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1. Introduction.

Let (X;,7 > 1) be a sequence of independent and identically distributed (i.i.d.) random
variables with E|X;|? < oo for some 0 < p < 2. The Marcinkiewicz-Zygmund strong law
(MZSLLN) states that as n — oo,

n
n! ZX,- = ¢+ o(n* "P)/?) almost surely ... ... ... (1)

=1
Here ¢ = EX; if p > 1 and ¢ may be taken to be 0 if p < 1. For a proof of this result, see
Chow and Teicher (1978, page 122). The main motivation for this work was to establish

this law for L-statistics.

Wellner (1977a,b) proved a SLLN and LIL for L-statistics by first establishing ap-
propriate convergence results for empirical processes. When specialized to the sample
mean, his results yield the SLLN when E|X;|'*¢ < co for some £ > 0 and the LIL when
E|X;]?*¢ < oo for some ¢ > 0, thereby coming close to the minimal possible condition,

namely € = 0.

We take a similar approach and first establish a suitable Glivenko-Cantelli type the-
orem. This is then used to obtain the MZSLLN for L-statistics. When specialized to the
sample mean for 1 < p < 2, (1) holds under E|X;|P*¢ < oo for some € > 0, thereby coming

close to the minimal condition.

When certain smoothness conditions are allowed on the weight functions, we take a

more direct approach of using projections and establish the MZSLLN for L-statistics.

2. A Glivenko-Cantelli Theorem.

Let (£,¢ > 1) be ii.d. uniform (0,1) random variables. Let I denote the iden-
tity function and let T',, denote the empirical distribution of ¢;,...,¢&, so that T',(¢) =
n! f: Tjo,q(&:). Let H* be the set of all nonnegative, nondecreasing continuous functions
on [(1)?1] Let H denote the set of all functions h such that h(t) = h(1 —t) = h(t) for
0<t<1/2and h € H*. For h € HY UH, define

T, —1
pr(Ta, 1) = sup| - |
0<t<1
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THEOREM 1. Suppose h € HY UH and (6;,: > 1) is a decreasing sequence of numbers
between 0 and 1 such that

(A1) sup [t(h(t)"] = o(n("P/7)
0<t<0n
(A2) n~2(loglog n)'/? sup [w(t)h(t)] ! = o(n!'~P)/P) for some & > 0.
8, <t

where w is a positive real-valued function on [0,1] such that for some 0 < § < 1/2, t1/2w(t)
is monotone increasing on (0,6], (1 — ¢)*/2w(t) is monotone decreasing on [1 — §,1), is

bounded on [6,1 — §] and

/01 w?(t)log log(t(l —t))dt < oco... ... (2)
(A3) ST [ < oo (3)

or

S il / " (b))% dt < oo

1=1

for some 0 < ¢; < 1,¢ > 1. Then as n — oo,

ph(Tn, I) = o(n!=P)/?) almost surely ... ... (4)

Proof. By “symmetry”, we may assume h € H7.

pr(Trn,I) < sup I'y/h+ sup t/h

0<t<6, 0<t<bn
+ sup (w(t)|Ta(t) - t]) fw(t)h(t)]

= Tl +T2 + T3 say.

By Assumption (Al), T = o(n(1=P)/P). By a LIL for empirical processes (see for example
James (1975, Theorem, page 770), the first factor of Tj is O(n~1?(loglog n)!/?) almost
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surely. Hence by Assumption (A2), T3 = o(n(!~P)/P) almost surely. To tackle T}, observe
that

T, <n! Zf[o,o,,](ii)/h(ﬁi)

<™ T 6 (&) R(E).
1=1

Define Y; = Z._l/pI[o,gl.)(é-,‘)/h(Ei). Observe that (Y;,7 > 1) are independent and by (A3)

