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1 Introduction

A nonparametric regression problem in statis-
tics provides a natural application for wavelet
analysis, being wavelets families of functions
useful in function approximation. We sketch
a description of a nonparametric “smoother”
based on the Daubechies wavelet family Dy
[Daubechies, 1992]. The D, family is used
since it is simple to describe and illustrative of
other orthonormal wavelet families. The fast
algorithms for D4 are well suited to large data
sets and software for them is currently avail-
able. Furthermore, the “smoothing” process
given here and implied by the wavelet analysis
can be simply described with minimum refer-
ence to the underlying wavelet family.

We want to model the random variable Y as
a function of the variable z. For each z; we
observe Y =y, for k = 0,---N. We assume
Tper1 = Tx + 1 throughout. The goal is to use
the points {(zk,yr)} to generate a “smooth”
function of the variable z useful for predicting
values of the variable Y. It is convenient to
assume that there is an unknown function f
such that

Yk = fzr) + e,

where the {e;} are uncorrelated random vari-
ables each with mean zero and common vari-

ance o2. Usually some weak restrictions are

placed on the behavior of f but we will ignore
these for the moment. We describe an estima-
tor of f as a prediction function for Y.

An initial prediction function can be pro-
duced by choosing a smooth function and in-
terpolating the data points with it. However,
such a prediction function may be unnecessar-
ily bumpy due to the noise €; in yg. One rea-
sonable approach is to replace the y values in
the original data set by a smoother set before
interpolating the points. We will describe a
simple method for the smoothing that is im-
plied by the D4 wavelet analysis . The result-
ing estimator will be seen to be a nonparamet-
ric “window” smoother whose window width
varies with . We illustrate the usefulness of a
variable window width in the following exam-
ple.

For the data in Figure 1, the apparent
underlying function f seems to have bumps
along with a linear trend. Many nonpara-
metric regression estimators either oversmooth
the bumps or undersmooth the constant por-
tion because they are fixed-width “window”
smoothers. A “window” smoother replaces the
y value of a data point by a function (usually
a weighted linear combination) of the y val-
ues of the data point and its neighbor points
in a surrounding “window”. Naturally, the
window width controls which neighbor points



are allowed to influence the smoothing for the
point. A small window width allows one to
trace an abrupt swing of the apparent under-
lying curve f but some points in Figure 1 are
bettered smoothed with larger window widths.
In fact, a method based on wavelet analysis
can be used to smooth data sets like this in
a manmner that automatically prescribes small
window widths for the points near bumps and
large window widths for other points where
the apparent underlying f values seem to be
smoother.
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Figure 1: Original Noisy Data to be fit.

2 An Overview of the D,
Data Smoothing

This section gives an overview of the smooth-
ing process that replaces the y values in the
original set of points by “smoother” ones.
These adjusted points can then be interpo-
lated to generate a prediction function for Y.
Boundary considerations are ignored for ease
of discussion throughtout the article.

The smoothing process is divided into a “de-
composition” phase followed by a “reconstruc-
tion” phase. (These refer to the same phases
in wavelet multiresolution analysis.) Although
we do not present them, fast algorithms are
available for all these steps.

In the decomposition phase, one creates a
sequence of sets of “prediction” points and
a sequence of sets of “discrepancies”. (In
wavelet multiresolution analysis, the y val-
ues of the prediction points are unnormalized
scaling function coefficients and the “discrep-
ancies” are unnormalized wavelet coefficients
multiplied by the value (v/3 — 2).) We sketch
the method for creating these sets at each
stage of the sequence in the following para-
graph.
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Figure 2: Decomposition Process.

At stage zero of the decomposition phase,
the stage zero prediction function is formed
by straight-line interpolation, i.e. by draw-
ing straight lines to connect neightbor points.
The original data set is the stage zero set of
prediction points. At each succeeding stage
j of the decomposition phase, the prediction



points from the previous stage (j — 1) are re-
placed after using them to create a smaller
set of smoother points, the stage j prediction
points. A new stage j prediction function is
then formed by straight-line interpolation of
the stage j prediction points. The “discrep-
ancy” for the stage j prediction point is de-
fined to be the difference along the y axis be-
tween the prediction function for stage (j — 1)
and the given stage j prediction point. These
form the set of stage j “discrepancies”. The
successive stages of the decomposition phase
are illustrated in Figure 2.

