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Abstract

We investigate the multivariate elliptically contoured generalization of a parametric
family of univariate distributions proposed by Ferreri in 1964. Such a p—variate Fermi-
Dirac distribution has density

£ = — L/2¥() 1
w?2F(p/2 — 1,a)|B[/2 1 + exp{a + X (a)(x — p)'S7 (x — p)}
where x, u € R?, o € R, 3 is a p X p positive definite matrix of rank p and
. *° uP
F(p, @) := /0 1 + exp{a+ u} du
is the Fermi-Dirac integral used in statistical physics.

The Fermi-Dirac family provides a one-dimensional continuous parametrization that
joins the multivariate uniform distribution on an ellipsoid to the multivariate normal
distribution.

A discussion of maximum likelihood estimation of its parameters illustrates some in-
teresting nonstandard phenomena. For example, as a by-product, a possible solution to
the problem of circumscribing the smallest ellipsoid to a set of points in RP is obtained.
The method is illustrated with a multivariate quality control example.

1Research partially supported by the National Science Foundation, Grant DMS-9303556.
OKey words and phrases. Fermi-Dirac distribution, elliptically symmetric distributions, platikurtosis,

smallest enclosing ellipsoid, profile likelihood.



1. INTRODUCTION

In recent years, there has been a lot of interest in studying multivariate distributions al-
ternative to the normal model. Motivations may be found in the development of modern
computing and in the advances in theoretical statistics, which allow for more flexibility
in the choice of a parametric model for observable data. In particular, we currently
have a deeper understanding of the implications of certain symmetry assumptions on
the multivariate structure and of the extent to which some properties of the multivariate
normal distributions are, in reality, properties of a larger class of distributions displaying
certain regularities. These theoretical achievements are the effect of a spur of activities
in multivariate analysis summarized in, among others, the recent books by Fang, Kotz
and Ng (1990) and Fang and Zhang (1990).

On the applied side, more models available simply mean more freedom for the practi-
tioner, enabled to choose the parametric model that best fits a certain situation, whether
for empirical or theoretical reasons. Admittedly, this happens in spite of the enormous
growth of modern nonparametric techniques.

In the field of quality control, for example, it is recognized that manufacturing pro-
cesses give rise to distributions of continuous quality characteristics generally different
from the normal model, because of the possibility of a distinct flatness in the center
of the distribution. Such a characteristic is one of the aspects of platikurtosis; see for
example Balanda and MacGillivray (1988) for a recent discussion of the many ramifica-
tions. An example by Taguchi is part of the contemporary quality control folklore; we
were not able to find references other than Taguchi (1979), reported by several textbooks
in industrial statistics. Analyzing a univariate color-intensity quality characteristic, he
noticed that television sets manufactured in the United States tend to display a distribu-
tion which has approximately the same mean and standard deviation as television sets
manufactured in Japan, but is in general flatter (more platikurtic) in the center, close
to target specification. Lower variability in a neighborhood of the target helped Taguchi
to explain the greater market success of Japanese sets, despite the approximate equality
of proportion of nonconforming items (i.e., the probability of the quality characteristic
lying outside a certain specification interval centered at target) in the two distributions.
It should be noticed that, notwithstanding this famous example, the use of platikurtic
distributions in quality control is quite rare, and usually limited to finite mixtures of
normal distributions.

That platikurtic distributions are the norm, rather than the exception, in the manufac-
turing world was noticed before by Ferreri (1964), who defined a system of distributions
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described in the following section. An important half of that system are the Fermi-Dirac
distributions, which are extended in this paper to the multivariate case.

In particular, after reviewing in Section 2 Ferreri’s definition of the Fermi-Dirac dis-
tribution, we present its elliptically contoured multivariate generalization in Section 3,
prove that it is not a scale mixture of normals in Section 4 and present some interesting
limiting cases in Section 5. Maximum likelihood issues are analyzed in Sections 6 and 7

and an interesting geometrical connection is illustrated in Section 8.

