points we make have already been made, in some form, in

these articles.

The likelihood function is

k
N
L(N,p) = [H (3 )] TA-p™ T, 0<p<1l, N2 smax,

j=1

k .
where T = ) s; and smax = max s;. This likelihood is difficult to deal with by likelihood
j=1 I :

methods. For instance, the profile likelihood is

- [T o

j=1
and a “natural” conditional likelihood, the conditional distribution of (s1,...,sk) given T

and N, is

0= [TTE)). w2 o -

j=1

For the data set s = (16,18,22, 25, 27), Figure 3 gives the graphs of L(V) and LE(N).

These are nearly constant over a huge range of N, and are clearly relatively useless for
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inference. Such behavior of L(N) and LE(N) is typical for this problem. (Indeed, LE(N)

is often an increasing function of N.)

The uniform integrated likelihood is
1
@)= [ 1V, pip
0

N e

i=1

This is also graphed in Figure 3 and appears to be much more useful than either f}(N ) or

LE(N). There is more to be said here, and we will return to this example several times.

Figure 3. Likelihoods for N : L is the profile; LC is the conditional;

LY is the uniform-integrated; and L7 is the Jeffreys-integrated.

N Lo)
L(N)
0.8 |
0.6
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2.4 Sensitivity Analysis

One of the considerable strengths of using integrated likelihood is that one has a
readily available sensitivity analysis: simply vary m(A|f), and see how L*(6) varies. This
can be crucial in evaluating the robustness of the answer. Also, if considerable sensitivity is
discovered, it is often possible to determine which features of 7(A|0) are especially crucial,
enabling either subjective elicitation of these features or the identification of additional

data that could be collected to reduce sensitivity.

Example 4 (continued). Use of LY(6) corresponds to choice of a U(0, 1) prior distribution
for p. Another common noninformative prior is the Jeffreys prior, m(p) o p12(1—p)1/2,
which will yield an integrated likelihood we denote by L7(6). More generally, one could
consider Beta (a, a) prior densities for p; note that a =1 and a = % yield the uniform and
Jeffreys priors, respectively. Calculation yields, for the integrated likelihood with a Beta

(a, a) prior for p,

s o[l () TED W G

where ¢, is the prior normalization constant ¢, = I'(2a)/(I'(a))?.

We also graph LY(N) = L'/%(N) in Figure 3; L*(N) for 1 < a < 1 can be shown
to lie between LY(N) and LY(N) = L(NN), so that sensitivity can be effectively judged

simply by comparing LY and LY. A useful general result here is that

LY(N) (1_ T+(.7))1/2. ™
LI(N) kN +1 EN + 1

1/2
(1 — ZLNZ> . % (in the example),

so that the main difference is the more quickly decreasing tail of LY. It is worth em-

(18)

1%

phasizing that all these reasonable “default” integrated likelihoods have tails that are
considerably sharper than that of L(N) (or LE(NN)), indicating that the extremely flat tail
of L(N) may be due to a “ridge” effect.

We later discuss the question of how to use integrated likelihoods. For now, we simply
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report the modes of LY(#) and L7(6) for the data s1 = (16,18,22,25,27), along with
those of L(#) and LC€(6). Table 1 gives these modes along with the corresponding modes
for two other data sets, s, = (16,18,22,25,28) and s3 = (16,18,22,25,26). (The reason
for considering such perturbations is that small errors in collection of count data such as

these are almost inevitable, and one hopes the answer is not overly sensitive to such errors.)

Table 1. Modes of Likelihoods for N

Likelihood Type Data Set

51 32 33
Profile (L(IN)) 99 191 69
Conditional (LE(N)) 00 00 00
Uniform-Integrated (LY(NV)) 51 57 46
Jeffreys-Integrated (L7(IN)) 54 62 49

While modes alone are surely insufficient as a summary of likelihoods, the stability of
those for the integrated likelihoods, over both change in the prior and small perturbations
in the data, is quite appealing. For considerably more complete discussion of sensitivity of
integrated likelihood in this problem, see Lavine and Wasserman (1992). We also should
mention that sensitivity analysis of other types is certainly possible; see Olkin, Petkau,

and Zidek (1981) for an illustration.

3. INTERPRETATION AND USE OF INTEGRATED LIKELIHOOD

Since we are proposing use of integrated likelihood in generﬁl, and not only within the
Bayesian paradigm, we need to discuss how it is to be interpreted and used. We discuss, in
order, its use in likelihood analysis, Bayesian analysis, and empirical Bayes analysis. Note
that, of course, one might simply report the entire integrated likelihood function, leaving

its interpretation and use to the consumer.

3.1 Use in Likelihood Analysis

Those likelihood methods which operate solely on the given L(6) can also be used with
an integrated likelihood. Examples of such methods are (i) using the mode, 8, of L(9) as
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the estimate of §; and (ii) using (if @ is a p-dimensional vector)
C={6: LO)/LEG) > 2 log (x2(1 - a))}

as a 100(1 — @)% confidence set for 8, where x2(1 — «) is the (1 — a)th quartile of the
chi-squared distribution with p degrees of freedom. The arguments which justify such
methods for profile or modified profile likelihoods will typically also apply to integrated
likelihoods (and can apply in more generality; see Sweeting, 1995a, 1995b). Example 4 in
Section 2.4 was one illustration. The following example, which will also be used later for

other purposes, is another standard example.