(From the decomposition phase one retains
the entire sequence of sets of discrepancies but
only the last set of predictions points in the
sequence. These sets contain all the informa-
tion in the original data set. In fact, there
is enough information there to reverse the de-
composition process and recreate the original
data set, making it unnecessary to retain the
original data or the entire sequence of sets of
prediction points.
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Figure 3: Reconstruction Process.

The second phase is called the reconstruc-

tion phase and is, in some sense, a reversal
of the previous process. It is based on the
fact that at any stage of the decomposition
phase the current set of prediction points and
its companion set of “discrepancies” can be
used to reconstruct the set of prediction points
for the previous stage. This corresponds to re-
versing the direction of the arrows in Figure 2,
as in Figure 3.

Exact reconstruction would be pointless but
a modification of the reconstruction process
leads to improved estimators. It depends on
the idea that in the decomposition phase the
stage 7 “discrepancies” contain whatever was
smoothed out from the stage (5 — 1) predic-
tion points in computing the stage j predic-
tion points . Some noise is swept out into
these “discrepancies”. But they also contain
parts of sharp local peaks or bumps in the un-
derlying function f that were rounded off by
the smoothing process. The important mod-
ification of the reconstruction process is the
following: The “discrepancies” are adjusted in
a way that saves the bumps but throws out the
noise. Then these adjusted “discrepancies” are
used instead of the original “discrepancies” in
the formulas for the reconstruction process.
Starting from the last stage of the decompo-
sition phase, the use of the modified recon-
struction process produces “improved” predic-
tion points for the previous stage. Repeated
applications create a “reverse-order” sequence
of sets of “improved” prediction points. The
last set in the “reverse-order” sequence is a
new version of the original data set. Using a
smooth interpolating function with this new
version produces a powerful smoother with
variable window width.

Section 3 gives a simple geometric descrip-
tion of the local smoothing method that pro-
duces the new set of prediction points at each
stage of the decomposition phase.

Section 4 gives a corresponding geometric
interpretation for the new set of “discrepan-



cies” generated at each stage of the decompo-
sition phase.

Section 5 describes the reconstruction pro-
cess. Enough information is given to suggest
reasonable criteria for modifying the “discrep-
ancies”.

Section 6 ties the prediction points and cor-
responding “discrepancies” of the decomposi-
tion process to wavelet multiresolution analy-
sis. A concluding section summarizes the re-
sults.

3 Geometric Interpreta-
tion of Smoothing in the
Decomposition Phase

At each stage of the decomposition phase, a
new set of smoothed prediction points is gen-
erated from the set for the previous stage. In
this section we describe the set and give a geo-
metric interpretation of the smoothing proce-
dure that generates the new prediction points.

First we label the k* prediction point in
the stage j set as (x(J ),y,(c] )) We say that the
original data points form the stage zero set
of prediction points. The orlglnal data point
(zk, yr) is now labeled (ac k ,y,(c )) refer to Fig-
ure 1.

The local smoothing procedure produces the
stage j set of smoothed prediction points from
the the stage (j — 1) set.

Proposition 1 Let (z;; () ,y,(cj)) be the kt* pre-
diction point for stage j, generated from the
four prediction points

( (-1 (G- 1))

Topii s Yokts =0,...,3

in the stage (j — 1) set, shown in Figure 4.

Let zgj), the = value of the new point or lo-
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Figure 4: D4-Wavelet Geometric Approach.

as:
:cfcj) = xé’k D 4 9i- u
where

= (3-v3)/2,
which is about 0.63.

This definition for the x value of the new
smoothed point has the property that if the four
stage (j — 1) prediction points all lie on the
same quadratic curve, then the new smoothed
point also lies on that curve.