2. A UNIVARIATE SYSTEM OF DISTRIBUTIONS BY FERRERI

Ferreri (1964) observed that distributions with exponential tails similar to the normal
but with different degrees of kurtosis are important for applied work. In particular,
platikurtic distributions are needed in manufacturing applications, whereas quantitative
characteristics in the biological world have, quite often, leptokurtic distributions. Draw-
ing from these empirical considerations and from an interesting derivation ¢ la Pearson,
based on differential equations for the frequency function, Ferreri proposes the system
of univariate distributions

Al 1
(1) fz) = oG(c, —(1}2, a) c+exp{a+ A(a)(z — p)?/o?}

where —oo < p < 0o is the mean, o > 0 is the standard deviation, ¢ can be either 1 or

—1; for ¢ =1 and p > —1, we define the Fermi-Dirac integral

6(1,p, ) = F(p,a) := / )

and, correspondingly, the function

up

d
1+ exp{a+u} “

F(1/2,a)
F(-1/2,a)

Similarly, for ¢ = 1 and p > —1, we define the Bose-Einstein integral
up

G(-1,p,a) :=/0 —1+exp{a+u}du

and, correspondingly, the function A\?,(a) := G(-1,1/2,a)/G(—-1,-1/2,a). The two
cases ¢ = 1 and ¢ = —1 represent two subfamilies of distributions, the first platikurtic

Ni() =

and the second leptokurtic. The normal is a limiting case for both. The Fermi-Dirac and
Bose-Einstein integrals are special functions extensively studied in the physics literature.

Ferreri’s system of distributions, although mentioned in Johnson and Kotz (1970), is
not well known. Part of the reason is that the computational requirements for the special

functions above are very demanding, and investigations on their efficient computation



f)

i —
[
- alpha=+infinity (normal)
(e ] alpha=0
PaN alpha=-5
- alpha=-inflnity (uniform)
<« __]
<
o~ ]
[ =1
o p—
o
= _]
[ g
T T T T T
-4 -2 o 2 4
z

FIGURE 1. Univariate Fermi-Dirac densities with 4 = 0 and o2 = 1.

have continued until the present day. See for example the review paper by Blakemore
(1982).

Only the Fermi-Dirac case (¢ = 1), more suitable for our statistical applications, is
considered in this paper. To simplify the notation, we use F(p,a) instead of G(1,p, &)
and drop the subscript from A;(a). A plot of some Fermi-Dirac univariate densities, i.e.
formula (1) with ¢ = 1, is shown in Figure 1 for a = 0, —5 and the limiting cases & = —o0
and a = +o0, which represent, respectively, the uniform over the interval [—1/3,1/3] and

the standard normal.



3. THE MULTIVARIATE FERMI-DIRAC DISTRIBUTION

The p-variate Fermi-Dirac distribution is the elliptically symmetric multivariate ver-

sion of (1), with density
L'(p/2)X*(e) 1
(2) fx) = /2 _ 1/2 2 -1
w?/2F(p[2 — 1, )| T2 1 + exp{e + A () (x — p)Z 7' (x — p)}

where x, 0 € R, a € R, 3 is a p X p positive definite matrix of rank p, F is the Fermi-
Dirac integral (2), discussed in the Appendix, and \* () := F(1/2,a)/F(—1/2,a). The
corresponding spherically symmetric random vector Z, obtained when g = 0 and X is

the unit matrix, has density
I(p/2))? () 1
(3) f(z) = —5 ( AR
wP/2F(p/2 — 1,a) 1 + exp{a + A\2(a)z'z}
By standard results in the theory of elliptically symmetric distributions (see for example
Fang, Kotz and Ng (1990)), if X has density (2), then it has the stochastic representation

(4) XL REVU +p
where £ means equality in distribution, R is a positive random variable such that
R* £ (X — p)S7 (X — p)

and U is a p-variate random vector uniformly distributed on the unit hypersphere inde-
pendent of R. The density of R%, calculated in t, is

M) tp/2-1
F(p/2 —1,0) 1 + exp{a + A2(a)t}

and plays a role similar to the x?(p) density in the normal theory. For example, R

h(t) =

is the random variable one should generate in order to simulate from the multivariate
Fermi-Dirac distribution [see Johnson (1987), chapter 6].
The mixed moments of the spherically symmetric version are (see Fang, Kotz and Ng

(1990), page 34)

E(J] z¥) = E(st)w"’/z L(p/2) H I(1/2 +s;)

T'(p/2 + s
 Flstp2-10T02)
(5) F(p/2 —1,a)\2s7P/2T(p/2 + s) - HF(1/2 + i)

where s = 51+ 382+...5,. The moments of (2) can be calculated from (5) using standard
methods.