Example 5. Suppose that, independently fori = 1,...,p, X; ~ N(pi,1). The parameter

of interest is

The usual choice of nuisance parameter here is A = y/|ul, i.e., the “direction” of g in RP.
Note that A can also be viewed as a point on the surface of the unit ball in RP; hence it
is natural to assign A the uniform prior on this surface. The resulting uniform-integrated

likelihood is (see Chang and Eaves, 1990, or Berger, Phillippe and Robert, 1996)
LU(G) X 9—(1)—2)/4 6—0/2 I(p—2)/2 (\/§|$|)7 (19)

P
where |z| = (3 2?)!/? and I, is the modified Bessel function of the first type and order
i=1

V.

For large p, and assuming that 8/p stays bounded, it can be shown that the mode of
(19) is

2 g2 — (p—1)— ((?f';) - 1)_ . (20)

This is a sensible estimate. For instance, since |z|%/p — E|X|*/p=6/p+1 as p — oo by
the law of large numbers, it is immediate that 6/p — 8/p. Thus 6 /p is consistent for 8/p.

In contrast, the profile likelihood does not yield a consistent estimator. Indeed, the

profile likelihood for this problem can easily be seen to be

B(8) x e~Uel=VO? (21)
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which has mode § = |z|2. Clearly 6/p = |z|2/p — 6/p + 1, establishing the inconsistency.

(There do exist “classical” methods which would yield reasonable answers. One such is to
P

look at the marginal distribution of Y X2, which is a noncentral chi-square distribution

=1
with parameter §; the resulting likelihood, though complicated, will behave reasonably.)

3.2 Use in Bayesian Analysis

It is natural to seek to use an integrated likelihood, L(#), via the Bayesian approach
of choosing a prior distribution, n(8), for the parameter of interest and obtaining the

posterior distribution

w(6|z) o« L(8)x(0).

This is completely legitimate when 7(A|f) is a proper distribution, as observed in Section
1.3.2. When 7(A|6) is improper, however, this can be questioned, in the sense that certain
incoherencies such as marginalization paradoxes (Dawid, Stone, and Zidek, 1973) could
creep in. But the practical effect of such incoherencies appears to be minor, and they can
be minimized by appropriate choice of m(A|0) (and #(6)), such as the “reference prior” (see

Section 4.4).

In Section 1.3.3, we listed some of the ways in which L(6) can be of direct value to
a Bayesian. There is an additional, rather subtle but important, reason for Bayesians to
consider approaching the problem through integrated likelihood: one is considerably less

likely to make a damaging mistake through use of improper prior distributions.

Example 5 (continued). Bayesians need not think in terms of parameters of interest
and nuisance parameters. Indeed, the common “naive” default Bayesian approach to this
problem would be to consider the noninformative prior m(g) =1 for g = (u,...,up) The

resulting posterior distribution, given z = (z1,...,2p), is
)
(k) = n# e { = 3 (u— a2}, (22)
=1

P

If, now, one is interested in § = ) p?, one can simply determine the posterior distribution
=1

7(6|z) for 8, which, from (22), is easily seen to be a noncentral chi-square distribution with
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P
p degrees of freedom and noncentrality parameter |z|2 = ) z2.
=1

This latter posterior for 8 is “bad”. For instance, a common estimate of 6 is the

posterior mean, which here would be § = |z|* + p. This is badly inconsistent as p — oo, in

2
the sense that 6/p = |z|2/p+1 — 8/p + 2. The posterior median and posterior mode also

exhibit this behavior.

Thinking in terms of # and the nuisance parameters A in Section 3.1 avoided this
problem. It was “obvious” to use the uniform distribution on ) to integrate out the
nuisance parameters, and the ensuing integrated likelihood in (19) will work well with any
sensible 7(6). The “error” in use of 7(y4) = 1 above can be seen by changing variables to

(8,X). Then n(g) =1 is transformed into
(6, )) = 6=(P=2/2 1()|9),

where 7(A|6) is the uniform distribution on the surface of the unit ball, as before. Thus,
m(g) = 1 has unwittingly introduced a drastic and unreasonable prior distribution on 6.
Separately considering A and 6, through integrated likelihood, can help to avoid this type
of error. (It should be noted that sophisticated default Bayesian approaches, such as the
reference prior approach, automatically avoid this type of error; hence formal consideration

of integrated likelihood is not strictly necessary if reference priors are employed.)

We have not discussed which priors m(#) should be used with L(6). Subjective choices
are, of course, to be encouraged. Default choices and examples of the possible importance

of the choice are discussed in Section 5.1.

3.3 Use in Empirical Bayes Analysis

In a variety of situations, including empirical Bayes analysis, integrated likelihood is
used as a tool to estimate the nuisance parameters, with the estimates then being plugged
back into the likelihood. This also goes under the name “Type II Maximum Likelihood”

(see Good, 1983). We content ourselves here with an example.