Let m(e)- be the slope, and b(e ) be the in-

tercept, of the line fit through the two even

points (z2’k 1)7?/& 1)) and (a:gk +12),ygc +12)) la-

beled by squares in Figure 4, where,

S - e
m(e)], = —2&+ 57 ;
and
be)] = —m(e)iad ¥ +y5i Y



Let y,(cj ) (e) be the point lying on the even fit
line at x,(f), the = value of the new point as
shown in Figure 4, therefore:

y9 (&) = m(e)ia? + b(e)!

Likewise, let m(o)i be the slope, and b(o)i
be the intercept, of the line fit through the two

odd points (:1:;],;_11) , yg;ll)) and (ngkjr?, yéﬁ_la) ).

labeled by circles in Figure 4, where,

WY - v
m(o)] = S I
and
_ o
b(0)] = —m(e)flzly) +ysi Y

Let y,(cj) (0) be the point lying on the odd fit
line at xgj), the = value of the new point as
shown in Figure 4, therefore:

y9 (0) = m(0)ied + b(o)]

Then, the y value y,(cj ) for the new smoothed
point is the simple average of y,(cj) (e) and
y,(cj) (0) values from the even and odd fit lines
when x equals xgj ),

G _ 99 + 3 (o)
Yp = ——'2—

An algebraic formula for the y value of the
kthprediction point of stage j based on the y
values of prediction points from stage (7 — 1)
18
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(These {c;} are tied to the definition of the
wavelet family Dy.)

The new point is labeled by a triangle in Fig-
ure 4.

One implication of the geometric view
smoothing procedure just described can be seen
immediately. If the four stage (j — 1) predic-
tion points lie on the same straight line, then
the new smoothed point will also lie on that
line.

Proof 1 Follows from algebraic operations.

Here are some statistical implications of
these definitions. The y value of the new stage
J prediction point is “smoother” because its
variance is one half the variance for the stage
(5 — 1) prediction points. Furthermore, if the
y values for stage (j — 1) prediction points
are uncorrelated, then the y values for stage
J prediction points are uncorrelated. Thus if
the underlying f function is locally linear or
quadratic, then the new point will be a less
noisy observation on that line or quadratic
curve.

The spacing of the original data points
{(zk,yx)} satisfied zx41 = zx + 1. The dis-
tance between the points on the z axis for the
j* set of prediction points is also constant and
equal to 27 because the z value of the k** point
in the stage j prediction set is

o) = 27(k + p) + (w0 — ).

The distance is twice the corresponding dis-
tance for the (j — 1)t set of prediction points.

In Figure 5 the stage (j — 1), prediction
points are labeled with dots while the stage
Jj prediction points are labeled with triangles.
The thiner vertical lines cutting the z-axis are
z values for the (j — 1)*t set while the thicker
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Figure 5: One-Step Smoothed Data.

vertical lines cutting the z-axis are x values
for the j** set. We say that the resolution
of the j** set of prediction points is growing
coarser as j increases even though the predic-
tion points may be getting smoother. Observe
that none of the z values for the prediction set
of one stage overlaps those of another stage
since p is irrational. The spacing implies that
(ignoring boundary problems) there are half as
many points in the jth set of prediction points
as in the (j — 1) set. This implies an obvi-
ous limitation on the number of stages in the
decomposition phase since the original set of
data points is finite. The usual definitions for
the number of stages are much smaller though
and based on sample size considerations.

Now we describe the stage j prediction func-
tion that interpolates the stage j prediction
points. The straightforward approach is to
“connect the dots”, i.e. draw straight lines to
connect neighboring stage j prediction points
as shown in Figure 5.

That is exactly the definition of the stage j
prediction function. It will play an important
role in the definition of the “discrepancies” in
the next section. (An alternative “interpolat-

ing” function is used in wavelet analysis but
it must be admitted that you won’t be able
to see the difference in the graphs of the two
functions when the stage j prediction points
have x values spaced close together.)