4. THE SYMMETRIC FERMI-DIRAC DISTRIBUTION IS NOT
A SCALE MIXTURE OF NORMALS

The distribution of the random vector (Xj,...,X,) is said to be a scale mixture of
central normal distributions if there exists a random vector (Vy, ..., N,) of independent
standard normal variables and an independent variable V such that (Xi,...,X,) has
the same distribution as (N1/V,... ,N,/V).

Scale mixtures of normal distributions are very important as models for heterogeneous
populations and as marginals of exchangeable random variables in Bayesian models with
normal likelihoods. They represent an important subfamily of spherically symmetric
distributions. In particular, they are the only possible choice for the finite dimensional
distributions of an infinite sequence of random variables with the property of spherical
symmetry [see for example Kingman (1972)]. It is therefore quite interesting to investi-
gate whether a given spherically symmetric distribution is a scale mixture of normals.

A viable necessary and sufficient condition for a given univariate symmetric density
to be a scale mixture of central normal distributions was given by Andrews and Mallows
(1974). It is possible to extend their results to the p-dimensional case, but that is not
needed here, since we will actually prove that the Fermi-Dirac density is not a scale
mixture of normals: if a vector (Xi,...,X,) is a scale mixture of normals, the same
is true for Xj, so it is enough to prove the negative result in the univariate case. The

condition given by Andrews and Mallows is recalled in the next theorem.

Theorem 1 (Andrews and Mallows). The distribution of the random variable X is a
scale mizture of central normal distributions if and only if its density f(z) satisfies the

following condition:

d.,
(6) (=) fWz) 20
for all k> 1 and all z > 0.

For the univariate spherically symmetric Fermi-Dirac distribution, we can apply the
test to the function
M) 1
F(-1/2,a)1 + exp{a + \2(a)u}’

or equivalently to the function

u > 0.

1
h(.’l?) = W, u > 0.
Now, it is easy to see that the test applied to the second derivative h”(u) = e*+*(—1 +

e®t*) /(1 + e***)? rules out negative values of a. Taking one more derivative, —h"(u) =
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et (1—4e2t* +¢2(4+%)) /(14€T)* we can see that the test is not satisfied for & < 2++v/3.
Taking further derivatives has the practical effect of bounding more and more the set of
o satisfying the test; such a set is actually empty, as it is shown in the following theorem.

Theorem 2. The Fermi-Dirac distribution is not a scale mizture of central normal dis-

tributions for any «.

Proof. By the above remarks, we only need to consider a > 3. In particular, letting
Y 1= a + u, we have to show that there is no o > 3 such that

(—;;—l?;)k 1 >0 Vk Vy2>oa.

14+ev ™
Writing (1 + €¥)! as a geometric series, it is clear that the condition can be rewritten

Z(—l)"(n + ke (Y > 0 VE Yy > o

n=0
Now, for y > 3, take k = 2y and write
S (1) 1m0 = 75 g | et i (j 4 1)
0 =4

The sum of the first three terms is negative and each term of the remainder series is
positive, proving the result. I

5. A BRIDGE BETWEEN THE UNIFORM AND THE NORMAL

It was shown in the previous section that the Fermi-Dirac model cannot be reduced
to a mixture of normals. One consequence is that its platikurtosis cannot be explained
in terms of heterogeneity, but it is an inherent property of the distribution.

The model is one of many possible responses to the observation that “not only there is
a paucity of multivariate nonnormal distributional models, but also most of the proposed
alternative distributions (e.g., multivariate lognormal, exponential) are defined so as to
have properties that are similar to those of the multivariate normal (e.g., that all marginal
distributions belong to the same class)” contained in Gnanadesikan (1977, page 161).
The Fermi-Dirac distribution has exponential tails, like the normal, but it differs from it
in the area close to the center of the distribution which, from the applied point of view,
is of primary importance. The marginal distributions of a multivariate Fermi-Dirac are
not of the same kind, and are quite complicated indeed.