Example 2 (continued). Suppose now that § = g = (u,...,p,) is of interest, with

A = (&,7%) being the nuisance parameters. The joint “likelihood” of all parameters is
P

L6, o exp{ = (i = 2} e {—; m-epfet), @)

=1
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although note that, for § = g, this includes the given prior distribution, n(g|¢,7%). In any
case, to eliminate £ and 72 the standard method is to form the integrated likelihood (in
(M)

L)) = L(¢,7%) = /L(G, A) df

2\—p/2 —P[32 + (T - 5)2]
X (1+T) / exp{ 2(1_|_7.2) }7

estimate (£,72) by the mode
=%, #? =max{0,s*> —1},

and plug back into (23). After simplifying (23), the result is
1 p
L(6) o exp{~5- D (ui—ma)’}, (24)
=1

where v = 72/(1 + 7?) and m; = vz; + (1 — v)Z. This is actually typically interpreted

directly as the posterior distribution of 4.

Bayesians will argue that a superior approach is to obtain an integrated likelihood

directly, via
L(§) = /L(H, Ar(A)dA. (25)

(Note that it would be incorrect to consider w(A|f) here, since L(§,A) already contains
m(6|\); Bayesian reasoning thus allows only consideration of a marginal prior, 7(A), at
this point.) A common choice for n(}) is () = 7(£,72) = 1 (although Berger and
Strawderman, 1996, suggest that m(£,72) = (1+72)7! is better). In a sense, the superiority
of (25) over (24) is almost obvious, since (e.g.) if 72 = 0, then v = 0 and m; = 7, so that
(24) would imply that all y; = T with absolute certainty. (This is another example of the

potential inadequacy of failing to incorporate the uncertainty in nuisance parameters.)

Although the direct integrated likelihood in (25) is arguably superior to (24), it is
worth noting that estimation of A in L(8, ) by Type II MLE is much better than would
be use of the direct profile likelihood. Indeed, the profile likelihood can be easily seen to
be

£6) (i(m - ) - {- S 5P 2. (26)

=1 =1
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It is hard to know what to do with 13(9); the first term has a singularity along the line

g =(c,c,...,c), and it is far from clear which, if any, of the other modes are reasonable.

4. VERSIONS OF INTEGRATED LIKELIHOOD

As mentioned in the introduction, any conditional prior density 7(A|6) can be used
to define an integrated likelihood. In this section, we review the more common choices of

default or noninformative conditional priors, and discuss their strengths and weaknesses.

4.1 Proper Conditional Priors

When 7(A|6) is naturally a proper conditional density, certain of the concerns with
interpreting and using the resulting integrated likelihood disappear. In particular, the
resulting integrated likelihood can unambiguosly be interpreted as a likelihood, in the
sense of being combinable with a (proper) prior density for 4 to produce a true posterior.
Example 5 provides an illustration of this, with 7(A|f) - the uniform distribution on the
sphere of rotations - clearly being proper. Example 4 is another illustration, with either

the Jeffreys or the uniform prior on p being proper.

Today it is popular for computational reasons to use “vague” proper priors (often
“vague” conjugate priors). Unfortunately, the use of such does not really provide protection
against the concerns that arise with use of improper conditional priors; if a difficulty
would arise in using an improper conditional prior, the same difficulty would manifest

itself through great sensitivity to the degree of “vagueness” chosen.

4.2  Uniform Conditional Prior

Choice of m(A|#) = 1 has already been mentioned in the introductiuon and in several
of the examples. It is still the most commonly used default conditional prior and is an
attractive choice when nothing else is available. (When A is a vector, many even prefer the
uniform prior to the Jeffreys prior because of concerns with the behavior of the Jeffreys
prior in higher dimensions). There are, however, well-documented difficulties with the
uniform prior, perhaps the most well known being its lack of invariance to reparametriza-
tion. (Using the uniform prior for A will yield a different integrated likelihood than using
the uniform prior for A* = logA). While this tends to not be a serious issue in practice

(Laplace (1812) suggested that parametrizations are typically chosen so that a uniform
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prior is reasonable), it does suggest that a uniform prior cannot be the final answer.

A more serious potential problem with the uniform conditional prior is that the re-

sulting integrated likelihood may not exist. Here is a simple example.

Example 6. Suppose X; and X, are independent N(6,0?), and the uniform prior

m(0%|0) = 1 is used for the nuisance parameter o2. Then

LV (6) = /Ooo o o {_% (21 — 6)? + (22 — 6)°] } do” = oo.

In contrast, use of the usual conditional prior 7(c2|8) = 1/0? (see Section 4.4) would yield
1

(21— 6)* + (22 — 6)?]

Interestingly, this latter integrated likelihood coincides with the profile likelihood and with

LE(9) =

(27)

the marginal likelihood.