4 The “Discrepan-
cies” of the Decomposi-
tion Phase

A significant feature of the decomposition
phase is the computation of a measure of the
difference between a stage j prediction point
and the ones for the previous stage. This “dis-
crepancy” will have an important role to play
in the reconstruction phase when we examine
the reversal of the smoothing process, i.e. go-
ing from stage j to the previous stage (7 — 1).
One cannot simply compare the y value for the
kth stage j prediction point to that of one of
the stage (j — 1) prediction points since none
of the stage (j — 1) points have the same x

value, xff ), as the kth stage j prediction point.
But there is a reasonable alternative. Com-
pare the y value for the stage j prediction
point to the corresponding y value of the stage
(j — 1) prediction function that interpolated
the stage (j — 1) prediction points, i.e. look at
the difference between the prediction function
for the stage (j — 1) and the prediction func-
tion for the stage j when z = wg ). We define
the “discrepancy” associated with (zg),y,(c] )),
the k** prediction point of stage 7, to be

) - . )

R = (1 -yl + uy — .

The “discrepancy” R;cj ) has a simple geo-
metric interpretation that is given in Figure 6.
For stage j, the k** prediction point (mi’ ) y,(c] D)
is labeled by a triangle in Figures 5 and 6. The
two closest prediction points from stage (7 —1)

are a4V, ) and (22,081, which
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Figure 6: Discrepancies.

are labeled by circles in Figure 5. A straight
line is drawn through these two stage (j — 1)
prediction points. The “discrepancy” R,(j) is
found by subtracting the y value of the new
stage j prediction point from the y value of
the line at =z = :c,(cj ). The geometric interpre-
tation makes it clear that the “discrepancy” is
the difference of the “connect the dots” predic-
tion function for stage j and the correspond-
ing one for stage (j — 1) at ¢ = wg)
2 = g0~ 4 2i-1, (In wavelet multires-
olution analysis, the “discrepancy” is an un-
normalized coefficient of the wavelet function
multiplied by the constant (v/3 — 2).)

The definition of the “discrepancy” implies
a number of interesting statistical properties.
The variance of the noise in Rg’) is equal to
2‘j(\/§ — 2)? times the variance of the noise
in the yi, the y values of the original data set.
It can also be shown that the “discrepancies”
for stage j are uncorrelated with one another
and uncorrelated with the “discrepancies” for
any of the other stages. The “discrepancies”
for stage j are also uncorrelated with the y
values of the stage j prediction set.

where

A number of properties are seen from the ge-
ometric interpretations of the “discrepancies”
and prediction points. For instance, the “dis-
crepancy” RECJ ) for (a:ff ) y,(j ) is zero if the four
stage (j —1) prediction points used to compute
y,(j ) all lay on the same straight line. By defin-
ing the “discrepancy point” as (:c,(c]),Rg ), we
can see in the next section how other patterns
in the stage (j — 1) prediction points are re-
flected in the stage j discrepancy points.

The “discrepancies” {R,(c’il} for stage j of
the decomposition phase are closely connected
to the “difference” function for stage 7. The
“difference” function for stage j is defined to
be the prediction function for stage (j — 1) mi-
nus the prediction function for stage j. We
can see that the “difference” function based
on the “connect the dots” prediction functions
actually interpolates the discrepancy points.
(This is essentially the case for the difference
function based on the definition of the alterna-
tives to the prediction functions given for the
wavelet analysis.)

5 Reconstruction

At any stage j of the “smoothing” process,
one can reverse the process to obtain the pre-
diction points of the previous stage (j — 1) as
shown in Figure 3. The y values of the stage
(j—1) prediction points can be computed from
the stage j “discrepancies” and the y values for
the stage j prediction points using the recon-
struction formula

yz(cj_l) = Z Ck—2iy§j)
+H-1F S g2 (V3 - 2)

By adjusting or smoothing the “discrepan-
cies” R;’ )} before employing them in the re-