The most desirable feature of the Fermi-Dirac model is that it provides a continuous
parametrization bridging the normal and the uniform, two models a practitioner often

has in mind as competitive alternatives. This is a consequence of the following
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Theorem 3. If X has a Fermi-Dirac distribution, its density (2) converges to a normal
density with parameters p and 3 as o« — 00, and to a uniform density inside the p-

dimensional ellipsoid
(7) {x€eR: (x—pu)E7(x —pn) <3}
as a — —0o.
Proof. Due to the approximations illustrated in the appendix, we have the asymptotic

equivalences A?(a) — .5 as @ — oo and A?(a) ~ —a/3 as a — —oo. Thus

lim f(x) = Wexp{ 5 (x— p)'S7 (x ~ p)}
/20 (p/2)(—a/3)"/ 1
11m f(X)—aL_w PR |S[2(=a)r/? 1+ exp{a — a(x — p)E"1(x — p)/3}

® _ T2+ 1) ((x— Y= x— ) < 3)
ERRE =7

where (A) denotes the indicator function of the event A. Il

The univariate exponential power family of distributions, considered, among others,
by Box and Tiao (1973, chapter 3.1) also contains the normal and the uniform as a
special and a limiting case. The tail behavior varies widely within that family, though,
and it is not clear how to generalize it to higher dimensions.

6. MAXIMUM LIKELIHOOD ESTIMATION

The loglikelihood function of a random sample of n p-dimensional vectors Xy, ...X,
from density (2) is defined as usual:

Lp/DX(e)
7rp/2F(p/2 -1, a)

(9) Ua,p,X) = nlog(

n
n -
— 5 log || = ) Jlog(1 + exp{a + (@) (xi — w7 (x; = p)})-
i=1
Due to the limiting results illustrated in the previous Section, we can extend the
parameter space by stipulating that @ = —oco means X is multivariate uniform inside
ellipsoid (7) and a = oo means X is multivariate normal. It is possible to observe a
likelihood increasing as a — oo, which would be a strong indication for switching to the

normal model, instead of the more complex Fermi-Dirac model. Similarly, if we observe
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a likelihood growing as ¢ — —oo, we could opt for the uniform model. In other words,
inspection of the profile likelihood

(10) pl(a) = sup o, p, X)

serves both the purposes of estimation and model selection.

For these reasons and because of considerable computational problems created by
differentiating expression (9) with respect to e, it is advisable to separate the maximum
likelihood analysis into two steps: firstly, maximizing I(a, p, X) with respect to g and T
for every fixed «; secondly, inspecting the profile likelihood (10) to gain information on
the appropriate model and to approximate the maximum likelihood estimate of a. Both
steps require intensive numerical computations.

Using some results illustrated, for example, by Mardia, Kent and Bibby (1979, page
103-104), the likelihood equations in g and X, for a fixed «, can be written

o _ s E et Rlolou— S M6 (o

" op + exp{a + A%(a)(xi — p) B (x; — )}

_ o _ no 2, A exp{o+ A(a)(xi — pu)'S7 (xi — p)}
L R0 Dy pes oy e o e T

(203 — p)(x; — p)' — diag (x; — p)(x; — p)’)

These equations do not have an explicit solution, and are not very transparent indeed.

Considering the univariate case p = 1 may help. For the sake of simplicity, let
exp{a + A(a) (s — p)?/*)
T+ exp{o+ A?(a) (& — 4)/07)

Then the likelihood equations can be rewritten

n n
o= E z;w;/ E w;
n

(12) 5t =220 S, — iy,

=1

w; = w;(o, p,0?) 1= =1,...,n.

from which we can clearly see that the maximum likelihood estimators of x and o? are
weighted versions of the sample mean and the sample variance, according to weights w;

that depend on a but also on g and o? themselves. Notice that equations (12) only
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define an implicit relation the maximum likelihood estimators must satisfy and are not
useful in actually computing the MLEs.

It is interesting to notice that the sample mean and the sample variance are actual
solutions of equations (12) if we let @ — oo, since limy 0o A?(a) = .5 and limgoo w; = 1,
i =1,...,n uniformly with respect to p and o. This is expected, since for o = oo the
model is the normal distribution. At the other extreme, numerical computations suggest
that the solutions to equations (12) converge to the MLE estimators of x and ¢ in the
uniform case as a — —o00, which are

min; z; + max; z;

(13) p= 5
52 (max; z; — min; z;)?
12 )

For p = 1 but also for moderate dimension p > 1, the Newton-Raphson method gives
good results in solving likelihood equations (11), but some caution is needed.