4.3 Right Haar Measure

If f(z|0,)) is invariant with respect to an amenable group whose action on the pa-
rameter space leaves 6 unchanged, then the compelling choice for 7(A|f) is the induced
right invariant Haar density for A (see Berger (1985) and Eaton (1989) for definitions).
Virtually all default Bayesian methods recommend this conditional prior, as do various

“structural” and even frequentist approaches.

Example 1 (continued). The model is invariant under a location shift, and the right

invariant Haar density for 6 is the uniform density 7(6]o?) = 1.

Example 5 (continued). The model is invariant under rotations of z and g, and the
rotation group leaves § = |y|?> unchanged. The right invariant Haar density (actually,
the Haar density here) induced on A = g/|g| is the uniform density on the unit sphere

discussed in Section 3.1.

For formal discussion and other examples of use of the right Haar density as the
conditional prior, see Chang and Eaves (1990) and Datta and Ghosh (1995a). The chief
limitation of this approach is that the presence of suitable invariance is relatively rare. A
secondary limitation is that, if the group is not amenable, use of the resulting right Haar

density can be problematical.
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4.4 Conditional Reference Integrated Likelihood

The reference prior algorithm (Bernardo, 1979, Berger and Bernardo, 1989, 1992;
Bernardo and Smith, 1994) is a quite general and powerful tool for obtaining “automatic”
priors to be used in Bayesian analysis. The reference prior is typically the same as the
Jeffreys prior in the one dimensional case; when the parameter space is multivariate, the
reference algorithm takes into account the order of inferential importance of the parame-
ters, by partitioning the parameter vector w = (wy,ws,...,wp) into several blocks. Berger
and Bernardo suggest using the one-at-time reference prior which corresponds to parti-

tioning w into p one-dimensional blocks.

Since the reference prior depends on which parameters are of primary interest, it is
usually different from the Jeffreys prior. In numerous multivariate examples, it has been
shown to perform considerably better than the Jeffreys prior. Also, it seems to typically
yield procedures with excellent frequentist properties (Ghosh and Mukerjee, 1992; Liseo,
1993; Sun, 1994; Datta and Ghosh, 1995a,b).

In the standard Bayesian approach, the reference prior is used to produce the joint
posterior distribution for (6, A); then A is integrated out to obtain the marginal posterior
for 8. In this approach, there is no need to develop the notion of a likelihood for 6.
Indeed, any attempt to do so directly, via an expression such as (10), is made difficult
by the typical impropriety of reference priors; one cannot directly define conditional and

marginal distributions from an improper distribution.

Therefore, to produce a reference integrated likelihood, we need to slightly modify the
reference prior algorithm. In this paper we only discuss the two groups case, where the
parameter vector is split in the parameters of interest, 6, and the nuisance parameters, A;
extensions to several groups is immediate. For simplicity of notation, we will assume that

6 and )\ are scalars.

Under certain regularity conditions (see for example Bernardo and Smith, 1994), basi-
cally the existence of a consistent estimator of the parameters and its asymptotic normality,

the reference prior for A, when 6 is known, is defined to be

7*(A|8) o v/T22(8, ), (28)
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where I53(6, A) is the lower right corner of the expected Fisher information matrix. Since
direct use of this, as in (10), to obtain an integrated likelihood is problematical due to
its typical impropriety (Basu, 1977), we employ the idea of the Berger and Bernardo
(1992) reference prior algorithm and consider a sequence of nested subsets of 2 = © x A,
Q4,Qs,... converging to  and over which (28) can be normalized; then the conditional
reference prior, and associated integrated likelihood, will be defined as the appropriate

limit. The precise definition is as follows.

e For each 2,,,m = 1,2,..., define the -section

Am(8) = {\: (8,)) € U}

e Define the conditional reference prior with the parameter space restricted to £2,, as
Tm(A|0) = 7*(A|6)12,.(6)(8; \) Kim (6), (29)

where

K71(8) = / ¥ (M8)dA.
Am(6)

Also, define the truncated integrated likelihood

In@) = [ .

) F(z]6, \)r* (A|6) K m (6)dA. (30)

e Define the conditional reference integrated likelihood as

L6) = Jim 720, (31)

where 6 is any point in the interior of ©, assuming the limit exists and is unique up

to a proportionality constant.

It is typically convenient to write expressions in terms of the conditional reference

prior, defined as

©(A18) = h(6)7*(A[6), (32)
where Kn(0)
6) = Jim (33)
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assuming the limit is unique up to a proportionality constant for any 6y in the interior of

O. It is easy to see that, then
L76) = [ Jal6, N Ol (34)
A
which is in the “standard” form of an integrated likelihood.

This definition of the conditional reference prior can be shown to be consistent with
the definition of the joint reference prior 7%(6, X) in Berger and Bernardo (1992), providing

the joint reference prior exists and (33) holds, in the sense that then
(9, 1) = =*(\|8)x*(6) (35)

for some function 7#(6). We will then define 7%(8) to be the marginal reference prior for
6. The conditional reference prior can be shown to share many of the desirable properties
of the joint reference prior, such as invariance to reparametrization of the nuisance param-
eters. Note that this conditional reference prior was also considered in Sun and Berger

(1997), although for different purposes.