construction formula above, one may system-
atically improve the stage (j — 1) prediction
points. For instance, “small” R,(f) may be set
equal to zero under the assumption that they
reflect noise while “large” Rg) may be pre-
served intact under the assumption that they
reflect oversmoothing of bumps. Using these
adjusted R,(c]) in the reconstruction formula
above yields an “improved” set of stage (7 —1)
prediction points superior to both the original
set of stage (j — 1) prediction points and the
original set of stage j prediction points. This
is because the “improved” points are not over-
smoothed yet the noise is reduced wherever
possible. These “improved” stage (j — 1) pre-
diction points can now be combined with sim-
ilarly adjusted stage (j — 1) “discrepancies”
in another application of the reconstruction
formula to create an “improved” set of stage
(j — 2) prediction points. Similar reasoning
imples that it is superior to the original set
of stage (j — 2) prediction points as well as
the “improved” set of stage (j — 1) prediction
points. Repeated applications of this process
leads to a “reverse-order” sequence of sets of
“improved” prediction points culminating in
an improved version of the original stage zero
set of prediction points. Because the original
stage zero set of prediction points is just the
original data set, we see that we have replaced
it by a set better than or at least as good as
any of the other sets of prediction points that
we have created. We have not indicated at
what stage j this whole reconstruction process
starts but the considerations include the size
of the data set and attendant boundary prob-
lems.

In developing criteria for adjusting or
smoothing the {Rg )1, it is important to un-
derstand the effect on these stage j “discrepan-
cies” of underlying local relationships between
the z and y values in the stage (j — 1) pre-
diction points. Some “bumps” in the data

can come from underlying local high degree
polynomials. For example assume that for z
values in a certain interval, the corresponding
stage (j — 1) prediction points lie on a poly-
nomial curve of degree m. Then the stage j
“discrepancy” points with z values in that in-
terval will lie on a polynomial curve of degree
(m — 2), where a polynomial of degree less
than or equal to (—1) is assumed to be the
zero function. In such a case, if noise is also
added to the y values of the stage (j — 1) pre-
diction points, then the y values of the stage j
“discrepancy” points also have added noise. If
there are enough points with z values in the in-
terval, then it is appropriate to “smooth” the
{RY} to reduce noise yet retain the under-
lying (m — 2) degree polynomial curve before
employing them in the reconstruction formula.
The same techniques used to smooth the orig-
inal data set {(zr,yx)} can be applied to the
“discrepancy” points. But then it may also
be appropriate to smooth the “discrepancy”
points of the “discrepancy” points and so on.
There are actually fast algorithms to carry out
such schemes. Entropy-based criteria for de-
ciding which “discrepancies” to “smooth” be-
fore truncating or “shrinking” have been suc-
cessfully employed [ Daubechies, 1992, Section
10.6).

6 The D; Multiresolution
Analysis

In this section we connect the prediction
points and the “discrepancies” of the earlier
sections to D, multiresolution analysis de-
scribed in the previous article.

For an unknown function f, it is assumed
(as previously) that

yr = f(zr) + €k

where the {¢} are uncorrelated random vari-

ables with mean zero and common variance o2.



It is assumed that y, is observed for known zy,
with

$k=k+$0.

The scaling function ¢ for the wavelet family
Dy can be used to provide a sequence {F_;} of
approximating functions to f. This F_; is an
alternative to the stage j prediction function
of the previous sections and satisfies

F_j(@) =Yy @ 7z~ k).
k

(For details see Note 1 in the Appendix.) In
order to preserve the interpretation of its co-
efficients y\”) as function values for F_j, the
function ¢(277 - —k) is not normalized, i.e.
multiplied by 279/2. The function F_; essen-
tially passes through the values y,(cJ ) at the =
locations

o =2 (k + p),

where

p=(3-v3)/2

This occurs because the support of ¢ is [0, 3]
and ¢(u + %) is nearly zero for 7 equal to one
or two while it is nearly one for i equal to
zero. (The fact that these ¢ function values
are “nearly” one or zero leads to the qualifying
phrases “essentially interpolates” and the quo-
tation marks that sometimes appear around
the word “interpolating” in our discussion.)
By defining

T = k+ H,
we have
a) =29 (u+ k),

and the function F_; essentially interpolates
the stage j prediction points. It is more com-
mon to assume that the zj are integers but

then Fy would not pass through the original
data points, even if they all fell on the same
straight line. The last definition for the z
would insure that Fy reproduces the line ex-
actly, even for interior points. (Using this last
definition also implies that if the y; are ob-
servations on an underlying function f with
a local quadratic Taylor series approximation,
then the F_; function gives the correct orthog-
onal projection to the approximating space
V_; of the multiresolution analysis.)