As it is usual for Newton-Raphson, the choice of the starting values of (u,X) is a
crucial one. The naive choice, i.e. using the vector of sample means, variances and
covariances as initial value, causes the Newton Raphson algorithm to diverge for o < 0.

A more careful strategy is contained in the following.

Algorithm 1. To compute a numerical approzimation of the profile likelihood of a:

1. start the Newton-Raphson computation of f1 and 3 at a large value of o, using the
vector of sample means, variances and covariances as starting values;
2. decrease a; use as starting values f1 and 3 obtained from the previous value of «;

3. repeat step 2 until convergence is apparent.

The algorithm usually terminates at a a negative value of a with a large absolute

value. An example is illustrated in the next Section.

7. AN APPLICATION IN MULTIVARIATE QUALITY CONTROL

Tracy and Young (1992) present multivariate data taken from a real chemical process.
n = 13 observations collected on the variables X; = % impurities, X, = temperature
and X3 = concentration are shown in Table 1. The authors write “preliminary tests
provided no reason to doubt that the data follow a multivariate normal distribution”,
but for the sake of comparison we want to fit a multivariate Fermi-Dirac distribution
with p = 3 using Algorithm 1 to maximize the likelihood.

Table 2 contains selected values of a, its profile likelihood and the corresponding MLEs
of u and X. Figure 2 is a plot of the approximate profile likelihood of o over a much finer
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% impurities | temperature | concentration
16.90 83.77 43.44
17.38 84.46 42.74
16.90 86.27 43.60
16.92 85.23 43.18
16.71 83.81 43.72
17.07 86.08 43.33
16.93 85.85 43.41
16.71 85.73 43.28
16.88 86.27 42.59
16.73 83.46 44.00
17.07 85.81 42.78
17.60 85.92 43.11
16.90 84.23 43.48

TABLE 1. Tracy data.

grid. It is very interesting to notice that the plot shows a decreasing profile likelihood
over the relevant range a € [—100,100]. This is to say that the data show more evidence
for the uniform rather than the normal model, the MLE of « being —oo. In other words,
for such a small sample size, the data cannot discriminate between the usually assumed
normal model and a uniform over an ellipsoid. The usual tests of multivariate normality
are powerful against alternative distributions with a different tail behavior, and that is
probably the reason why preliminary tests of normality were not significant. On the other
hand, the Taguchi example illustrated in the Introduction provides some motivations for
concentrating on a more careful modelling of the center of the distribution. For practical
purposes, given only the evidence provided by the small sample, the uniform model over
the ellipsoid approximated by the line & = —100 of Table 2 should be preferred over the

normal model of a = 100.

8. SMALLEST ENCLOSING ELLIPSOIDS

One interesting byproduct of the algorithm illustrated in the previous section is the
approximation of the maximum likelihood estimator of g and ¥ when sampling from
a uniform distribution on a p-dimensional ellipsoid, with density (8). In that case, for
practical purposes, the MLEs of 4 and ¥ are equivalent to the MLE of g and X for

a value of a negative and large in absolute value. For the Tracy data, as remarked



pl(alpha)

mul

mu?2

mu3

50
100

-16.86805
-17.42532
-18.51286
-19.60991
-20.36843
-20.74008
-20.83072
-20.90925
-20.96650
-20.99812
-21.01991
-21.02115
-21.02116
-21.02116
-21.02116

17.08297
17.08309
17.08325
17.07892
17.06036
17.02197
17.00510
16.99158
16.98342
16.97952
16.97706
16.97692
16.97692
16.97692
16.97692

85.22751
85.22804
85.22949
85.22378
85.19454
85.16261
85.15617
85.15173
85.14860
85.14677
85.14546
85.14539
85.14539
85.14539
85.14539

43.21661
43.21657
43.21642
43.21764
43.22815
43.25253
43.26298
43.27163
43.27707
43.27974
43.28144
43.28154
43.28154
43.28154
43.28154

alpha

Sigmall

Sigma22

Sigmad3

Sigmal2

Sigmal3

Sigma23

-100

5
10
20
30

100

0.117626
0.119621
0.121703
0.121597
0.113344
0.091551
0.081019
0.072123
0.066502
0.063734
0.061951
0.061853
0.061852
0.061852
0.061852