Example 7 (The Coefficient of Variation). Let X1, Xs,..., X, be n iid random variables
with distribution N(u, 0?). The parameter of interest is the coefficient of variation § = o /u

and A = o is the nuisance parameter. The expected Fisher information matrix, in the (6, \)

16,)) = ( v ) (36)

parametrization, is

1 20%1
63 "XZg2

Following the above algorithm, we obtain

. 1 /262 +1

A natural sequence of compact sets in the (u, o) parametrization is {Q,,,m € N}, where

(37)

1
Qm:{(u,a):—am<u<am,b—<a<bm}

and an,, and b, are increasing sequences which diverge to infinity. Then the resulting
A (0) sequence is
(1/bm, bm) |6] > Z—':'
Am(6) = § (1/bm, Blam) 5= < 16] < 2.

0 6] < —2

ambm
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Therefore

24/ 22 log b 6] > 2=
-1 _
K, = 2241 Jog(|6lambm) 5= < |6] < L=
1
0 16} < -

and

. En(6) 7
RO = Jim 0y S Va1

Thus the conditional reference prior and integrated likelihood are 7#(\|6) = 1/A and

re) = [ ; (218, \)dA

0

n 72 ® a1 n_, z \?
ocexp{—ﬁ(l—ﬁ)}/; z exp{—ED (z—m> dz.

where T is the sample mean and D? = ¥ z? /n. (Note, also, that the problem is invariant

(38)

to scale changes, and w(A|§) = 1/X is the resulting right invariant Haar density.) This

example will be further discussed in Section 5.1.

Example 5 (continued). When § = Y % u? is the parameter of interest, then the con-
ditional reference prior for the nuisance parameters A is simply the uniform prior on the

surface of the unit ball, as discussed in Section 3.1.

Example 6 (continued). Unlike the conditional uniform prior, the conditional reference
prior for this model, namely m®(\|f) o 1/), yielded the finite integrated likelihood in
(27). Of course, with three or more observations, LY(8) would also be finite here, but the
example is indicative of the commonly observed phenomenon that reference priors virtually

always yield finite integrated likelihoods, while the uniform prior may not.
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4.5 Other Integrated Likelihoods

In one sense, there are as many integrated likelihoods as there are priors. For instance,
any noninformative prior method which yields a noninformative prior, 7V (6, ), could be

converted into an integrated likelihood method by defining
L(6) « / L(6,\) 7N (8, \)d. (39)

Since 7N (6, ) is viewed as a prior distribution on both 6 and A, however, this is not
formally in the spirit of (3); equation (39) would actually yield the proposed marginal

posterior distribution for 6.

With reference noninformative priors we had a ready solution to this dilemma, since
the reference prior algorithm itself suggested a suitable 7%(\|f) for use in (3). Whether
other noninformative prior methods can be so modified to produce an integrated likelihood
is unclear. We illustrate the possibility by considering how to modify the Jeffreys prior
approach to yield an integrated likelihood.

The Jeffreys prior for (8, A) is

77(6,)) ox \/det(I(6, X)),

where I(6, ) is the expected Fisher information matrix. To obtain a reasonable 77()\|9),
perhaps the most natural option is to simply treat # as given, and derive the Jeflreys prior

for A with 0 given. It is easy to see that the result would be

W*()\Ie) [0 8 vdet(I22(0,)\)), (40)

where I53(6,)) is the corner of I(,)) corresponding to the information about A. This,
however, also has ambiguities. In Example 7, for instance, we saw from (37) that 7*()|6) oc
A~14/2 ¥ 6-2 but, since 6 is viewed as given, the factor v/2 + =2 is just a proportionality

constant which can be ignored.

The net result of this reasoning suggests that the correct definition of 77(\|6) is as
in (40), but ignoring any multiplicative factors which only involve 6. Thus, in Example 7,

we would obtain 77(A|#) = 1/X which is the same as 7%()|f). We have not explored the
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quality of integrated likelihoods based on m7(\|6), but suspect that they would typically

be satisfactory.
5. LIMITATIONS OF INTEGRATED LIKELIHOOD
5.1 The Posterior Distribution may be needed

As in the univariate case without nuisance parameters, the integrated likelihood function
contains the information provided by the data (filtered by the conditional prior on A)
and often can be directly used for inferential purposes. In some cases, however, L*(6)
needs to be augmented by a prior distribution for 8 (possibly noninformative), yielding a
posterior distribution for 8, before it can be effectively utilized. (We are envisaging that
the posterior distribution would be utilized in ordinary Bayesian ways, to construct error

estimates, credible sets, etc..)

Example 4 (continued). In Section 2.4, we utilized LY(N) and L7(N) only to the extent
of determining their modes, for use as an estimate of N. How can we do more, e.g.,

determine the accuracy of the estimate?

Classical approaches have not made much headway with the problem. And the “stan-
dard” noninformative prior Bayesian approach also fails. The standard noninformative
prior for N would be #(N) = 1. But L%(N) behaves like ¢cN™° for large N (see Kahn,
1987), and thus, for large N, the resulting posterior would also behave like cN~%, which is
not finitely summable for a < 1. Thus, the posterior will fail to be proper, and Bayesian
analysis cannot succeed. (In a sense, the difficulty here is that sophisticated noninforma-
tive prior methodology does not really exist for discrete IV; see the next example for an

illustration of what such methodology can do for a continuous parameter.)

