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BAHADUR REPRESENTATION OF M ESTIMATES BASED ON U FUNCTIONALS

ARUP BOSE !
Indian Statistical Institute

We prove asymptotic properties of M estimates based on ii.d. observations defined through the minimization
of a real valued criterion function of one or more variables and which is convex in the parameter. Our results
are applicable to a host of location and scale estimators found in the literature.

1. Introduction. Let X, X, X;,..., X, be independent M valued random variables with
distribution F. Let ¢ be a real valued function of § € R¢ and Z € M with Q(8) = E|q¢(8, X)| <
00. Let 6y be the (unique) minimiser of Q(#). The minimizer 6, of Y, ¢(f, X;) is called
a M estimate. Behaviour of #, was studied in a beautiful paper of Habermann (1989) who
established the consistency and asymptotic normality of 6, when ¢ is convex in §. Niemiro
(1992) also utilized convexity elegantly to establish a Bahadur type representation ¢, = 6 +
S./n + R, where R, is of suitable order almost surely. He and Wang (1995) primarily focus
on establishing the LIL for 6,, but without appealing to convexity.

As an application, Niemiro (1992) established a representation for the L' sample me-
dian. Chaudhuri (1992) also proved such a representation. Their techniques are different
with almost the same rates for the remainder R,. Chaudhuri also established a representation
for the multivariate mt® order Hodges - Lehmann estimate which is defined via minimizing
E[lm="(X, + -+ Xm) — 0] = [m=1(X; + -+ X[l

Suppose now that ¢ is a function on R?¢ x M™ which is convex in the first d co-ordinates
and let Q(0) = E ¢(0,X1,...,Xm). Let 6, be the (unique) minimizer of (#) and let 8, be the
corresponding sample version. These are the M, estimators of Huber (1964). Huber (1967)
studied their asymptotic properties. Maritz et. al. (1977) studied some M, estimators. Oja
(1984) proved the consistency and asymptotic normality of these estimators under conditions
similar to Huber (1967). Specific situations covered by Oja’s results are the median of Oja
(1983), univariate location estimators of Maritz et. al. (1977), the univariate Hodges-Lehmann
estimators of location, a univariate robust scale estimator of Bickel and Lehmann (1979) and
a regression coefficient estimator of Theil (see Hollander and Wolfe (1973)).

We establish a representation theorem and other asymptotic properties of 8,. Our setup
includes and unifies all the situations mentioned above and also the geometric quantiles of
Chaudhuri (1993) and the generalized order statistics of Choudhury and Serfling (1988) by the
common thread of convexity. Our set up does not cover the medians of Liu (1990), Tukey (1975)
and Rousseeuw (1986). The asymptotic normality of Liu’s median was proved by Arcones et.
al. (1994). Rousseeuw’s median falls under the realm of ”cube root asymptotics” (see Kim and
Pollard (1990)), Davies (1992)). We also do not cover any non i.i.d. situations.

Section 2 has the main results, examples and discussions. Section 3 has the proofs with two
auxiliary results on U statistics.
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2. Main results and examples. Let X, X;, X,,..., X, be i.i.d. M valued random
variables with distribution F. Let ¢(6,Z) be a real valued measurable function defined for
6 € R?and Z € M™ for some m, 1 < m < oo which is symmetric in its last m arguments. Let
Q(9) = Er ¢(6,X1,...,X,,) and 6y (unique) be such that Q(8,) = infy Er ¢(0, X,,...,Xn)
Define the sample analogue of Q(8) as Q,(6) = (,'7'1)—1 Yiciic.. <im<n 400, X5 - .-, X;,,) and the
measurable estimator 8, is the value which minimises @,(#). If no such 6, exists, let §, = oc.

The following three assumptions will be in force throughout the paper.

(I) ¢ (0, Z)is convex in @ for every Z.
(I)  Q(0) is finite for all 6
(IIT) @, exists and is unique.

If the finiteness condition (II) is satisfied for a subset of R?, all results remain valid if 6,
is an interior point of this subset. Let g be a subgradient of ¢ which is measurable in Z for
each a. The gradient vector and the matrix of second derivatives of @ at 6 will be denoted by
VQ(6) and V2Q(0) respectively. To introduce further conditions on @, let N be an appropriate
neighbourhood of 6, while » > 1 and 0 < s < 1 are numbers.