TEY; < 0o or TEY¥ < oo. In either case, TY; converges. (See for example Teicher (1978,

page 114, Corollary 3)). By Kronecker’s Lemma, n=/? 3 Ijg o1 (£:)/h(€i) = o(1) almost
=1

surely and hence T} = o(n(l_P)/ P) almost surely, proving the theorem. O

Example 1. Theorem 1 holds with h(t) = t®, where 0 < o < min(1/p,1). To see this
assume that 1/2 < a < min(1/p,1), let 6; = i~# and choose w(t) = t~(1/2=9  § very small.
Then

sup [t(h(£))7!] =i PO~ = o(n1=P)/P) if
0<t<0,
—B(l-a)<(1-p)/p
or>(p-1)/p(l—-a)... ... ... (5)
(A2) is satisfied if
~1/2 - p(1/2~a) < (1 —p)/p
B<(p—2)/2p(1—2a)... ... (6)

Note that (p—1)/p(1 — &) < (p—2)/2p(1 — 2a), hence a choice of § > 0 satisfying (5) and
(6) is possible. With such a choice of 3,

Zi-l/f’/o i(h(t))"ldt

< cZi_l/Pi_ﬂ(l_") < 00

i=1
since —1/p — (1 — a) < —=1/p+ (1 — p)/p = —1. Thus conditions (A1), (A2) and (A3)
hold. If 0 < a < 1/2, then pu(Tn,I) = O(n~/?(log log n)!/2) almost surely by LIL of
James (1975). So Theorem 1 holds trivially. O
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3. Strong Laws for L-Statistics.

Let G be the set of left continuous functions on (0, 1) which are of bounded variation
on (6,1 — 6) for any 6 > 0. Let cp1,...,Cnn,(n > 1) be constants and g, € G, n > 1.

Define the sequence of L-statistics as
Ln = n“l z Cnign(é-ni) ...... (7)
i=1

Note that if g,(z) = g(z) = T(F~}(z)) for some distribution function F', then (Ly,n > 1)

has the same distribution as (My,n > 1) where

n

My=n"") T(Xpi)... ... ... (8)

=1

Here X,; < --- < X,n is the ordered statistics of a sample of size n from F. Define

Ja() = cri if 1 —1)/n <t <i/n, 1 <i<nand Jo(0) = cn1. Let

.
,un:/ gndndt... ... ... (9)
0

For real numbers by, b3, §, define
By, p,(t) =t (1—8)""2, 0<t<l... ... (10)

We impose the following conditions on (gn,n > 1) and (Jn,n > 1). Below C denotes some

generic constant.
C1 Jo| < CB, . for some vy and ... ... 11
et

(C2) For some (r,s) with —1<r+y<1l/pand -1 <s+¢e<1/p,

lgn| < ct™"(1—2)7°
1
(C3) sup/ B, Bsshd|gn| < oo
n>1Jo
for some § > 0 and some h satisfying Theorem 1.
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THEOREM 2. If (gn, Jn,n > 1) satisfy the conditions (C1), (C2) and (C3), then
L, —pn= o(n(l_”)/”) almost surely ... ... (12)

O

Proof. We may write
Ly—pn=—~(Sa+Rp,+ Ry, + Rng)... ... ... (13)

where

nn
Sp = / An(Tn — Idgn

- [ 42T~ g
0
Ry, = gu(€n1)(¥n(0) — ¥n(€n1))
Ry, = gn(fnn)?bn(gnn)

Rnaz/ gn Jn d 1
[Enlyfnn)c

1
() =— | Judl
bnlt) = - |
An = 9n(Tn) = ¢u(D)/(Tr — I)
An(t) = Anlig,, 601 (1)
By Assumptions (C1) and (C2),
|Ra1| < C(€nr) ™17
|Rn2| S C(l - 6nn)a+1_€

Enl Enl
| / gul|Tuldt] < C / £+ g
0 0

< C(fl_(r+7)

nl

1 1
/ allZaldt <C [ (=8G9t
Enn Enn

< C(l _ €nn)1—(s+a)

From Galambos (1978, page 261), £n1 + (1 — €nn) = O(n~!(log log n)) almost surely.