Subjective Bayesians would argue that it is clearly imperative to introduce proper
subjective prior distributions here, and it is hard to disagree. This could be done either
by keeping the (vague) 7(N) = 1, but introducing a Beta (a, b) prior with a > 1 (in which
case Kahn, 1987, can be used to show that the posterior is proper), or by choosing an

appropriately decreasing m(N).

One could still, however, argue for the benefits of having a default or conventional

analysis available for the problem. To go along with the default LY(N) or L7(N) (see
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(16) and (17)), one might consider, as default priors, either 71 (N) = 1/N (Raftery, 1988;
Moreno and Girén, 1995; de Alba and Mendoza, 1996) or the Rissanen (1983) prior

kn
ma(N) e [[ (og (),

where log!®(N) = N, log®™(N) = log (N), log®(N) = loglogN,..., and ky is the
largest integer such that log(kN )(N ) > 1. This latter prior is, in some sense, the vaguest
possible proper prior. Both 7; and 73 can easily be shown to yield proper posteriors, when
paired with LY(N) or LY(N). Figure 4 shows the four resulting posterior distributions for
the data s = (16,18, 22,25, 27).

Figure 4. Posterior distributions proportional to

LY(N)n1(N), LY(N)r (N), LY(N)r2(N), and LY (N)my(N).

0.02 —

: (a) = M (N)LJ (N)

0.0175 (d) (b) = m(N)LY (V)

(¢) = m(N)LI(N)

0.015 | (d) = mo(N)LY(N)
0.0125
0.01
0.0075
0.005
0.0025

0

Being that these are proper posteriors, one can easily provide inferential conclusions.
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For instance, the quartiles of the four posteriors are given in Table 2. (Providing quartiles
is more reasonable than providing moments when, as here, there is a large, and uncertain,
tail to the distributions.) Compare this with the much more limited (and questionable)
inferences provided in Table 1. While the answers in Table 2 vary enough that a subjective
Bayesian analysis might be deemed by many to be necessary, a case could also be made

for choosing, as a conventional analysis, the LY, or L=, priors.

Table 2. Quartiles of the posterior distributions for N.

Prior 1st Quartile Median Third Quartile
LY(N) 71 (N) 51 80 158
L7(N) m1(N) 59 112 288
LY(N) m3(N) 44 63 106
LI(N) my(N) 47 74 152

The Gleser-Hwang Class

Example 4 is a rather special situation, because the parameter is discrete. However,
similar phenomena occur for a large class of problems, which includes Fieller’s problem,
errors-in-variables models, and calibration models. We begin discussion of this class by
presenting an example, and then discuss the characterization of the class given by Gleser

and Hwang (1987).

Example 7 (continued). The use of the conditional reference prior, 7(A|6) o 1/, for the
nuisance parameter A = o in the coefficient of variation problem leads to the integrated
likelihood (38). It can be easily seen that this likelihood does not go to zero as |6| goes to
infinity, making direct inferential use of L#(9) difficult. To progress, one can bring in the

marginal reference prior

7rR(

1
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This results in the (reference) posterior distribution

Boe) o - e { - - T [Tty {2 _zy
s (9|w)oc|6|\/mexp 262(1 D2) i 2" exp 2D 2= T3g dz.

(42)
which, interestingly, is proper, and hence can be utilized for inference. This is an example
of the rather amazing property of reference (and Jeffreys) priors that they virtually always

seem to yield proper posterior distributions.

Of course, one might object to use of (42) for inference, either because a Bayesian
analysis is not wanted, or because the introduction of the reference prior seems rather
arbitrary. Indeed, it is difficult to come up with auxiliary supporting arguments for use of
the reference prior here. For instance, the resulting Bayesian inferences will often not have
particularly good frequentist properties, which is one of the commonly used arguments in

support of reference priors.

It is important, however, to place matters in perspective. For this situation, there
simply are no methods of “objective” inference that will be viewed as broadly satisfactory.

Consider likelihood methods, for instance. The proﬁle likelihood for € can be shown to be
n n 2 2
- D
L eml- gl e { o (aa(e6) - D7),

where g(z,0) = —% + (sgnf)\/Z> +4D2%602. Tt is easy to see that, as |§] — oo, this ap-
proaches a positive constant. The correction factor for the profile likelihood given by the

Cox-Reid (1987) method (see the Appendix) yields the conditional profile likelihood
6|(Z sgnb + V/z2 + 4D%62)
V62 + 1/2\/492D4 + z2(T sgnb + /72 + 4D262)?

It is also easy to see that this is asymptotically constant.