(Iv)  Elg(0,X1,..., Xm)|" <0 V8 €N.

(V) Elexp(t|g(8, X1,...,Xm)])] < 00 V 8 € N and some ¢ = t(6) > 0.

(VI)  V2Q(6,) exists and is positive definite.

(VII)  [VQ(8) — V2Q(80)(6 — 60)] = O(|8 — 6| ®+*)/2) as 8 — 6.

(VIIT)  E|g(8, X1, Xm) — 9(00, X1, - -, Xi)|? = O(]0 — 65|**)) as § — 6.
(IX) Elg(0,X1,...,Xn)|" = 0(1) as § — 6.

Define S, = 215i1<...<im5n 9(00, X1, - . ., Xim), H =V?Q(6).
THEOREM 1. 6, — 6, almost surely.

THEOREM 2. Suppose (IV) holds with some r > 1. Then for every é > 0,

P(sup |0 — 6y] > 6) = O(n'™") as n — co.
k>n

THEOREM 3. If (V) holds, then for every 6 > 0, there ezists a > 0 such that,

P(sup |0 — 6| > 6) = O(exp(—an)).
k>n
THEOREM 4. Suppose (IV) holds with r = 2 and (VI) holds. Then as n — oo,
-1
n'2(8, — 0) = —H 'n*/? (Z) Sn + op(1).

THEOREM 5.  Suppose (IV) holds and (VI) - (IX) hold for some 0 < s < 1 and 7 >
(84 d(1+ s))/(1 — s). Then almost surely as n — oo,

-1
(2.1) n'/*(6, - 6,) = —H 'n'/? (7777;) Sn + O(n= 0+ 4(log n)!/%(loglog n)*+2)/%)

The above representation continues to hold if s = 1 and g is bounded.



We now give examples to illustrate our results. Some of them already exist in the literature
but each has more or less required a separate proof so far. Some of these proofs are quite
involved but often yield more information about the remainder term.

EXAMPLE 1 (L! median, m: order Hodges - Lehmann estimate, geometric quantiles) Suppose
X,X1,X,,...,X, are i.i.d. d dimensional random variables. We assume that d > 2. The L1
median is obtained by taking ¢(6,z) = |z — 8| — || = (Xi,(z: — 6:)%)% — (Ti, x2)%. We
assume that the L' population median 0, is unique. This is true if F' does not give full measure
to any hyperplane.

ProrosITION 1. The conclusions of Theorems 1 and 3 hold for the L' median. If further
E|X — 6o|~®+)2 < o0 for some 0 < s < 1 then the representation (2.1) holds with S, =
Yo ((Xi — 60)/|Xi — 6o] and H defined in (2.2) below.

Proof: Conditions (I), (II), (IV) and (V) are satisfied since the- gradient vector is g(a,z) =
(a—z)/(| @ —z |)if @ # « and it equals 0 otherwise. To verify (VIII), we modify the
arguments given in Proposition 2 of Niemiro (1992). Assume that 6, = 0. Since |g| < 1 and

|9(8, ) — 9(0, )| < 26]/|=],

E|g(07X) - g(O,X)IZ

IN

40P / |e|?dF(z) + dF(z)
[=]>16] l=zf<iol

IA

o+ea [ Jol"0*dF@)+ [ a4 IdF())
l=1>18] PREAES !

Thus (VIII) is satisfied since (1 + s) < (3 + s)/2. Define

(2.2) h6,) = 1 . <I _ —|ox2(2|; "’)) 546, H = E(h(6o, X))-

Clearly H is positive definite. By using similar arguments as above (see Niemiro (1992)),
IVQ(8) — VQ(0)— H8| < I, + I, where

I, < 2|9 |z|"tdF(z) < 2||G+)/2 / [z|~ G+ 24 F(z).
l=|<16] l=|<l6]

I, < 6|6 / || ~2dF (z) < 6]6]C+/ / || =G24 F (z).
|z]>]6] |z1>16]

The moment condition assures that (VI) and (VII) hold with V2Q(8,) = H.