Hence by using the conditions on r,v,s and ¢,

3
Z |Rn;| = o(n*~P)/P) almost surely ... ... (13)

=1



By arguments given in Wellner (1977a, page 478) or Wellner (1977b, page 488), almost

surely,
|An| < CB,Bss... ... (14)
Using this, almost surely
1
1Sul < Cpn(Tw, I) / Bo.Bsshdlgal ... .. (15)
0
The Theorem follows by using Assumptions (C3), (13) and (15). O

Example 2. Suppose gn(t) = g(t) = F7(t), Jo(t) = 1. Then L, = n7 1> X,
P = fol F~1(t)dt = EX;. Suppose that 1 < p < 2 and E|X;|P* < oo for some p < p;.
Then it is easy to see that g(t) = o(t"1/P1) as ¢t — 0. Thus we may choose y = ¢ = 0 in
(Cl) and r = s = 1/p; in (C2). Choose h(t) = t* and é > 0 arbitrarily small such that
a = Pll + 26 < 1/p. Then the integral in (C3) equals fol(t(l — t))5+U/Pig|F-1(1)| < 0.
Further h(t) defined above satisfies conditions of Example 1. Hence Theorem 2 applies
and T, — E(X;) = o(n(1=P)/) almost surely if E|X;|P* < oo for some p; > p. Note that
this remains true for 0 < p < 1 if EX; is replaced by 0. To see this, modify the proof of
Theorem 2 by replacing u, by 0. This falls just short of the usual MZSLLN for T, given
in (1). O

Example 3. The L-statistic often used in the @ — @ plot is
Ly=n"1) CoXp... ... (16)
=1

where Cp;, = ®7(¢/(n + 1)) or = & }((z= — 1/2)/n) or some minor variations of these.
It can be verified that in this case (C1) is satisfied with v = ¢, where € > 0 is arbitrary
small. As in Example 2, ¢,(t) = ¢(¢) = F~(t). By arguments given in Example 1, it
again follows that for 0 < p < 2, Tj, — pp = é(n(l_P)/p) almost surely if E|X;|" < oo for
some r > p. It may be noted that Wellner (1977b, Example 1b, page 492) proves the LIL

for T, under the additional assumption that F' is normal. [l

The above methods, being general cannot exploit any further smoothness or other con-
ditions which may have been imposed on the weights. We now show how such assumptions

may be exploited using first and/or second order differentials of statistics.
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Define .
T(F) = / FY()J(t)dt (17)

We list some conditions which different researchers have used for the weight function J.
See for example Shorack (1972) or Stigler (1974).
(A) J is bounded and continuous a.e. Lebesgue and a.e. F~!.
(B) J(u)=J(u)=0forall0<u<a<f<u <1, (a,p fixed).
(C) J is bounded and continuous.
(D) J' exists everywhere on (0,1) and is Lip (6).

Let F,, denote the empirical distribution of Xj,...,X,. Define (the leading term of
T(F,) - T(F)) _
a@) =~ [ 1o <)~ FO)WIFw. (18

The following integration by parts result will serve as an important tool. For proof,
see Serfling (1980, page 265). Let K(t) = [, J(u)du, 0 < ¢ < 1. Then

T(F,) - T(F) = — / K(Fa(2)) — K(F(z))]dz (19)

— Q0

Proposition 1. Assume conditions (A) and (B) and for some 0 < p < 2 E|a(X1)|P < oo.
Then as n — oo, T(F,) — T(F) = o(n(t=P)/?) almost surely. O

Proof. Define

KG@)=K(F&) _ 1(F(z)) i Glx) £ Flz
We.r(z) = {0 G()=F(z) J(F(=)) ii ggxi i?gxi (20)
By using equations (19) and (20),
T(F,) - T(F) = n~! zn: a(X;:) + Rin (21)
where
Rin = — /_ Wr. #(2)[Fa(z) — F(a)lde (22)
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Thus
|Rin| < [[WF,,FllL, - [|[Fn — Flloo

From Serfling (1980, page 281), the conditions (A) and (B) ensure that ||[Wg, pl|jz, — 0
almost surely. Since ||F,, — F||oo = O(n"1/2 log log n) almost surely, this proves the result

by an application of (1). O
J in Proposition 1 is a trimmed function (Assumption B). Our first result for untrimmed

J function needs another assumption.