1.394761
1.418129
1.440630
1.423967
1.319191
1.169762
1.114526
1.067848
1.036536
1.020229
1.009335
1.008721
1.008717
1.008717

1.008717

0.306755
0.311870
0.316404
0.306059
0.262673
0.205005
0.1834860
0.168858
0.158833
0.153862
0.150640
0.150460
0.150459
0.150459

0.150459

0.103767
0.105213
0.106009
0.104954
0.098902
0.086612
0.080954
0.076146
0.073027
0.071449
0.070413
0.070355
0.070355
0.070355

0.070355

-0.086140
-0.087635
-0.089195
-0.088047
-0.080698
-0.067744
-0.061644
-0.056274
-0.052744
-0.050963
-0.049799
-0.049734
-0.049734
-0.049734
-0.049734

-0.366880
-0.372263
-0.375023
-0.358483
-0.307158
-0.248875
-0.230361
-0.215841
-0.206631
-0.201997
-0.198963
-0.198794
-0.198793
-0.198793
-0.198793

TABLE 2. Profile likelihood and maximum likelihood estimates of g and

Y for selected values of a.

11
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FIGURE 2. Profile likelihood of « for the Tracy data.

above, a Newton Raphson approximation of & and 3 from a uniform distribution on a
3-dimensional ellipsoid can be read off the lines of Table 2 corresponding to o = —100.
Until recently, the computation of maximum likelihood estimators for a uniform distri-
bution on a p-dimensional ellipsoid was a challenging problem, except for the case p =1,
when they reduce, trivially, to expressions (13). For a discussion of the case p = 2 see
instead Silverman and Titterington (1981). From the point of view of Computational
Geometry, the problem is tantamount to the calculation of the smallest ellipsoid enclos-
ing n points in RP. A constructive solution has been given recently by Welzl (1991). See
also referencesthereof. For the Tracy data, an implementation ? of the Welzl algorithm
for p = 3 provides results equivalent to the lines of Table 2 corresponding to oo = —100.

2gently provided by the author.
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9. APPENDIX: THE FERMI-DIRAC INTEGRAL

The Fermi-Dirac integral

F(p,a) .—/0 1+exp{a+u}du

is real-valued for any « and p > —1. Let I'(p) := fooo uP~le~*du be the gamma func-

tion. Asymptotic expressions for the Fermi-Dirac integral are given in the following

proposition.

Proposition 1. The following equalities hold

g L@ o Flee)pt])

=1
a—oo I'(p+1) = — 0 —qlpt1)

Proof. The first limit is obtained from the following series expansion, for & > 0:

o0 na

F(p,a):=T(p+1) Z(—l)n_l%.

n=1
The expansion can be derived by writing the integrand as a geometric series.
For the second limit, write instead, for a < 0,
—20 u? o uP ,
(14) F(p,o):= /0 T+ explat ] du + /_h T+ explat u}du =: I, + I, say.
We then have, by the change of variable z = u + 2a;,
I':/oo (2ot o) du — 0 as a —» —o0
“ Jo l+exp{—a+z} .
since, if p < 0, then (—2a+z)?/(1 +exp{—a+z}) < (—2a)?e™*/e~. On the other hand,
if p > 0, then (—2a + z)?/(1 + exp{—a + z}) < p!2Pe*/? which is integrable, and the
Dominated Convergence theorem applies.

For the first term on the right hand side of equation (14), we have instead, by the

change of variable z = —u/a,

I 2 z? d ! vq 1
(—a)rH '/o (1 + exp{—a(z — )} ™" */o R

since z?/(1 4+ exp{—a(z —1)}) < z? and the Dominated Convergence theorem applies.

Proposition (1) gives an approximation F(p,a) ~ I'(p 4+ 1)e™® which is already very
good for a > 4, and another approximation F(p,a) ~ (—a)?*!/(p+1), good for a < —20.
In the intermediate range —20 < a < 4, which is also the range of greater statistical
interest, the Fermi-Dirac integral must be evaluated numerically. See Van Cong and

Doan-Khanh (1992).
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