£(8) « (

L(9) L(#). (44)

The similarities between the three different likelihoods (LE(6), L(6), and LC(6)) are

better appreciated in the special case where T = 0 and D = 1. Then

LR(8) o £(6) —\/91(;1/1:0(9) o exp{—

These are graphed in Figure 5, along with 7%(f|z). Note that the conditional profile

o7t (43)

likelihood is virtually indistinguishable from the other likelihoods. There is no appealing

way to use these likelihoods for inference.
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Figure 5. For the coefficient of variation problem, when z = 0, n=>5 and D =1, the integrated

(or profile) likelihood, the conditional profile likelihood and the reference posterior w%(|z).
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Frequentists might argue that this simply reveals that no type of likelihood or Bayesian
argument is appealing for this example. But frequentist conclusions are also very problem-
atical here, since this example falls within the class of problems, identified in Gleser and
Hwang (1987), where frequentist confidence procedures must be infinite sets (and often
the whole parameter space) with positive probability. (Saying that a 95% confidence set
is (—o0, 00) is not particularly appealing). First, we restate the Gleser and Hwang result

in our notation:

THEOREM 1. (Gleser and Hwang, 1987). Consider a two parameter model with
sampling density f(z]0,)1),0 € ©,) € A, on the sample space X. Suppose there exists a

subset ©* of © and a value of \* in the closure of A such that @ has an unbounded range
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over ©* and such that for each fized 6 € O* and z € X

Jim_ f(al6, ) = f(a] ) (46)
ezists, is a density on X and is independent of 8. Then every confidence procedure C(X)
for 8 with positive confidence level 1 — a will yield infinite sets with positive probability.

To show that Example 7 is an example of this type, we must slightly generalize

Theorem 1, as follows:

THEOREM 1'. The conclusion of Theorem 1 remains valid if (46) i3 replaced by

|01|1moo)\hn:\l* f(z|0,X) = f(z|A*). (47)

Proof. The proof in Gleser and Hwang (1987) can be followed exactly, utilizing the new

- condition in obvious places. [

Example 7(continued). If § = ¢/ and the nuisance parameter is chosen to be A = g,

then choosing A\* = 0 will clearly yield

1
I1|1m hm f(x|0 A) = (2 )n/2 P{ }

so that (47) is satisfied. Hence frequentist confidence sets must be infinite with positive
probability.

Another interesting fact is that the class of densities satisfying (47) appears to be
related to the class of densities for which the profile likelihood does not go to zero at

infinity.

LEMMA 1. Under the conditions of Theorem 1', the profile likelihood does mot

converge to zero.

Proof. From condition (47),

|01|1m sup f(z]6,\) > hm lin)} f(z]6,2) = f(z|x*) > 0.0
— 00 Ae *

Recall that this class of densities, which are very problematical from either a likelihood

or a frequentist perspective, includes a number of important problems (in addition to the
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coefficient of variation problem), such as Fieller’s problem, errors-in-variables models, and
calibration models. One can make a convincing argument that such problems are simply
not amenable to any “objective” analysis; prior information is crucial and must be utilized.
If, however, one is unwilling or unable to carry out a true subjective Bayesian analysis,
then a case can be made for having standard “default” analyses available. The Bayesian
analyses with reference noninformative priors, such as that leading to 7%(|z) in Example

7, are arguably the best candidates for such “default” analyses.

Visualization

We have argued that, for certain important classes of problems, inference appears
impossible based on L(6) alone. A counterargument is sometimes advanced, to the effect
that formal inference is not necessary; it may suffice simply to present L() itself as the

conclusion, with consumers learning to directly interpret likelihood functions.

One difficulty with this argument is that likelihood functions can appear very different,

depending on the parameterization used.

Example 7 (continued). The conditional reference likelihood, LE(f), for 7 = 1, n = 2
and D = 2, is presented in Figure 6 (a). Suppose, instead, that the parameterization
€ = 6/(1+ |6]) had been used. The conditional reference likelihood for ¢ can then easily

be seen to be

LR(¢) = L*(e/(1 ~ 1€D),

which is graphed in Figure 6(b) (now over (-1, 1), the range of ¢). Visually, LE(¢) and
LE(6) appear to convey markedly different information. For LE(£), the “local” mode
appears dominant, while for L%(#) it appears to be insignificant relative to the huge tail.

Yet these two functions clearly reflect the same information.

Introduction of m(8) removes this difficulty, providing that the method used for ob-
taining 7(6) is invariant under reparameterizatiton of 6. Subjective priors will have this

property, as do the Jeffreys prior and the reference prior (see Datta and Ghosh, 1995).

Example 7 (continued). The marginal reference prior, 7%(6) in (41), results in the proper

posterior in (42). If, instead, the £ parameterization had been used, the marginal reference
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prior for £ would be
7€) = nR(E/(1 - 1€D) - (1 — 1EN2,

which is obtainable from 7%(6) by straightforward change of variables. Because of this

invariance of the prior, it is clear that the two posteriors,

Figure 6. Integrated likelihoods for Example 7
when T =1, n =2, and D = 2; figure (a) is for the

6 parameterization; (b) is for the £ parameterization.
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w®(0|z) o« LE(6)rR|0) and #(¢|z) o LE(E)7E(¢),

are simple transformations of each other. Figure 7, a and b, graphs these two posteriors
for the same situation as in Figure 6. These seem to be visually satisfactory, in the sense

of conveying similar information.