For the L' median, Niemiro (1992) assumed that F’ has a bounded density and obtained
the same rate as ours (any 0 < s < 1 for d = 2 and s = 1 for d > 3). Chaudhuri (1992,
1993) assumed the boundedness on every compact subset of R? to derive his representations
for the L; median and its Hodges-Lehmann version with remainders O(n~'/2logn) if d > 3
and o(n~?) for any f§ < % if d = 2. His proof parallels the classical proof for one dimensional
median. For Proposition 1, the slowest rate of the remainder is O(n~'/*(log n)'/2(log log n)'/*)
when E|X — ]73/% < 0o. The fastest rate of the remainder is O(n~'/?(log n)'/2(loglog n)'/?)
when E |X — 6|72 < co. Under Chaudhuri’s condition, E|X — 8|72 < oo if d > 3 and E
| X — 6p]~(1+*) < 0o for any 0 < s < 1 if d = 2. Our moment condition forces F' to necessarily



assign zero mass at the median. It is an odd fact that if F' assigns zero mass to an entire
neighbourhood of the median, then the moment condition is automatically satisfied.

Now assume that the median is zero and X is dominated in the neighbourhood of zero by a
variable Y which has a radially symmetric density fy(|z|). Transforming to polar coordinates,
note that the moment condition is satisfied if the integral of g(r) = r~(3+8)/2+d-1 £, (7) is finite.
If fy(r) = O(r~?), (8 > 0), then the integral is finite if s < 2d — 3 — 28.

Assume that d = 2, the density exists in a neighbourhood of the median, is continuous at
the median and F ¢(6,X,) has a second order expansion at the median. Arcones (1995a) has
shown that then the exact order of the remainder is O(n~!/?(log n)/?(loglogn)) and he has
completely characterised the limit set of the normalised remainder term. His proofs are based
on results from empirical processes. In a private conversation he mentioned that representation
for the L; median has also been considered in the unpublished article Arcones and Mason(1992).
This article is under revision.

H Elm (X, + -+ X)) — 6] ~@+*)/2 < 00, then Proposition 1 holds for the multivariate
Hodges - Lehmann estimator with S, =3, ; cic i <n (00, m™ Y X;, + -4+ X))

For |u| < 1, the utt geometric quantile (Chaudhuri (1993)) is defined by taking ¢(6,z) =
|z — 8] — |z| — u'8. With obvious changes in S, and in the assumptions, Proposition 1 remains
valid for geometric quantiles and their Hodges-Lehmann versions.

ExAMPLE 2. (Generalized order statistic). Let X;,..., X, beii.d. elements with distribution
F, h be a function from R™ to R which is symmetric in its arguments. Let Hp denote the
distribution function of A(Xy,..., X,,) and let H;'(p) be the ptt quantile of Hp. Let

H,(y) = (Z) >, I(WXi,... X)) <)

1<ii<...<im<n

be the empirical distribution and H,;*(p) its p*2 quantile. Chaudhury and Serfling (1988) proved
a representation for H;'(p). Such a result follows directly from Theorem 5. Without loss let
p = 1. Let Q(8) = E[|A(Xy,...,Xn) — 0] — |R(X1,...,Xw)|] = E ¢(0,X1,...,X5n). Then
8o = Hz'(3) (8o is unique if Hp has a positive density at Hz'(3)). Writing z = (21,...,2%m)),

the (bounded) gradient vector is g(f,z) = —sign(h(z) — 0). Suppose that

(VIII)Y In a neighbourhood of 8y, Hr has a bounded density hp.

Then (VIII) holds (s = 0) since E|g(0,z) — g(0o,z)|> < 4|Hp(6) — Hp(0)| = O(|6 — 65]).

It is also easily checked that VQ(0) = FEg(6,X) = 2Hp(0) — 1. Further, Q(0) is twice
continuously differentiable at 8 = 8, with H = V2Q(6,) = 2hr(6,) if

(VIIY Hp(8) — Hr(8) — (8 — 00)hr(6e) = O(|0 — 85|3) as 6 — 6.

