A NOTE ON THE MARCINKIEWICZ - ZYGMUND STRONG LAW

by

Arup Bose
Indian Statistical Institute
and Purdue University

Technical Report #96-5

Department of Statistics Purdue University West Lafayette, IN USA

March 1996

A NOTE ON THE MARCINKIEWICZ - ZYGMUND STRONG LAW

by

Arup Bose
Indian Statistical Institute
and Purdue University

Abstract

We prove the Marcinkiewicz-Zygmund strong law in a general set up.

Key Words and Phrases: Strong law, three series theorem, martingale differences, stationary sequence.

AMS 1991 Subject Classification: 60F15, 60G42

Suppose $(X_j, j \ge 1)$ are independent and identically distributed (i.i.d.) random variables and $E|X_1|^p < \infty$ for some $0 . Then the Marcinkiewicz-Zygmund strong law of large numbers (MZSLLN) states that as <math>n \to \infty$,

$$\sum_{i=1}^{n} X_{j} = nc + o(n^{\frac{1}{p}}) \text{ almost surely } \dots$$
 (1)

where $c = E(X_1)$ if $p \ge 1$, and c may be taken to be 0 if p < 1. A proof using the Kolmogorov's three series theorem is given in Chow and Teicher (1978, page 122, Theorem 2). When the i.i.d. assumption is dropped, a similar result does not seem to appear in explicit form in the literature. This short note establishes such a result.

Suppose (Ω, \mathcal{F}, P) is a probability space and $(\mathcal{F}_j, j \geq 0)$ is an increasing sequence of sub σ -fields of \mathcal{F} . Suppose $(X_j, U_j, j \geq 1)$ are random variables such that for each $j \geq 1$, U_{j+1} and X_j are \mathcal{F}_j measurable and U_j are positive. For any random variable X, define $X(c) = X \ I(|X| \leq c)$. All convergences are in the almost sure sense.

Proposition 1. Suppose there is a random variable X and c > 0 such that that for all $j \ge 1$,

$$P(|X_j| \ge x) \le C \ P(|X| \ge x) \dots \tag{2}$$

where $E|X|^p < \infty$ for some 0 . Then

$$\sum_{j=1}^{n} X_j = c_n + o(n^{\frac{1}{p}}) \text{ almost surely } \dots$$
 (3)

where
$$c_n = \sum_{j=1}^n E(X_j | \mathcal{F}_{j-1})$$
 if $p > 1$, $c_n = 0$ if $p < 1$, and $c_n = \sum_{j=1}^n E(X_j | I(|X_j| \le j | \mathcal{F}_{j-1}))$ if $p = 1$.

Remark 1. The result for p=1 is given in Theorem 2.19 of Hall and Heyde (1980) where it is further shown that in this case if c_n is replaced by $c_n^* = \sum_{j=1}^n E(X_j | \mathcal{F}_{j-1})$ then (1) holds only in probability. This probability convergence can be strengthened to almost sure convergence under any of the following: a) $E(|X|\log^+|X|) < \infty$, b) $(X_j, j \ge 1)$ are independent, c) $(X_j, j \ge 1)$ and $(E(X_j | \mathcal{F}_{j-1}), j \ge 2)$ are stationary.

Define the variables $(Y_j, j \ge 1)$ by

$$Y_j = U_j^{-1} X_j I(|X_j| \le U_j)$$

= $U_i^{-1} X_j (U_j)$

Note that for all $j \geq 1$, Y_j is \mathcal{F}_j measurable and $|Y_j| \leq 1$. Consider the following three series:

$$T_{1} = \sum_{j=1}^{\infty} (Y_{j} - E(Y_{j} | \mathcal{F}_{j-1}))$$

$$= \sum_{j=1}^{\infty} U_{j}^{-1} (X_{j}(a_{j}) - E(X_{j}(a_{j}) | \mathcal{F}_{j-1}))$$

$$T_{2} = \sum_{j=1}^{\infty} I(U_{j}^{-1} X_{j} \neq Y_{j})$$

$$= \sum_{j=1}^{\infty} I(|X_{j}| > U_{j})$$

$$T_{3} = \sum_{j=1}^{\infty} (U_{j}^{-1} X_{j} - E(Y_{j} | \mathcal{F}_{j-1}))$$

$$= \sum_{j=1}^{\infty} U_{j}^{-1} (X_{j} - E(X_{j}(a_{j}) | \mathcal{F}_{j-1}))$$