Figure 7. The reference posteriors for the situation of Figure 6;

(a) is for the 6 parameterization; (b) is for the ¢ parameterization.
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One possibility for “correcting” likelihoods to account for this visualization problem
is to include a “Jacobian” term to account for reparameterization. That, of course, is how
Bayesian analysis deals with the problem. Various suggestions to this effect have, from

time to time, been put forth in the likelihood literature, but none seem to have caught on.

5.2. Premature Elimination of Nuisance Parameters

Any summarization of data runs the risk of losing information that might later be
needed, and elimination of nuisance parameters by integration is no exception. We review
a few of the ways in which this loss of information can occur. The most basic situation

that can cause problems is if more data are later to be observed.

Example 1 (continued). Defining S? = ., (z;—7)*/n, the uniform integrated likelihood

for 02 was \
—nS
LY(0?) x o~ (* Ve 1y,
1 ( ) Xp 202
Suppose additional data z,+t1,...,Zntm become available. The corresponding uniform

integrated likelihood for o2 from these data alone is

G2
LY(0?) x o~ (m~1) exp{ m5 } ,

202
where 52 = Z?:ﬂl(a:, —Z2)?/m and T, = E?:n"_i_l z;/m.
To find the overall likelihood for o2, it is tempting to multiply LY (¢?) and LY (o?),

since the two data sets were independent (given the parameters). Note, however, that, if

all the data were available to us, we would use the integrated likelihood

- - —(n +m)S3
LU 2 (n+m-—1) (n 3

where S% = E?:lm(x, —73)%/(n + m) and T3 = Z?:lm z;/(n + m), and this is not the
product of LY and LY. Indeed, from knowledge only of LY and the new data, LY cannot

be recovered. (To recover LY, one would also need T from the original data.)

A second type of loss of information can occur in meta-analysis, where related studies

are analyzed.

Example 2 (continued). We generalize this example slightly, supposing the observations

to be X;j ~ N(pi,02),7 =1,...,n; and ¢ = 1,...,p. Of interest here are the y; or (¢,72),
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where p; ~ N(£,72),4 = 1,...,p. Such data might arise from studies at p different sites,
with the means at the different sites being related to the overall population mean, £, as
indicated. Each site might choose to eliminate the nuisance parameter o? by integration

using, say, 7%(c?) = 1/0?), resulting in the report of the integrated likelihoods
1 T g
Lf-l(ui) x [522 +(Z; — ,u,-)z]-ni/z , (48)

where T; = )01 zj/n; and S} = 7%, (2ij — Ti)?/ni, i = 1,...,p. One might then
be tempted to use the product of these likelihoods (along with the knowlwdge that p; ~

N(&,72)) in the meta-analysis.

If the 0? were completely unrelated, such an analysis would be reasonable. Typically,
however, the 0? would themselves be quite related, and their “independent” elimination
by integration would then not be appropriate. Often, for instance, it is reasonable in this
situation to model the ¢? as arising from a common distribution (e.g., an inverse gamma
distribution); for an example, see Hui and Berger (1983). Interestingly, in this situation
the original likelihood can be recovered (assuming the original model is known), in that n;,
T;, and S? can be found from (48) and these are sufficient statistics. But one would have
to use these sufficient statistics to reconstruct the full likelihood, and not use the LE(u;)

directly.

A third situation in which one should not use an integrated likelihood for 6 is when
prior information is available in the form of a conditional prior for 6 given A, ©(6|A). If A
is first eliminated from the likelihood, then one cannot subsequently utilize 7(6|A). (One
possible default treatment of this situation is described in Sun and Berger (1997): find the

reference marginal prior for A, based on #x(6|)), and then find the resulting posterior for

8.)

While one should be aware of the potential problems in premature elimination of
nuisance parameters, the situation should be kept in perspective. In the two examples
discussed above, for instance, it will usually be the case that the answers obtained by
simply multiplying the integrated likelihoods are almost the same as the answers from
the “correct” likelihood. Indeed, much of statistical practice can be viewed as formal
or informal elimination of nuisance parameters at different stages of the analysis, with

multiplication of resulting likelihoods. The trick is to recognize when this is a reasonable
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approximation, and when it is not.

Appendix. To derive a conditional profile likelihood for the coefficient of variation in

Example 7, one first needs to obtain an orthogonal parametrization. It can be shown that
¢ = (1/202% + pu?)~! is orthogonal to 6. Cox and Reid (1987) defined the conditional profile
likelihood as

LC(8) = L(6)Ije,e(8, )11,

where |j¢ (6, £9)| is the lower right corner of the observed Fisher Information matrix, and

£ is the conditional maximum likelihood estimate. Calculations show that

0|(z + /7> + 4D262)
V62 + 1/2\/41)492 + 73T + VZ? + 4D%6?)?

Together with the fact that the profile likelihood is invariant with respect to the choice of

lje,e(6,€0)|7Y/? o

the nuisance parameters, one obtains expression (44).
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