Under (VIIY and (VIII), (2.1) holds with s = 0 for the generalized quantiles. Particular
examples are, the univariate Hodges-Lehmann estimator (b(Xy,...Xpn) = m™ Y (X1 +...,Xn)),
the dispersion estimator of Bickel and Lehmann (1979) (h(X;, X;) = |X; — X;|) and, the the
regression coefficient estimator introduced by Theil (see Hollander and Wolfe (1973, pp. 205-
206) (h((X:,Y2), (X;,Y;)) = (Y - Y;)/(X;: — X;)), where (X;, Y;) are bivariate i.i.d. random
variables. Let § be any fixed number between 0 and 1. Let L(6, 2, 2,) = |2+ (1—0)z,—0| +
|Bz2+(1—B)z; —0|. The minimizer of E [L(6, X1, X,)— L(0, X1, X;)] is a measure of location of
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X; (Maritz (1977)) and its estimate is the median of 8X;+(1—8)Xj, ¢ # j (8 = 1/2 yields the
Hodges-Lehmann estimator of order 2). Conditions similar to above guarantee a representation
for this estimator. See Arcones (1995b) for further information on the representation for U
quantiles. In particular he derives some exact rates under certain ”local variance conditions”
by using ideas from empirical processes.

ExaMPLE 3. (Oja’s median). For (d + 1) points y1,...,¥s41 in R%, let A(yi,...,Yap1) be the
(positive) volume of the simplex generated by these points. This volume equals the absolute
value of the determinant of the (d 4+ 1) x (d + 1) matrix whose ¢th column is y; with a one
augmented at the end, 1 < 7 < d. Let Q(8) = E [A(,X,...,Xq) — A(0,X;,...X3)] =
E ¢(8,X1,...X4) say. Oja’s median is the (unique) minimizer 6, of @(#). The uniqueness is
guaranteed if the density exists and is positive on a convex set which is not entirely contained
in a hyperplane and, is zero otherwise. For d = 1, Oja’s median is the usual median. Let X
denote the d X d random matrix whose ith column is X; = (Xy;,.. .Xd,-)' 1<i<d. Let X(3)
be the d X d matrix obtained from X by deleting its ¢th row and replacing it by a row of 1’s at
the end. Finally let M(6) be the (d+ 1) X (d + 1) matrix obtained by augmenting the column
vector 8 = (f1,...,0;) and a (d+ 1) row vector of 1’s respectively to the first column and last
row of X. Note that ¢(8, X;,...X,) equals || M(6)|| — ||M(0)|| where || - || denotes the absolute
determinant This equals |0'Y — Z| — |Z| where Y = (Y3,...Y,) and Y: = (-1 X(5)],

= (-1)4X|. Hence Q is well defined if E |X;| < 0o. Further, the i** element of the gradient
vector of g is given by ¢; = Y; -sign(8'Y — Z), i = 1,...,d and is similar to the gradient in
Example 2. It is clear that condition (VII) is satisﬁed if

(VIITY E\|lY|P[I(0Y < Z < 0,Y)+ I(8,Y < Z < 8Y)] = O([0 — 6,]')

If F has a density then so does the conditional distribution of Z given Y. By conditioning on
Y it is easy to see that a sufficient condition for (VIII)’ holds with s = 0 is that this condtional
density is bounded uniformly in §’Y for 6 in a neighbourhood of 6, and E||Y]||? < co. For the
case d = 1, this condition is the same as condition (VIII)’ in Example 2. To obtain the other
condition (VII), first assume that F is continuous. Note that Q(8) — Q(6,) = 2E[0'Y I(Z <
0Y)—0,Y I(Z < 0,Y)|+2E[Z I(Z < 0'Y) — Z I(Z < 6,Y)]. Tt easily follows that the ith
element of the gradient vector of Q(6) is given by Q;(8) = 2E[Y; I(Z < 8'Y))]. If F has a density,
it follows that the derivative of Q;(6) with respect to 8; is given by Q;;(8) = 2E[Y;Y; fzv(6'Y)]
where fzy(-) denotes the conditional density of Z given Y. Thus H = ((Q;;(60))). Clearly
then (VII) will be satisfied if we assume that for each ¢,

(VIIY  E[Yi{Fay(0'Y) — Fzy(8Y) — f21v(6,Y)(60 — 8) )Y H] = O(|6 — 6,|®+/?)

The p** order Oja median (1 < p < 2) is the minimizer of Q(0) = E[A?(8, Xy,...,X4) —
AP(0,Xy,...,X,)]. Following the above arguments, now g;(0) = pY;|¢'Y — Z|P~'sign ('Y —
Z), i =1,...,d, and H = ((hi;)) = p(p — D((E[Y:Y;|65Y — Z|P~?])). One can formulate
conditions for Theorems 1 to 5 to hold for this median by consulting Example 1 of Niemiro
(1992) on L* estimates in the univariate case and the above discussion for p = 1. Clearly the
Oja median has an unbounded and nonsmooth influence function when d > 2.