(E) There exists a function g such that [, ¢(F(z))dz < co and

(Lot
goF

oo = O(n(l_P)/P) a.s. (22)

Proposition 2. Let (A) and (E) hold and E |a(X1)|P < 0o for 0 < p < 2. Then as
n — oo,

T(F,) —T(F)= o(n(l_p)/P) almost surely a

Proof. Recall (21). Now we use a different estimate of R;,.

F, —FH
goF '

By Lemma B of Serfling (1980, page 282), under Assumption (A) and (E),

|Rin| < |l(goF)WF, FllL, - |

||(goF)YWEF, rllL, — oo almost surely.

This proves the proposition. 0]

We now use a two-term expansion. Define

Yi(z) = I(X; < x) (23)
B(e,y) = — / [I(z < t) — F@)][I(y < t) — F(t)|J(F(t))dt (24)
h(z,y) = [a(z) + a(y) + B(z,y)]/2 (25)

Proposition 3. Assume conditions (C) and (D). Further assume that for some 1 < p < 2,
and § >0,1<1/pp <1+1/p+6/2and p_11 < min(1,1/p+ 6/2),
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(i) E[fZ. (Yi(z) — F(z))*]P° < o0
(i) E| [ (Yi(z) — F(z))(Ya(z) — F(z))dz|* < o0
(i) E[|h(X1, X2)I? + [R(X1, X1)[P/+P)] < o0

Then T(F,) — T(F) = o(n'!~?)/?) almost surely. O

Proof. Express T(Fy,) — T(F') as Van + Ran where

1
Van = diT(F, Fu — F) + 5d2T(F, Fy — F)

= n_2i2n:h(X5,Xj,F)

i=1 j=1
n Y h(X,,X],F)+n‘22h(X1,X1,F)
1<i<j<n =1

with

_ / TR (Fa(t) - K(F(2)) - J(F(){Falt) — F(2)
— ST (F@)IFa(t) - POyt

Since the first term of V,, is (approximately) a U-statistic, by Remark 2.1 (i) of Bose

and DasGupta (1994), this term is o(n{! 7?)/P) almost surely. By using Assumption (ii)

[(1+p)
and (1), the second term is o(n~ 1+ 55 ) = o(n(1 P)/”) For Rap, from Serfling (1980,

page 289)),
|Ran| < c||Fn = FIIL, - 1Fn — Fllog

< c||Fn — F||%20(n_6/2) almost surely.

Note that
1Fw - Pz, = [ ‘IZY (@) - F(e)Pda

== Z/ (Yi(z) — — F(z))%dz

Y / (¥ilz) - F@))(¥;(z) - F(z))de

1<i<j<n
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By Assumption (i) and (1), almost surely

n=? Z/_oo (Yi(z) — F(z))*dz = o(n~1H(1=Po)/Po)
1= _ O(n—2+1/po)

By using Bose and DasGupta (1994) again, the second term is o(n(1=P1)/P1) almost surely.
Thus |R;, | = o(n('~P)/P) almost surely by using the restrictions on ps and p;. This proves

the Proposition. , O

Remark 1. It can be verified that

/ " Yi(e) - F(2)lde < 201X0] + B{X|

and
[ Mie) - F@Ia(e) = Fle)lda] < 41501+ 15|+ Bl
So E|X;|Pt < oo implies condition (ii) of Proposition 3. O

If higher moments of X exist one may avoid checking all the conditions of Proposi-

tion 3 and the following variant of Proposition 3 holds.

Proposition 4. If1 < p <2, (C), (D) and (i) of Proposition § hold and E|X1|* < o0
then T(F,) — T(F) = o(n(1=P)/P) almost surely.