We are interested in.the difference between
the two approximating functions and we define
it as G_; where

G-j(z) = F_(j—1y(z) — F_j(=).

The G_; may also be written in terms of the
wavelet function 1 for the D, family. In par-
ticular,

G_j(z) = R 9279z - k)/(V3 - 2),
k

where the wavelet coefficients for stage j are

RP /(V3-2) = (1/2) Y (~1er_ il

%

(The values of the coefficients {¢;} are given
in Section 3.)

Note that 1 has support [—1,2] and ¥ (s —
k) is nearly zero for k equal to zero or one.
Furthermore, ¥(u — 1) is nearly equal to K
where

K=v3-2.

This property implies that the function
G _; essentially interpolates the “discrepancy”

points, {(a:fj),Rff))}. It is an alternative to
the “difference” function described in the last
paragraph of Section 4.

We can describe the influence of the noise
in the {yx} on the statistical behavior of the
coefficients of the scaling function and the



coefficients of the wavelet function for each
stage j. The j* set of scaling function co-
efficients {y{”’} all have variance ¢2/27 and
are uncorrelated. They are also uncorrelated
with the [** set of wavelet function coefficients
{(RP/(v/3 - 2)}, for all I such that I < j.
Also the jt* set of wavelet function coefficients
{RY)/(+/3 — 2)} have variance 02/27 and are
uncorrelated with each other and with the co-
efficients in the I** set {RV/(v/3 - 2)}, for all
I such that! < (5 —1).

7 Conclusion

Properties of the prediction points and the
“residual-like” discrepancies follow directly
from their algebraic definition and at each
stage they may be seen to be orthogonal linear
transformations of the prediction points from
the previous stage. Their geometric interpre-
tation gives them an independent life from
the wavelet multiresolution analysis that gen-
erated them. We hope that statisticians will
gain insight into wavelet analysis from this ex-
ample and see ways to use or improve it.

No new references are offered but two statis-
ticians who have written on the topic and
whose names are not mentioned in the pre-
vious article are R. Carmona at the Uni-
versity of California at Irvine and I. McK-
eague at Florida State University. Gen-
eral information about wavelets is available
by e-mail in the Wavelet Digest recently
edited by Wim Sweldens at the University of
South Carolina. To subscribe, send e-mail to
wavelet@math.scarolina.edu with “subscribe”
as the subject.

8 Appendix

Note 1. Each approximating function F_; is
assumed to lie in the multiresolution analysis

approximating space V_j;, a closed linear sub-
space of Ly. The functions in V_; have the
form

9-i(®) =D Y- xd(2 79z — k)
k

where g_; is in L. (The reader is cautioned
that this subspace would be labeled V; in the
notation of Daubechies book while it is labeled
V_; in Chui’s book.) These V_; are the same
closed subspaces described in the multireso-
lution analysis of the previous article. (The
fact that the subspaces are closed was inadver-
tently omitted there.) For the wavelet family
Dy, the scaling function ¢ is continuous and all
the functions in V_; continuous. Functions of
the form given in the first equation of this note
can be used to represent low degree polyno-
mials such as constant functions and straight
lines over the entire real line. But none of
these nonzero polynomials are in Lo and thus
none of these polynomials are in V_;. Notice
also that these functions F_; are not the f_;
of the previous article, where

foi(®) = ajxd(277z — k).
k

Those f_; are the projections of the function

f to the subspaces V_;. The yfcj ) are only ap-
proximations to the correct coefficients

ajp =2 / F@)$(@ iy — k)dy

Note 2. In the representation of G_j;, the
function (277 - —k) is purposefully not nor-
malized, i.e. multiplied by 277/2. This pre-
serves the interpretation of RSCJ )asa “discrep-
ancy”. Notice also that these functions G_;
are not the difference functions described in
the previous article, i.e. G_; is not

E b k(270 — k),
k
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the projection of the function f to the sub-

space W_;. The value R,(jll/ (v3—2) is only
an approximation to the correct coefficient

b =27 / F@ 7y — K)dy.
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