3. Proofs. The proof of Theorem 1 is similar to Habermann(1989) but uses the SLLN for
U statistics. For the remaining proofs, assume without loss that 8, = 0 and Q(8,) = 0. Let



S denote the set of all m element subsets of {1,...,n}. For any s = {#1,...,%,} € S,let Y,
denote the random vector (X;,,...,X; ) and X(o,s) = Q(o,Y;).

PRrOOF OF THEOREMS 2 AND 3. Fix § > 0. Since @ is convex, continuous and Lipschitz (with
Lipschitz constant L say) in a neighbourhood of 0, there exists an € > 0 such that Q(a) > 2¢
for all || = 6. Fix a. Assumption (IV) implies that E|X(a, s)|” < co. By Lemma 1 below

(3.1) P(sup [Qx(2) - Q4(0) — Q(@)] > €) = o(n'™)

Now choose ¢ and §' both positive such that 56’L + 3¢’ < €. Let A = {a : |a| < 6} and
Ag = {a:|a] < §+28%. Let B be a finite ¢ triangulation of 4,. ;jFrom (3.1), .

(3.2) P(supsup |@i(a) - @:(0) - Q(e)] > €) = o(n'").
Since Q(-) is convex, using the triangulation Lemma 4 of Niemiro(1992) and (3.2),

(3.3) Plsup sup [03(2) = @4(0) = Q(@)] < 5L +3¢ < ) = 1 - o(n'™)
2n |al<s

Suppose that the event in (3.3) occurs. Since fi(a) = Qr(a) — Q«(0) is convex, fi(0) = 0,
fi(e) > € for all |a] = 8§, we conclude that f;(c) attains its minimum on the set |a| < 6.
This proves Theorem 2 completely. To prove Theorem 3, follow the above argument but use
Theorem B of Serfling (1982, pp. 201) instead of Lemma 1.

PrOOF OF THEOREM 4. For any fixed o, and s € § let X,,, = ¢(n'%0,Y,) — ¢(0,Y;) —
n~2a7g(0,Y,). Since (*) ™ 3,5 Xns is a U - statistics, by Lemma A of Serfling (1980, page
183),

-1
n m m , _
V( (m) ZX’”) < -;EXZ.S < EE[a {g(n 1/2a7an) - g(O,an)}]z

Let Y be distributed as any Y,. Let ¥, = o'{g(n""%,Y) - g(0,Y)}. Then Y, > 0, is
nondecreasing and EY, 10. ThuslimY, = 0and EY? — 0. Noting that E X,,, = Q(n~'/%a),
it follows that

n(:l) _ Z(Xﬂ-’ - EXHS) = nQﬂ(%) - nQn(O) - n1/2 (:,:L)

in probability. By Assumption (VI), nQ(a/y/n) — o’ Ha and both convergences are uniform
on compact sets by Lemma 3 of Niemiro (1992). Thus for every € > 0 and every M > 0, (3.4)
holds with probability at least (1 — €/2) for large n.

(3.4) I:lliIJ)W |nQ(a/vn) — nQ.(0) — 'S, /vV/n—a'Haf2| < €

oS, — nQ(%) -0

Note that n!/2(*)™"$,, is bounded in probability. The rest of the argument is based on mini-
mizing the quadratic form appearing in (3.4) above. We omit the details.



Proor oF THEOREM 5. Define G(a) = DQ(a), Gn(a) = (::;)_lzg(a,Y,), and X,, =
seS

9(%,Y.) - 9(0,Y,). Note that E(X,,) = G(Z), and (3) 7> _Xn, = [Ga(5) - (*)"'S.]. By

seS
(VIII), E|X,,[?> = O((n~*/?1,)***) uniformly for |a| < Ml, = M(loglogn)'/?. By applying
Lemma 2 below with v2 = C?n~(1+2)/2]1+s

-1
sup P<n1/2|Gn(\/iﬁ) - (Z) S, — G(%N > K Cn~(+)/41+)/2(1og n)1/2>

la|<Mly

< Dnl-—r/ZCnr(1+s)/4l:;(1+s)/2(log n)r/z — Dnl—r(l—s)/4(10g n)r/Z(log 10g n)—r(1+s)/4.