Define the following sets

$$D_1 = \left\{ \sum_{j=1}^{\infty} P(|X_j| \ge U_j | \mathcal{F}_{j-1}) < \infty \right\}$$

$$D_2 = \left\{ \sum_{j=1}^{\infty} E(Y_j^2 | \mathcal{F}_{j-1}) < \infty \right\}$$

$$= \left\{ \sum_{j=1}^{\infty} U_j^{-2} E(X_j^2(U_j) | \mathcal{F}_{j-1}) < \infty \right\}$$

The following Lemma is an easy consequence of the conditional three series theorem. We omit its proof.

Lemma 1.
$$T_2$$
 converges on D_1 , and T_1 and T_3 converge on $D_1 \cap D_2$.

Proof of the Proposition. Let $p \neq 1$ and $U_j = j^{\frac{1}{p}}$ in Lemma 1.

By condition (2),

$$\sum_{j=1}^{\infty} P(|X_j| \ge j^{\frac{1}{p}}) \le C \sum_{j=1}^{\infty} P(|X|^p \ge j) < \infty \dots$$
 (4)

$$\sum_{j=1}^{\infty} E(Y_j^2) = \sum_{j=1}^{\infty} j^{-2/p} E(X_j^2 I(|X_j| \le j^{1/p}))$$

$$= \sum_{j=1}^{\infty} j^{-2/p} \int_{0}^{j^{1/p}} P(X_j^2 \ge x) dx$$

$$\le \sum_{j=1}^{\infty} j^{-2/p} \sum_{k=1}^{j} \int_{(k-1)^{1/p}}^{k^{1/p}} P(X^2 \ge x) dx$$

$$\le \sum_{k=1}^{\infty} \int_{(k-1)^{1/p}}^{k^{1/p}} P(X^2 \ge x) dx \left(k^{-2/p} + \frac{p}{2-p} k^{-2/p+1} \right)$$

$$\le 2/p \sum_{k=1}^{\infty} \left(k^{-2/p} + \left(\frac{p}{2-p} \right) k^{-2/p+1} \right) \int_{(k-1)^{1/2}}^{k^{1/2}} P(|X|^p \ge y) y^{2/p-1} dy$$

$$\le 2/p \sum_{k=1}^{\infty} \left(k^{-1} + \frac{p}{(2-p)} \right) \int_{(k-1)^{1/2}}^{k^{1/2}} P(|X|^p \ge y) dy$$

$$\le C_p \int_{0}^{\infty} P(|X|^p \ge y) dy < \infty \dots \dots (5)$$

Since (4) and (5) are satisfied, by Lemma 1,

$$\sum_{j=1}^{\infty} j^{-1/p} \left(X_j - E(X_j \mid I(|X_j| \le j^{1/p}) | \mathcal{F}_{j-1}) \right) < \infty \text{ almost surely } \dots$$
 (6)

Now assume that p > 1.