Proof. As before, write T(F,) — T(F) = Van + Ran. By Lemma B of Serfling (1980,
page 288), for any sequence (a, > 0)

[e%e) [e%s)
S P(|F - FIff, > an) < Y ar*E[||Fn - FIIZ)
n=1 n=1

oo
<c Z a;kn"k <o
n=1
if we choose k = 2 and a, ~ nt~1(log n)'** for some ¢ > 0. Hence almost surely,

Ry = 0(n™%/2F1/2"1(log 1n)!%€) for ¢ < &o.
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Choosing 6 small, this is o(n(!~?)/P) almost surely, proving the Proposition. O

Remark 2. Often alternative forms of L statistics are used. For example Helmers (1977)

considers
-1

Tin=mn

n+41

where X(n1) < ... < X(nn) is the ordered statistics of (X1,...,Xn).

Note that
) n i/n .
T(Fa) — Tin =1 3 X /( BCORETIED

+%§:Xwﬁuamy_ﬂﬂn+n}

Under Assumptions (C) and (D), it then follows that if E|X;P/(1*P) < oo, almost surely

IT(Fy) — Tin| < cn™? z |Xi| = o(n*~P)/P) almost surely

i=1
Hence assuming the conditions of Propositions 3 or 4, Ty, — T(F) = o(n(l_P)/ P) almost

surely.

Example 4. For k > 0, consider the sequence of L-statistics

N
=71 () Xmi
i=1

and its smooth version .
T(F,) = / F7l1(t)J(t)dt
0

where

Jz)==zF, 0<z<1.
Note that T'(F -1 t)J(t)dt is finite if EX; < oco. Further, for any integer k,
0
T(F) = E(max(X1,...,Xk+1))/(k +1).

Bose and DasGupta (1994, Remark 2.2) proved that if E|X;|P < oo for 1 < p < 2, then

for any integer k > 1, almost surely
=T(F)=onP/Py . ... .. (26)

12



By Lemma A of Serfling (1980, page 288), for any p > 1, E|a(X1)|P < oo whenever
E|X,|P < co. By Theorem 1, there exists a function ¢ satisfying (22). Thus Proposition
(2) applies and for any k > 0, if E|X;1|P < oo

T(F,)—T(F)= o(n(l"’)/”) almost surely ... ... ... (27)

As in Remark 2, since T(F,) and L, are close, (26) also holds for any k¥ > 0 provided
E|X1|P < co. It is interesting to note that if we had applied Theorem 2 directly then (26)
and (27) would require E|X|P*¢ < oo for some ¢ > 0. O

References

Bose, A. and DasGupta, R. (1994). On some asymptotic properties of U-statistics and one
sided estimates. Ann. Prob. 23, 4, 1715-1724.

Chow, Y. S. and H. Teicher (1978). Probability Theory. Springer Verlag, New York.
Galambos, J. (1978). The asymptotic theory of extreme order statistics. Krieger, Florida.

Helmers, R. (1977). The order of the normal approximation for linear combinations of

order statistics with smooth weight functions. Ann. Prob. 5, 940-953.

James, B. R. (1975). A functional law of the iterated logarithm for weighted empirical
distributions. Ann. Prob. 3, 762-772.

Serfling, R. J. (1980). Approzimation Theorems of Mathematical Statistics. J. Wiley, New
York.

Shorack, G. R. (1972). Functions of order statistics. Ann. Math. Statist. 43, 412-427.

Stigler, S. M. (1974). Linear functions of statistics with smooth weight functions. Ann.
Statist. 2, 676-693.

Wellner, Jon A. (1977a). A Glivenko-Cantelli theorem and strong laws of large numbers
for functions of order statistics. Ann. Statist. 5, 3, 473-480.

Wellner, Jon A. (1977b). A law of the iterated logarithm for functions of order statistics.
Ann. Statist., 5, 3, 481-494.

13