To prove the first part, now follow the argument of Niemiro (1992) with S, /4/n there replaced by
nl/2 (2)_13n. For the second part, let U, be the U statistic with (bounded) kernel X,,, — EX,,,.
By arguments similar to those in the proof of Lemma 2 below for the kernel h,,,

P{|n*?U,| > v,(logn)*/?} < exp{—Kt(logn)"/* + t*n/k},

provided ¢t < n~Y2kv,/2m,, where k = [n/m] and m, is bounded by C, say. Letting t =
Ko(log n)/?, it easily follows that the right side of the above inequality is bounded by exp(—C'n)
for some c. The rest of the proof is same as the first part.

LEMMA 1. Leth be a real valued function on R™, symmetric in its arguments. Let U,(h) be the
corresponding U statistic based on the i.i.d. observations Xi,...,X,. Let p = Eh(X1,...,Xp)
and let E|h(X1,...,Xn)|" < oo (r > 1). Then for everye > 0,

P (igg |Ue(h) — p| > e) = o(n'™").

Proor. For m = 1 see Petrov (1975, Chapter 9, Theorem 2.8). If m > 1, consider the
Hoeffding decomposition, Ux(h) — ¢ = mHy1 + Hp s+ Ri. Since {Hp o,k > 2} is a reverse
martingale and E|Hyo|" = O(k™"), we get, P (sukan | Hy 2| > 6) <€TE|H, " = O(n™").
The Lemma then follows by noting that the remainder is indeed of a much smaller order.

LEMMA 2. (Moderate deviation) Let {h,} be a sequence of symmeiric kernels of order m and
let {Xni,1 < ¢ < n} be i.i.d. real valued random variables for each n. Let the corresponding
sequence of U statistics be U, (h,) = (:,)_1 Yoi<is<...<im<n Un(Bn(Xniys - - - Xni, ). Suppose that
for some § > 0, v, < nf and r > 2, E Up(hy(Xn1y -y Xnm)) = 0, E |Ba(Xniy evey Xonm)|? < 02

and E |hy(Xpiy ey Xam)|” < b < 00. Then for all large K,
P(n'?|Uy(hy)| > Kv, (logn)'/?) < Dn'~"2p7" (logn)™/?.
PROOF. Let hn= hnl(|hs| < Mn), Bnt = hn — Ehnyhnz = by — By ({m,} will be chosen).

Both {h,;} and {h,;}have the same properties as {h,}. Further U,(hn) = Up(hn1)+ Un(hn2).
Let a, = K (logn)/?/2 and 9,(t) = E[exp{tUs(hn1(Xn1,--.,Xn,m))}]. Note that ¥,(t)



is finite for each t since h,; is bounded. Letting k = [n/m], and using Lemma C of Serfling
(1980, page 200), for any ¢ > 0,

B = P(nYU,(hn1) > vpa,) = P(n'?U,(hp1)/va >t a,)
< exp(—ta,) [Un(n'%t/vk)F = exp(—ta,) [Eexp(n'/*t/v,kY)], say.

Using the fact that |Y| < m,, EY =0, and EY? < vZ, we get

1/2 o0 24\
Eexp (’;w tY) 1+EYY? (’;Tt) mi=2 /5!

i=2

IA

t2n . [ nt/% d t?n
< 1+ ——(EY? " 11 < —
= +2k2”r2.( )J;o(kvnm) /3P <1+ k2

provided t < n~Y/2kv,, /2m,,. With such a choice of t,

t2
B <exp (—tan + Tn)

Using t = K(log n)*?/4(2m — 1), and m,, = n*/%v, /K (logn)*/?, we get the following:

P(|nM?Un(hn1)| > Kva(logn)/?/2) < n~X*/16(@m-1)
P(|n* U, (Bn3)| > anvs/2) 40707 0 2 Elhya(Xn1s - - s Xnm)|
8v; ar ' 2[Elh|" 1T [P(lhn| > m )Y
8,0;1(1"—11n1/2b1/r(m;r)1—1/rb1—1/r

8bv " K™ 2n~"/%(log n)"-1)/2,

IA N IN IA

The Lemma follows by using these inequalities and the given condition on v,.
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