$$E \sum_{j=1}^{\infty} j^{-1/p} |E| X_{j} I(|X_{j}| > j^{1/p}) |\mathcal{F}_{j-1}|$$

$$\leq \sum_{j=1}^{\infty} j^{-1/p} E[|X_{j}| I(|X_{j}| > j^{1/p})]$$

$$\leq \sum_{j=1}^{\infty} j^{-1/p} \sum_{k=j+1}^{\infty} \int_{(k-1)^{1/p}}^{k^{1/p}} P(|X_{j}| \ge x) dx$$

$$\leq C \sum_{k=2}^{\infty} \sum_{j=1}^{k-1} j^{-1/p} \int_{(k-1)^{1/p}}^{k^{1/p}} P(|X| \ge x) dx$$

$$\leq \frac{Cp}{(p-1)} \sum_{k=2}^{\infty} (k-1)^{(p-1)/p} \int_{(k-1)^{1/p}}^{k^{1/p}} P(|X| \ge x) dx$$

$$\leq C(p) \sum_{k=2}^{\infty} (k-1)^{(p-1)/p} \int_{(k-1)}^{k} P(|X|^{p} \ge y) y^{(\frac{1}{p}-1)} dy$$

$$= C(p) \sum_{k=2}^{\infty} \int_{(k-1)}^{k} P(|X|^{p} \ge y) dy < \infty$$

Thus if p > 1,

$$\sum_{j=1}^{\infty} j^{-1/p} EX_j I(|X_j| > j^{1/p} | \mathcal{F}_{j-1}) < \infty \text{ almost surely } \dots$$
 (7)

Hence from (7) and (6), if p > 1, then

$$\sum_{j=1}^{\infty} \frac{X_j - E(X_j | \mathcal{F}_{j-1})}{j^{1/p}} < \infty \text{ almost surely } \dots$$
 (8)

If p < 1,

$$\sum_{j=1}^{\infty} j^{-1/p} |EX_{j}I(|X_{j}| \le j^{1/p}|\mathcal{F}_{j-1})|$$

$$\le \sum_{j=1}^{\infty} j^{-2/p} E(X_{j}^{2}J(|X_{j}| \le j^{1/p}|\mathcal{F}_{j-1}))$$

$$< \infty \text{ by (5)}.$$

Hence if p < 1,

$$\sum_{j=1}^{\infty} j^{-1/p} X_j < \infty \text{ almost surely } \dots$$
 (9)

Combining (8) and (9) proves the Proposition after an application of Kronecker's Lemma. $\hfill\Box$

Remark 2. It is clear from the above proof that if $(X_j, \mathcal{F}_j, j \geq 1)$ is a martingale difference sequence, then for $U_n \uparrow \infty$, (in particular for $U_j = j^{1/p}$),

$$\sum_{k=1}^{n} X_k = o(U_n) \text{ almost surely } \dots$$
 (10)

if the following conditions hold:

(C1)
$$\sum_{j=1}^{\infty} P(|X_j| \ge U_j | \mathcal{F}_{j-1}) < \infty \text{ almost surely}$$

$$(C2) \quad \sum_{j=1}^{\infty} \ U_j^{-2} \ EX_j^2 \ I(|X_j| \le U_j | \mathcal{F}_{j-1}) < \infty \text{ almost surely}$$

(C3)
$$\sum_{j=1}^{\infty} U_j^{-1} EX_j I(|X_j| \le U_j | \mathcal{F}_{j-1}) < \infty \text{ almost surely.}$$

One may compare this with Theorem 2.18 given in Hall and Heyde (1980) where it is shown that (10) holds if

$$\sum_{j=1}^{\infty} U_j^{-p} E(|X_j|^p | \mathcal{F}_{j-1}) < \infty \text{ almost surely } \dots$$
 (10)

for some $1 \le p \le 2$.

This is clearly not enough to establish Proposition 1 since U_j must be chosen to equal $j^{1/p}$ and in that case the series in (10) is $\sum_{j=1}^{\infty} j^{-1}E(|X_j|^p|\mathcal{F}_{j-1})$ whose convergence is not guaranteed under the conditions given. On the other hand it is easy to see that if (10) holds for any $(U_j, j \geq 1)$, then (C1), (C2) and (C3) hold.

References

Chow, Y. S. and Teicher, H. (1978). Probability Theory. Springer-Verlag, New York.

Hall, P. and Heyde, C. C. (1980). Martingale limit theory and its applications. Academic Press, New York.